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1. Introduction

String matching and sequence comparison are two basic problems of pattern match-
ing known informally as “stringology”. Hereafter, by a string we mean a sequence
of consecutive symbols. In string matching, given a pattern W = w1w2 . . . wm (of
length m) one searches for some/all occurrences of w as a block of consecutive
symbols in a text T = t1t2 . . . tn (of length n). The algorithms by Knuth–Morris–
Pratt and Boyer–Moore [Crochemore and Rytter 1994] provide efficient ways of
finding such occurrences. Accordingly, the number of string occurrences in a ran-
dom text has been intensively studied over the last two decades, with significant
progress in this area being reported [Bender and Kochman 1993; Flajolet et al.
1988; Guibas and Odlyzko 1981a, 1981b; Lothaire 2005; Nicodème et al. 1999;
Régnier and Szpankowski 1997, 1998; Waterman 1995]. For instance, Guibas and
Odlyzko [1981a, 1981b] have revealed the fundamental rôle played by autocorre-
lation vectors and their associated polynomials. Régnier and Szpankowski [1997,
1998] established that the number of occurrences of a string is asymptotically nor-
mal under a diversity of models that include Markov chains. Nicodème et al. [1999]
showed generally that the number of places (positions) in a random text at which a
“motif” (i.e., a general regular expression pattern) terminates is asymptotically nor-
mally distributed. A survey on various string matching problems and their analyses
can be found in Lothaire [2005, Chap. 7].

In sequence comparison, we search for a given pattern W = w1w2 · · · wm in the
text Tn = t1t2 · · · tn as a subsequence, that is, we look for indices 1 ≤ i1 < i2 <
· · · < im ≤ n such that ti1 = w1, ti2 = w2, · · · , tim = wm . We also say that the word
w is “hidden” in the text; thus, we call this the hidden pattern problem. For example,
date occurs as a subsequence in the text hidden pattern, in fact four times, but
not even once as a string. We allow the possibility of imposing an additional set of
constraintsD on the indices i1, i2, . . . , im to record a valid subsequence occurrence:
for a given family of integers d j (d j ≥ 1, possibly d j = ∞), one should have
(i j+1 − i j ) ≤ d j . In other words, the allowed lengths of the “gaps” (i j+1 − i j − 1)
should be < d j . With # representing a “don’t-care-symbol” (similar to the UNIX
“�”-convention) and the subscript denoting a strict upper bound on the length of
the associated gap, a typical pattern may look like

ab#2r#ac#a#d#4a#br#a; (1)

there, # abbreviates #∞ and #1 (which glues adjacent letters together) is omitted;
the meaning is that “ab” should occur first contiguously, followed by “r” with a
gap of < 2 symbols, followed anywhere later in the text by “ac”, etc. The case
when all the d j ’s are infinite is called the (fully) unconstrained problem. When all
the d j ’s are finite, we speak of the (fully) constrained problem—in particular, the
case where all d j reduce to 1 gives back classical string matching as a limit case.

1.1. MOTIVATIONS. Our original motivation to study this problem came from
intrusion detection in the area of computer security. The problem is important due
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to the rise of attacks on computer systems. There are several approaches to intrusion
detections, but, recently the pattern matching approach has found many advocates,
most notably in Apostolico and Atallah [2002], Kumar and Spafford [1994], and
Wespi et al. [2000]. The main idea of this approach is to search in an audit file
(the text) for certain patterns (then known as “signatures”) representing suspicious
activities that might be indicative of an intrusion by an outsider, or misuse of the
system by an insider. The key to this approach is to recognize that these patterns
are subsequences because an intrusion signature specification requires the possi-
bility of a variable number of intervening events between successive events of the
signature—this is due to the distributed nature of intervening events. In practice one
often needs to put some additional restrictions on the distance between the symbols
in the searched subsequence, which leads to constrained version of subsequence
pattern matching. The fundamental question is then: How many occurrences of a
signature (subsequence) indicate a real attack? In other words, how does one set
a threshold so that real intrusions are detected and false alarms are avoided? It is
clear that random (unpredictable) events occur and setting the threshold too low
will lead to an unrealistic number of false alarms. On the other hand, setting the
threshold too high may result in missing some attacks, which is perhaps even more
dangerous. By knowing the most likely number of occurrences and the probability
of deviating from it, we can determine a plausible threshold such that we are only
likely to miss real attacks with a small probability (see the large deviation estimates
of Theorem 3 and the remarks at the end of Section 7).

When conducting our experiments on Shakespeare’s works (hardly a Bernoulli
text), we found that the counts for (unconstrained) hidden words prove often to be
barely distinguishable, up to stochastic noise, from what the Bernoulli model pre-
dicts. Typically, for the first two examples discussed in Section 6, the discrepancy
between what is observed in the actual text and a Bernoulli model based on actual
letter occurrences is about 5%. The fact that some leeway is afforded to spacings
between letters appears largely to nullify the effect of correlations arising under var-
ious source models. Indeed, there are some recent experimental results conducted
on real-life audit files [Atallah et al. 2003; Gwadera et al. 2004] suggesting that
our approach is useful even though the source is not memoryless and, in [Gwadera
et al. 2005], it was experimentally verified that Markov sources (of higher order)
induce only a fairly slight modification of the values of predicted thresholds. The
thresholds computed here thus appear to be endowed with a certain amount of ro-
bustness, and our analysis under a simple Bernoulli model can certainly serve as
the starting point of further studies, either experimental or theoretical.

Molecular biology provides another important source of applications [Rigoutsos
et al. 2000; Vanet et al. 1999; Waterman 1995]. As a rule, there, one searches for
subsequences, not strings. Examples are in abundance: split genes where exons are
interrupted by introns, starting and stopping signal in genes, tandem repeats in
DNA, etc. In general, for gene searching, the constrained hidden pattern matching
(perhaps with an exotic constraint set) is the right approach for finding meaningful
information. For example, it is well known that certain regulatory sites in organisms
such as E. coli and yeast have the form of “doublets”, consisting of two short words
separated by a variable-length spacer of arbitrary composition. If the words in the
doublet are sufficiently well conserved, our model can adequately describe the
statistics of such motifs. Similarly, a collection of motifs in a promoter region with
conserved order and orientation might be modeled as a series of spaced words. In
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order to overcome a limitation of our analysis for finding biological motifs (which
are not perfectly conserved words), one needs to extend our approach to approximate
hidden patterns: A preliminary step in this direction was already taken by Bourdon
and Vallée [2002], who furthermore consider source models encompassing Markov
chains and models with unbounded correlations that arise from dynamical systems
theory. Finally, the hidden pattern problem can also be viewed as a close relative
of the longest common subsequence (LCS) problem, itself of immediate relevance
to computational biology, but whose probabilistic aspects are still surrounded by
mystery [Steele 1997].

We, computer scientists and mathematicians, are certainly not the first who in-
vented hidden words and hidden meaning [Aczel 2000]. Rabbi Akiva in the first
century A.D. wrote a collection of documents called Maaseh Merkava on secret
mysticism and meditations. In the eleventh century, Spanish Solomon Ibn Gabirol
called these secret teachings Kabbalah. Kabbalists organized themselves as a se-
cret society dedicated to the study of the ancient wisdom of Torah, looking for
mysterious connections and hidden truth, meaning, and words in Kaballah and
elsewhere (without computers!). In fact, recent years have seen a resurgence of
interest in finding hidden messages in the Bible and similar texts. See the “Bible
Codes” controversy started by the publication of Witztum et al. [1994], with refu-
tations provided by McKay et al. [1999]. (See also Brendan McKay’s informative
site, Scientific Refutation of the Bible Codes.) To this debate, we only contribute
a common-sense remark: our convergence in probability results confirm that any
predetermined pattern is likely to be detected in any text as soon as its mean number
of occurrences is sufficiently high, which itself is granted as soon as enough leeway
is allowed in the choice of spacings between letters, of spelling variants, and so on.

Recent versions of these activities are knowledge discovery and data mining,
bibliographic search, lexicographic research, textual data processing, or even web
site indexing. Public domain utilities like agrep, grappe, webglimpse (developed
by Wu and Manber [1995], Kucherov and Rusinowitch [1997], and others) depend
crucially on approximate pattern matching algorithms for subsequence detection.
Many interesting algorithms, based on regular expressions and automata, dynamic
programming, directed acyclic word graphs, digital tries or suffix trees have been
developed; see Boasson et al. [1999], Das et al. [1997], Kucherov and Rusinowitch
[1997], and Wu and Manber [1995] for a flavour of the diversity of approaches to
algorithmic design.

In all of the contexts mentioned above, it is of obvious interest to discern what
constitutes a meaningful observation of pattern occurrences from what is merely
a statistically unavoidable phenomenon (noise!). This is precisely the problem
addressed here. We quantify subsequence statistics, that is, we determine precise
probabilistic information on the number of occurrences of a given pattern W as a
subsequence in a random text Tn generated by a memoryless source—this, in the
most general case covering the constrained and unconstrained versions as well as
mixed situations. Surprisingly enough and to the best of our knowledge, there are
no results in the literature that address the question at this level of generality. An
immediate consequence of our results is the possibility to set thresholds at which
appearance of a (subsequence) pattern starts or stops (probably) being meaningful.

1.2. RESULTS. Let �(T ) be the number of occurrences of a given pattern W as
a subsequence in a text T . By number of occurrences is understood the number of
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ways the pattern together with its distance constraints can be embedded in the text.
We investigate the general case where we allow some of the gaps to be restricted,
and others to be unbounded. Then, the most important parameter is the quantity b
defined as the number of constrained blocks, that is, the number of unbounded gaps
(the number of indices j for which d j = ∞) plus 1.

Throughout this article, the text is assumed to be generated by a memoryless
source, also known as Bernoulli source, that is, symbols are drawn independently
according to some fixed probability distribution over letters of the alphabet. For
a random text T of length n under this model, the combinatorial parameter �(T )
becomes a random variable that is then naturally also denoted as �. We prove
in Theorem 1 that the number of occurrences � in a random text of size n has
expectation and variance given by

En[�] ∼ nb

b!
D π (W), Vn[�] ∼ σ 2(W) n2b−1,

with E and V denoting the mean and variance operators, while the subscript n
indexes the probabilistic model of use. There D is the product of all the finite
constraints d j , π (W) is the probability of W , and σ 2(W) is a computable constant
that depends explicitly (though intricately) on the structure of the pattern W and
the constraints. Then, we prove the central limit law by moment methods, that is,
we show that all centered moments (�− En[�])/nb− 1

2 converge to the appropriate
moments of the Gaussian distribution (Theorem 2). We stress that, except in the
constrained case, the difficulty of the analysis lies in a nonlinear growth of the mean
and the variance so that many standard approaches to establishing the central limit
law tend to fail.

For the (fully) unconstrained problem, one has b = m, and both the mean and
the variance admit pleasantly simple closed forms. For the (fully) constrained case,
one has b = 1, while the mean and the variance become of linear growth. To
visualize the dependency of σ 2(W) on W , we observe that, when all the d j equal 1,
the problem further reduces to traditional string matching, which was extensively
studied in the past as witnessed by the following (incomplete) list of references:
[Bender and Kochman 1993; Guibas and Odlyzko 1981a, 1981b; Nicodème et al.
1999; Régnier and Szpankowski 1997, 1998; Waterman 1995]. It is well known
that for string matching, the variance coefficient σ 2 is a function of the so-called
autocorrelation of the string. In the general case of hidden pattern matching, the
autocorrelation must be replaced by a more complex quantity that depends on the
way pairs of constrained occurrences may intersect (cf. Theorem 1 and Section 3.3).

1.3. METHODOLOGY. The way we approach the probabilistic analysis is
through a formal description of situations of interest by means of regular lan-
guages. Basically such a description of contexts of one, two, or several occur-
rences gives access to expectation, variance, and higher moments, respectively. A
systematic translation into generating functions is available by methods of ana-
lytic combinatorics deriving from the original Chomsky–Schützenberger theorem
[Flajolet and Sedgewick 2005]. Then, the structure of the implied generating func-
tions at the pole z = 1 provides the necessary asymptotic information. In fact,
there is an important phenomenon of asymptotic simplification where the essen-
tials of combinatorial-probabilistic features are reflected by the singular forms of
generating functions. For instance, variance coefficients come out naturally from
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this approach together with, for each case, a suitable notion of correlation; higher
moments are seen to arise from a fundamental asymptotic symmetry of the prob-
lem, a fact that eventually carries with it the possibility of estimating moments.
From there, Gaussian laws eventually result by basic moment convergence theo-
rems. Perhaps the originality of the present approach lies in such a joint use of
combinatorial-enumerative techniques and of analytic-probabilistic methods.

2. Framework

We fix an alphabet A := {a1, a2, . . . , ar }. The set of all possible texts is A� (the set
of words over the alphabet A), and a text of length n is an element T = t1t2 · · · tn
of An . A particular matching problem is determined by a pair (W,D) called a
“hidden pattern” specification: the pattern W = w1 · · · wm is a word of length m;
the constraint D = (d1, . . . , dm−1) is an element of (N+ ∪ {∞})m−1. The case
D = (∞, . . . , ∞) models the unconstrained problem; at the other end of the
spectrum, there lies the case where all d j are finite, which we name the constrained
problem.

2.1. POSITIONS AND OCCURRENCES. An m-tuple I = (i1, i2, . . . , im) (1 ≤
i1 < i2 < · · · < im) satisfies the constraint D if i j+1 − i j ≤ d j , in which case it
is called a position. Let Pn(D) be the set of all positions subject to the separation
constraint D, satisfying furthermore im ≤ n. Let also P(D) = ⋃

n Pn(D). An
occurrence of pattern W subject to the constraint D is a pair (I, T ) formed with
a position I = (i1, i2, . . . , im) of Pn(D) and a text T = t1t2 · · · tn for which
ti1 = w1, ti2 = w2, . . . , tim = wm . Thus, what we call an occurrence is a text
augmented with the distinguished positions at which the pattern occurs. The number
� of occurrences of pattern w in text T subject to the constraint D is then a sum of
characteristic variables

�(T ) =
∑

I∈P|T |(D)

X I (T ), with X I (T ) := [[w occurs at position I in T ]]. (2)

There, Iverson’s bracket convention is used:

[[B]] =
{

1 if the property B holds,
0 otherwise. (3)

2.2. BLOCKS AND AGGREGATES. In the general case, the subset F of indices
j for which d j is finite (d j < ∞) has cardinality m − b with 1 ≤ b ≤ m. The
two extreme values of b, namely, b = m and b = 1, thus describe the (fully)
unconstrained and the (fully) constrained problem respectively. The subset U of
indices j for which d j is unbounded (d j = ∞) has cardinality b − 1. It then
separates the pattern W into b independent subpatterns that are called the blocks
and are denoted by W1,W2, . . . ,Wb. All the possible d j “inside” any Wr are
finite and form the subconstraint Dr , so that a general hidden pattern specification
(W,D) is equivalently described as a b-tuple of fully constrained hidden patterns
((W1,D1), (W2,D2), . . . , (Wb,Db)).

Example 1. With the example (1) described in the introduction, namely,

ab#2r#ac#a#d#4a#br#a,



Hidden Word Statistics 153

one has b = 6, the six blocks being

W1 =a#1b#2r, W2 = a#1c, W3= a, W4= d#4a, W5=b#1r, W6= a.

In more figurative terms, this is described as follows (with springs −///− representing
unbounded gaps, •→ representing bounded gaps, and gaps < 1 omitted):

W1︷ ︸︸ ︷
a b •→

<2
r −///−

<∞

W2︷ ︸︸ ︷
a c −///−

<∞

W3︷︸︸︷
a −///−

<∞

W4︷ ︸︸ ︷
d •→

<4
a −///−

<∞

W5︷ ︸︸ ︷
b r −///−

<∞

W6︷︸︸︷
a .

The decomposition of the hidden pattern problem into blocks is a fundamental tool
in what follows.

In the same way, an occurrence position I = (i1, i2, . . . , im) of W subject to
constraint D gives rise to b suboccurrences, I [1], I [2], . . . , I [b], the r th term I [r ]

representing an occurrence of Wr subject to constraint Dr . The r th block B[r ] is
the closed segment whose end points are the extremal elements of I [r ], and the
aggregate of position I , denoted by α(I ), is the collection of these b blocks. In our
example, the position

I = (6, 7, 9, 18, 19, 22, 30, 33, 50, 51, 60)

satisfies the constraint D and gives rise to six subpositions,

I [1]︷ ︸︸ ︷
(6, 7, 9),

I [2]︷ ︸︸ ︷
(18, 19),

I [3]︷︸︸︷
(22),

I [4]︷ ︸︸ ︷
(30, 33),

I [5]︷ ︸︸ ︷
(50, 51),

I [6]︷︸︸︷
(60) ;

accordingly, the resulting aggregate α(I ),

B[1]︷ ︸︸ ︷
[6, 9],

B[2]︷ ︸︸ ︷
[18, 19],

B[3]︷︸︸︷
[22],

B[4]︷ ︸︸ ︷
[30, 33],

B[5]︷ ︸︸ ︷
[50, 51],

B[6]︷︸︸︷
[60] ,

is formed with six blocks.

Finally, for a totally constrained hidden pattern (W,D), we associate two quan-
tities: the length of a constraint, and the product of a constraint,

�(D) = 1 +
∑

i

di , D(D) :=
∏

i

di ;

this is extended to a general hidden pattern specification as

�(D) =
b∑

i=1

�(Di ), D(D) :=
b∏

i=1

D(Di ).

2.3. PROBABILISTIC MODEL. As regards the probabilistic model, we consider
a memoryless source that emits symbols of the text independently from the fixed
finite alphabetA = {a1, a2, . . . , ar } and denote by pα (0 < pα < 1) the probability
of the symbol α ∈ A being emitted. For a given length n, a random text, denoted
by Tn is then drawn according to the Bernoulli model corresponding to the product
probability on An:

π (T ) ≡ π (t1 · · · tn) =
n∏

i=1

pti . (4)
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The pattern W = w1 · · · wm of length m is fixed, and the quantity π (W) =∏n
i=1 pwi , the pattern “probability”, surfaces throughout the analysis. Under the

randomness model, the restriction of � to An , denoted by �n whenever depen-
dency on size needs to be made explicit, becomes a random variable defined on
An . Then, �n , is itself a sum of correlated random variables X I (defined in (2)) for
all allowable I ∈ Pn(D).

Generally speaking, we shall use in the sequel other parameters defined on A�,
namely � defined in (11) and �̃ defined in (24). For any such parameter, say U , we
shall adopt similar notations: U is the parameter defined on A�, Un may be used to
mark the restriction of U to An , and the subscript n appended to P, E, V indicates
that the probabilistic model is the product probability on An .

2.4. GENERATING FUNCTIONS. Throughout this article, we shall consider struc-
tures superimposed on words. For a class C of structures and given a weight func-
tion γ fromC to the set of reals, we introduce the generating function of the weighted
set,

C(z) ≡
∑

n

Cnzn :=
∑
ω∈C

γ (ω)z|ω|,

where |ω| denotes the size of structure ω. In particular, the usual counting generating
function corresponds to the constant weight γ ≡ 1. Then,1 Cn = [zn]C(z) is the
total weight of all structures of size n in C.

For structures arising from words, the number of letters involved in the structure
will determine the size of the structure. The weights will be induced by the prob-
abilities of individual letters. As we shall see in the next section, the collection of
occurrences can be described by means of regular expressions extended with dis-
joint unions, and Cartesian products. Thus, a minimal set of rules must first be given
in order to translate such basic constructions; see Flajolet and Sedgewick [2005],
Sedgewick and Flajolet [1995], and Szpankowski [2001] for a general framework.

Take A,B, C to be weighted sets with respective weights α, β, γ . Here is a brief
summary of translation rules from weighted sets to generating functions:

—Disjoint Unions. Assume that C = A∪B where the union is disjoint (A∩B = ∅),
and that the weight γ on C is inherited from the weights α, β on A,B:

γ (ω) =
{

α(ω) if ω ∈ A
β(ω) if ω ∈ B.

Then, the corresponding generating functions satisfy

C(z) = A(z) + B(z).

The proof is a one-liner, given the definitions:

C(z) :=
∑
ω∈C

γ (ω)z|ω| =
(∑

ω∈A
α(ω)z|ω|

)
+

(∑
ω∈B

β(ω)z|ω|
)

=: A(z) + B(z).

Disjoint unions in such contexts are also called combinatorial sums and denoted
by the symbol ‘+’.

1 The notation [zn] f (z) represents the coefficient of zn in the series f (z).
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—Cartesian Products. Assume that C = A × B is a Cartesian product and that
the weight γ on C is defined multiplicatively from the weights α, β on A,B:
γ (〈x, y〉) = α(x) · β(y). Then, the corresponding generating functions satisfy

C(z) = A(z) · B(z),
since one has

C(z) :=
∑
ω∈C

γ (ω)z|ω| =
(∑

ω∈A
α(ω)z|ω|

)
·
(∑

ω∈B
β(ω)z|ω|

)
=: A(z) · B(z).

(A similar translation by products of generating functions holds for unambiguous
concatenations of formal languages.)

For an alphabetAweighted by letter probabilities, the generating function is simply
z. By the rules above, the generating function of all words of length n under the
Bernoulli model is zn and the generating function of the entire language A� is

1 + z + z2 + · · · = 1

1 − z
.

As we shall see, the constructions recalled above suffice to express moments of
occurrence counts. Consequently, all the resulting generating functions are rational,
of the special form F(z) = (1−z)−(k+1) P(z) for some integer k ≥ 0 and polynomial
P . This, in turn, entails precise coefficient asymptotics, namely,

[zn]
P(z)

(1 − z)k+1
= nk

k!
P(1) + O(nk−1). (5)

3. Mean and Variance Analysis

In this section, we assemble definitions and methods described in Section 2 in
order to derive estimates of the mean and variance of the number of occurrences
(Theorem 1).

3.1. MEAN VALUE ANALYSIS. The first moment of the number of occurrences
is easily obtained by describing the collection of all occurrences in terms of formal
languages.

We recall that an occurrence of pattern W subject to the constraint D is a pair
(I, T ) formed with a position I = (i1, i2, . . . , im) ofPn(D) and a text T = t1t2 · · · tn
for which ti1 = w1, ti2 = w2, . . . , tim = wm . We consider the collection of position-
text pairs

O := {(I, T ) ; I ∈ P|T |(D)},
with the size of an element being by definition the length n of the text T . The
weight of an element of O is taken to be equal to X I (T )π (T ). (Here, π (T ) is the
probability of the text,) In this way, O can also be regarded as the collection of all
occurrences weighted by probabilities of the text. The corresponding generating
function of O equipped with this weight is

O(z) =
∑

(I,T )∈O
X I (T )π (T ) z|T | =

∑
T

( ∑
I∈P|T |(D)

X I (T )

)
π (T )z|T |, (6)
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and, with the definition of �,

O(z) =
∑

T

�(T )π (T ) z|T | =
∑

n

En[�]zn. (7)

As a consequence, one has [zn]O(z) = En[�], so that O(z) serves as the gener-
ating function (in the usual sense) of the sequence of expectations En[�].

On the other hand, each occurrence can be viewed as a “context” with an initial
string, then the first letter of the pattern, then a separating string, then the second
letter, etc. The collection O is then described combinatorially by

O = A� × {w1} × A<d1 × {w2} × A<d2 × . . . × {wm−1} × A<dm−1 × {wm} × A�.
(8)

There, for d < ∞, A<d denotes the collection of all words of length strictly less d,
that is, A<d := ⋃

i<d Ai , whereas, for d = ∞, A<∞ denotes the collection of all
finite words, that is, A<∞ := A� = ⋃

i<∞ Ai . Since the source is memoryless, the
rules discussed at the end of the last section can be applied, and they give access to
O(z) from the description (8). The generating function functions associated to A<d

and A<∞ are

A<d(z) = 1+z+z2 +· · ·+zd−1 = 1 − zd

1 − z
, A<∞(z) = 1+z+z2 +· · · = 1

1 − z
.

Thus, the description (8) of occurrences automatically translates into

O(z) ≡
∑
n≥0

En[�] zn =
(

1

1 − z

)b+1

×
(

m∏
i=1

pwi z

)
×

(∏
i∈F

1 − zdi

1 − z

)
. (9)

With π (W) the probability of the pattern W , one finds finally from (5) and (9):

En[�] = [zn]O(z) = nb

b!

(∏
i∈F

di

)
π (W)

(
1 + O

(
1

n

))
, (10)

and a complete asymptotic expansion could be easily obtained. This symbolic
derivation of mean values extends the case of standard string matching exposed
in Sedgewick and Flajolet [1995, p. 366]. Its full significance is revealed when it
is applied to higher moment estimates.

3.2. VARIANCE ANALYSIS. For the analysis of variance and especially of higher
moments, it is essential to work with a centered random variable � defined, for each
n, as

�n := �n − En[�] =
∑

I∈Pn(D)

YI , with YI := X I − E[X I ] = X I − π (W). (11)

The second moment of the centered variable � equals the variance of � and with
the centered variables defined above by (11), one has

En[�2] =
∑

I,J∈Pn(D)

E[YI YJ ]. (12)



Hidden Word Statistics 157

�� �� �� ��

FIG. 1. A pair of occurrences I, J with b = 6 blocks each and the joint aggregates; the number of
degrees of freedom is here β(I, J ) = 4.

From this last equation, we need to analyse pairs of positions (I, T ), (J, T ) ∼=
(I, J, T ) relative to a common text T . We denote by O2 this set,

O2 := {(I, J, T ) ; I, J ∈ P|T |(D)},
and we weight each element (I, J, T ) by YI (T )YJ (T )π (T ). The corresponding
generating function, which enumerates pairs of occurrences, is

O2(z) :=
∑

(I,J,T )∈O2

YI (T )YJ (T )π (T ) z|T | =
∑

T

( ∑
I,J∈P|T |(D)

YI (T )YJ (T )

)
π (T )z|T |

and, with Eq. (12),

O2(z) =
∑
n≥0

∑
I,J∈Pn(D)

E[YI YJ ] zn =
∑
n≥0

En[�2] zn.

The process entirely parallels the derivation of (6) and (7), and, one has [zn]O2(z) =
En[�2], so that O2(z) serves as the generating function (in the usual sense) of the
sequence of moments En[�2].

There are two kinds of pairs (I, J ), depending on whether they intersect or not.
When I and J do not intersect, the corresponding random variables YI and YJ
are independent, and the corresponding covariance E[YI YJ ] reduces to 0. As a
consequence, one may restrict attention to pairs of occurrences I, J that intersect
at one place at least. Suppose that there exist two occurrences of pattern W at
positions I and J which intersect at � distinct places. We then denote by WI∩J
the subpattern of W that occurs at position I ∩ J , and by π (WI∩J ) the probability
of this subpattern. Since the expectation E[X I X J ] equals π (W)2/π (WI∩J ), the
expectation E[YI YJ ] = E[X I X J ] − π (W)2 involves a correlation number e(I, J )

E[YI YJ ] = π2(W) e(I, J ), with e(I, J ) = 1

π (WI∩J )
− 1. (13)

Remark that this relation remains true even if the pair (I, J ) is not intersecting,
since, in this case, one has π (WI∩J ) = π (ε) = 1.

3.2.1. Aggregates and Degrees of Freedom of Pairs of Positions. As it turns out
in the analysis, asymptotic behavior is driven by the overlapping of blocks involved
in I and J , rather than plainly by the cardinality of I ∩ J . In order to formalize
this, define first the (joint) aggregate α(I, J ) to be the system of blocks obtained
by merging together all intersecting blocks of the two aggregates α(I ) and α(J ).
The number of blocks β(I, J ) of α(I, J ) plays a fundamental rôle here, since it
measures the degree of freedom of pairs; we also call β(I, J ) the degree of pair
(I, J ). Figure 1 illustrates graphically this notion.



158 P. FLAJOLET ET AL.
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FIG. 2. A full pair of occurrences I, J with b = 6 blocks each.

Example 2. Consider the pattern W = a#3b#4r # a#4c composed of two
blocks. The text aarbarbccaracc contains several valid occurrences of W includ-
ing two at positions I = (2, 4, 6, 10, 13) and J = (5, 7, 11, 12, 13). The individual
aggregates are α(I ) = {[2, 6], [10, 13]}, α(J ) = {[5, 11], [12, 13]} so that the joint
quantities are: α(I, J ) = [2, 13] and β(I, J ) = 1. This pair has exactly degree 1.

When I and J intersect, there exists at least one block of α(I ) that intersects
a block of α(J ), so that the degree β(I, J ) is at most equal to 2b − 1. Next, we
partition O2 in accordance with the value of β(I, J ) and write

O[p]
2 := {(I, J, T ) ∈ O2 ; β(I, J ) = 2b − p}

for the collection of intersecting pairs (I, J, T ) of occurrences for which the degree
of freedom equals 2b − p. From the preceding discussion, only p ≥ 1 needs to be
considered and

O2(z) = O [1]
2 (z) + O [2]

2 (z) + O [3]
2 (z) + · · · .

As we see next, it is only the first term of this sum that matters asymptotically.

3.2.2. Full Pairs. In order to conclude the discussion, we need the notion of full
pairs: a pair (I, J ) ofPq(D)×Pq(D) is full if the joint aggregate α(I, J ) completely
covers the interval [1, q]; see Figure 2. (Clearly, the possible values of length q are
finite, since q is at most equal to 2�, where � is the length of the constraint D.)

Example 3. Consider the pattern W = a#3b#4r#a#4c. The text aarbarb-
ccaracc also contains two other occurrences of W , at positions I ′ =
(1, 4, 6, 12, 13) and J ′ = (5, 7, 11, 12, 14). Now, I ′ and J ′ are intersecting, and the
corresponding aggregates are α(I ′) = {[1, 6], [12, 13]}, α(J ′) = {[5, 11], [12, 14]}
so that α(I ′, J ′) = {[1, 11], [12, 14]. This is an example of a full pair of occurrences
with number of blocks β(I ′, J ′) = 2.

There is a fundamental translation invariance due to the independence of symbols
in the Bernoulli model that entails a combinatorial isomorphism (∼= represents
combinatorial isomorphism)

O[p]
2

∼= (
A�

)2b−p+1 × B[p]
2 ,

where B[p]
2 is the subset of O2 formed of full pairs such that β(I, J ) equals 2b − p.

In essence, the gaps can be all grouped together (their number is 2b − p + 1, which
is translated by the prefactor (A�)2b−p+1), while what remains constitutes a full
occurrence. The generating function of O[p]

2 is accordingly

O [p]
2 (z) =

(
1

1 − z

)2b−p+1

× B[p]
2 (z).
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Here, B[p]
2 (z) is the generating function of the collection B[p]

2 and from our earlier
discussion, it is a polynomial of degree at most 2�(D). Now, an easy dominant pole
analysis entails that [zn]O [p]

2 = O(n2b−p).
This proves that the dominant contribution to the variance is given by [zn]O [1]

2 ,
which is of order O(n2b−1). Then, the variance E[�2

n] involves the constant B[1]
2 (1)

that is the total weight of the collection B[1]
2 . Recall that this collection is formed

of intersecting full pairs of occurrences of degree 2b − 1. The polynomial B[1]
2 (z)

is itself the generating function of the collection B[1]
2 , and it is conceptually an

extension of Guibas and Odlyzko’s autocorrelation polynomial Guibas and Odlyzko
[1981a, 1981b]. We shall later make precise the relation between both polynomials
(see Section 3.3).

We summarize our findings in the following theorem.

THEOREM 1. Consider a general constraint D with a number of blocks equal
to b. The mean and the variance of the number of occurrences � of a pattern W
subject to constraint D satisfy

En[�] = π (W)

b!

( ∏
j : d j <∞

d j

)
nb

(
1 + O

(
1

n

))
,

Vn[�] = σ 2(W)n2b−1

(
1 + O

(
1

n

))
,

where the “variance coefficient” σ 2(W) involves the autocorrelation κ(W)

σ 2(W) = π2(W)

(2b − 1)!
κ2(W) with κ2(W) :=

∑
(I,J )∈B[1]

2

(
1

π (WI∩J )
− 1

)
.

(14)

The set B[1]
2 is the collection of all pairs of occurrences (I, J ) that satisfy three

conditions: (i) they are full; (ii) they are intersecting; (iii) there is a single pair
(r, s) with 1 ≤ r, s ≤ b for which the rth block B[r ] of α(I ) and the sth block C [s]

of α(J ) intersect.

Remark 1. From Theorem 1 and Chebyshev’s inequality, we conclude that

Pn

{∣∣∣∣ �

En[�]
− 1

∣∣∣∣ > ε

}
≤ Vn[�]

ε2 E
2
n[�]

= O
(

1

n

)
.

Therefore, the random variables �/ En[�] converge to 1 in probability, that is,

for any ε > 0, lim
n→∞ Pn

{∣∣∣∣ �

En[�]
− 1

∣∣∣∣ < ε

}
= 1. (15)

Bourdon and Vallée [2002] have recently provided a follow-up to Theorem 1 and
shown that the statement is fairly robust: it extends to a somewhat larger class of
patterns with gaps; more importantly perhaps, concentration of distribution is shown
in Bourdon and Vallée [2002] to hold for a wide class of sources encompassing
memoryless and Markov sources—the dynamical sources in the sense of Vallée
[Clément et al. 2001; Vallée 2001].
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3.3. GENERALIZED AUTOCORRELATIONS AND VARIANCES. In this section, we
re-examine the variance coefficient, for which formulas have been provided earlier;
see Eq. (14) in Theorem 1. As we now explain, the variance coefficient turns out to
be computable in a time that is polynomial in the size of the pattern specification.
Structurally, it relates to a generalization of Guibas and Odlyzko’s autocorrela-
tion polynomial originally introduced for classical string matching (cf Guibas and
Odlyzko [1981a, 1981b] and Szpankowski [2001]).

3.3.1. The General Case. The computation of the autocorrelationκ(W) reduces
to b2 computations of correlations κ(Wr ,Ws), relative to pairs (Wr ,Ws) of blocks.
Note that each correlation of the form κ(Wr ,Ws) involves a totally constrained
problem and is discussed below. Precisely, one has

κ2(W) = D2(D)
∑

1≤r,s≤b

1

D(Dr )D(Ds)

(
r + s − 2

r − 1

)(
2b − r − s

b − r

)
κ(Wr ,Ws),

(16)

where κ(Wr ,Ws) is the sum of the e(I, J ) taken over all full intersecting pairs
(I, J ) formed with an occurrence I of block Wr subject to constraint Dr and an
occurrence J of block Ws subject to constraint Ds . Let us explain the formula (16)
in words: for a pair (I, J ) of the set B[1]

2 , there is a single pair (r, s) of indices
with 1 ≤ r, s ≤ b for which the r th block B[r ] of α(I ) and the sth block C [s] of
α(J ) intersect. Then, there exist r + s − 2 blocks before the block α(B[r ], C [s])
and 2b − r − s blocks after it. We then have three different degrees of freedom:
(i) the relative order of blocks B[i](i < r ) and blocks C [ j]( j < s), and similarly
the relative order of blocks B[i](i > r ) and blocks C [ j]( j > s); (ii) the lengths of
the blocks (there are D j possible lengths for the j th block); (iii) finally the relative
positions of the blocks B[r ] and C [s].

3.3.2. The Fully Unconstrained Case. In the unconstrained problem, the pa-
rameter b equals m, and each block Wr is reduced to the symbol wr . Then, the
“correlation coefficient” κ2(W) simplifies to

κ2(W) :=
∑

1≤r,s≤m

(
r + s − 2

r − 1

)(
2m − r − s

m − r

)
[[wr = ws]]

(
1

pwr

− 1

)
. (17)

3.3.3. The Totally Constrained Case. To complete the discussion relative to the
variance coefficient, we need to show how to compute the correlation coefficient
κ(R,S) between two totally constrained hidden patterns (R, C) and (S,D). (For
general hidden patterns, R and S will be blocks of the original pattern W .) This is
achieved by methods of dynamic programming. Assume that the 1-block pattern
R has i symbols, so that constraint C is of the form C = (c1, c2, . . . , ci−1); in the
same vein, the 1-block pattern S has j symbols, so that constraint D is of the form
C = (d1, d2, . . . , d j−1).

When a pattern T occurs at a position I and K ⊂ I is any subposition of I , TK
denotes the subpattern of T that occurs at position K . We consider the setB of pairs
(I, J ) that satisfy four conditions: (i) I is an occurrence of R with constraints C;
(ii) J is an occurrence of S with constraints D; (iii) the two subpatterns RI∩J and
SI∩J are equal; (iv) (I, J ) is full. Now, the correlation coefficient κ(R,S) involves
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FIG. 3. The formulas summarizing the computation of the variance coefficient.

the set B is equal to

κ(R,S) :=
∑

(I,J )∈B
e(I, J ) with e(I, J ) = 1

π (RI∩J )
− 1.

Note that the condition for the pair (I, J ) to be intersecting can be dispensed with,
since nonintersecting pairs give rise to a term e(I, J ) equal to zero. An alternative
expression of κ := π (R)π (S)κ(R,S)

κ = A − π (R)π (S)C with A =
∑

(I,J )∈B
π ((R ↑ S)(I,J )), C =

∑
(I,J )∈B

1

involves the pattern (R ↑ S)(I,J ) obtained by merging the two patternsR at position
I and S at position J . This merging is a sort of shuffle with possible collisions at
position I ∩ J .

From now on, the main formulas of this section are grouped inside Figure 3,
which can be taken as an algorithm for determining variances. We consider the set
B[t, v, k, �] of pairs (I, J ) that satisfy the following: (i) I is a valid occurrence of
prefix Rk whose last component ik satisfies ik = t , (ii) J is a valid occurrence of
prefix S� whose last component j� satisfies j� = v , (iii) If I and J are intersecting,
the equality RI∩J = SI∩J holds, (iv) the pair (I, J ) is full. Notice that the set
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B[t, t, k, �] is empty except if the last symbol rk of Rk equals the last symbol s�

of S�. Since the pair (I, J ) is full, the indices t, v vary between 0 and �(C) + �(D).
Index k is a cursor relative to pattern R (which varies between 0 and i), while
index � is a cursor inside pattern S, (which varies between 0 and j). Two variables,
Y [t, v, k, �] and X [t, v, k, �], are used. The first one represents the cardinality of
the set B[t, v, k, �] and is used for computing the second term C of κ , while the
second one is the total weight of this set and is used for computing the first term A
of κ; see Eq. (18) in Figure 3.

The fundamental formulas for Y [t, v, k, �] and for X [t, v, k, �] used for dynamic
programming are of the same vein. For each of them, there appear three cases
depending on the relative position of t and v (remark that equality t = v is only
possible if the equality rk = s� holds). They both involve sets of indices defined
from constraints C and D specified in Eq. (19) of Figure 3, and auxiliary variables
Y, X determined by the recurrences (20) and (21) respectively. (The formula for
X is similar to that for Y , safe that it involves the probability of the last symbol
read.) The variables must be initialized by (22). Moreover, since the pair (I, J ) has
to be full, except for (t, v) = (1, 0) or (t, v) = (0, 1), one sets the values as given
in Figure 3, Eq. (23).

3.3.4. The Case of a String and the Relation with Autocorrelation Polynomials.
Here W = w1w2 · · · wm is a string of length m, and all the symbols of W must
occur at consecutive places, so that a valid position I is an interval of length
m. For 1 ≤ i ≤ j ≤ m, we denote by W[i, j] the substring wi wi+1 · · · w j . The
autocorrelation set KW ⊂ [1 · · m] involves all indices k such that the prefixW[1, k]
coincides with the suffix W[m − k + 1, m]. Here, an index k ∈ KW is relative to a
intersecting pair of positions (I, J ) and one has W[1 · · k] = WI∩J .

Classically, two autocorrelation polynomials, AW and CW , are defined from
KW . The polynomial CW is the uniform autocorrelation polynomial while AW is
the weighted autocorrelation polynomial and involves suffix probabilities:

CW (z) =
∑

k∈KW

zm−k,

AW (z) =
∑

k∈KW

π (W[k + 1, m])zm−k = π (W)
∑

k∈KW

1

π (W[1, k])
zm−k .

Since the polynomial B[1]
2 involves coefficients of the form

π2(W)

[
1

π (WI∩J )
− 1

]
,

this polynomial can be written as function of the two autocorrelations polynomials
AW and CW ,

B[1]
2 (z) = π (W)zm [AW (z) − π (W) CW (z)].

Put simply, the variance coefficient of the hidden pattern problem extends the
classical autocorrelation quantities associated with strings.
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4. Central Limit Laws

Our goal is to prove that the sequence �n appropriately centered and scaled tends
to the normal distribution. We consider the following standardized random variable
�̃ which is defined for each n by

�̃n := �n

nb−1/2
= �n − En[�]

nb−1/2
, (24)

where b is the number of blocks of the constraint D. We shall show that �̃ behaves
asymptotically as a normal variable with mean 0 and standard deviation σ . By
the classical moment convergence theorem [Billingsley 1986, Theorem 30.2] this
is established once all moments of �̃n are known to converge to the appropriate
moments of the standard normal distribution. We remind the reader that if G is
a standard normal variable (i.e., a Gaussian distributed variable with mean 0 and
standard deviation 1), then for any integral s ≥ 0

E[G2s] = 1 · 3 · · · (2s − 1), E[G2s+1] = 0. (25)

We shall accordingly distinguish two cases based on the parity of r , r = 2s and
r = 2s + 1, and prove that

En[�2s+1] = o
(
n(2s+1)(b−1/2)) , En[�2s] ∼ σ 2s (1 · 3 · · · (2s − 1)) n2sb−s,

(26)

which implies Gaussian convergence of �̃n .

THEOREM 2. The random variable � over a random text of length n asymptot-
ically obeys a Central Limit Law in the sense that its distribution is asymptotically
normal: for all x = O(1), one has

lim
n→∞ Pn

{
� − En[�]√

Vn[�]
≤ x

}
= 1√

2π

∫ x

−∞
exp (−t2/2) dt (27)

PROOF. The proof below is combinatorial; it basically reduces to grouping
and enumerating adequately the various combinations of indices in the sum that
expresses En[�r ] see Figure 4. Once more, Pn(D) is formed of all the sets of
positions in [1, n] subject to the constraint D and we set P(D) := ⋃

n Pn(D). Then
totally distributing the terms in �r yields

En[�r ] =
∑

(I1,... ,Ir )∈Pr
n (D)

E[YI1 · · · YIr ]. (28)

An r -tuple of sets (I1, . . . , Ir ) in Pr (D) is said to be friendly if each Ik intersects at
least one other I�, with � �= k and we letQ(r )(D) be the set of all friendly collections
in Pr (D). For Pr , Q(r ), and their derivatives below, we add the subscript n each
time the situation is particularized to texts of length n. If (I1, . . . , Ir ) does not lie
in Q(r )(D), then E[YI1 · · · YIr ] = 0, since at least one of the YI ’s is independent of
the other factors in the product and the YI ’s have been centered, E[YI ] = 0. One
can thus restrict attention to friendly families and get the basic formula

En[�r ] =
∑

(I1,... ,Ir )∈Q(r )
n (D)

E[YI1 · · · YIr ], (29)
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FIG. 4. Various types of families of occurrence positions for r = 2s = 6: (a) an unfriendly family in
Pr ; (b) a friendly family in Q(r ); (c) a friendly family with maximal number of joint blocks in Q(2s)

� ;
(d) a friendly family with maximal number of joint blocks and of standard type in Q(2s)

�� .

where the expression involves fewer terms than in (28). From there, we proceed in
two stages. First, restrict attention to friendly families that give rise to the dominant
contribution and introduce a suitable subfamily Q(r )

� ⊂ Q(r ); in so doing, moments
of odd order appear to be negligible. Next, for even order r , the family Q(r )

� involves
a symmetry and it suffices to consider another smaller subfamily Q(r )

�� ⊂ Q(r )
� that

corresponds to a “standard” form of occurrence intersection; this last reduction
precisely gives rise to the even Gaussian moments.

4.1. ODD MOMENTS. Given (I1, . . . , Ir ) ∈ Q(r ), the aggregate
α(I1, I2, . . . , Ir ) is defined as the aggregation (in the sense of the variance
calculation above) of α(I1)∪· · ·∪α(Ir ). Next, the number of blocks of (I1, . . . , Ir )
is the number of blocks of the aggregate α(I1, . . . , Ir ); if p is the total number of
intersecting blocks of the aggregate α(I1, . . . , Ir ), the aggregate α(I1, I2, . . . Ir )
has rb − p blocks. Like previously, we say that the family (I1, . . . , Ir ) of Q(r )

q
is full if the aggregate α(I1, I2, . . . , Ir ) completely covers the interval [1, q]. In
this case, the length of the aggregate is at most rd(m − 1) + 1, and the generating
function of full families is a polynomial Pr (z) of degree at most rd(m − 1) + 1
with d = max j∈F d j . Then, the generating function of families of Q(r ) whose
block number equals k is of the form(

1

1 − z

)k+1

× Pr (z),

so that the number of families of Q(r )
n whose block number equals k is O(nk).

This observation proves that the dominant contribution to (29) arises from friendly
families with a maximal block number. It is clear that the minimum number of
intersecting blocks of any element of Q(r ) equals �r/2�, since it coincides exactly
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with the minimum number of edges of a graph with r vertices which contains
no isolated vertex. Then, the maximum block number of a friendly family equals
rb − �r/2�. In view of this fact and the remarks above regarding cardinalities, we
immediately have

En[�2s+1] = O
(
n(2s+1)b−s−1) = o

(
n(2s+1)(b−1/2)) ,

which establishes the limit form of odd moments in (26).

4.2. EVEN MOMENTS. We are thus left with estimating the even moments. The
dominant term is relative to friendly families of Q(2s) with an intersecting block
number equal to s, whose set we denote by Q(2s)

� . In such a family, each subset Ik
intersects one and only one other subset I�. Furthermore, if the blocks of α(Ih) are
denoted by B[u]

h , 1 ≤ u ≤ b, there exists only one block B[uk ]
k of α(Ik) and only one

block B[u�]
� that contains the points of Ik ∩ I�. This defines an involution τ such that

τ (k) = � and τ (�) = k for all pairs of indices (�, k) for which Ik and I� intersect.
Furthermore, given the symmetry relation E[YI1 · · · YI2s ] = E[YIρ(1) · · · YIρ(2s) ] it
suffices to restrict attention to friendly families of Q(2s)

� for which the involution τ
is the standard one with cycles (1, 2), (3, 4), etc; for such “standard” families whose
set is denoted byQ(2s)

�� , the pairs that intersect are thus (I1, I2), . . . , (I2s−1, I2s). Since
the set K2s of involutions of 2s elements has cardinality K2s = 1 · 3 · 5 · · · (2s − 1)
(cf. Flajolet and Sedgewick [2005]), the equality∑

Q(2s)
�n

E
[
YI1 · · · YI2s

] = K2s

∑
Q(2s)

��n

E
[
YI1 · · · YI2s

]
, (30)

entails that we can work now solely with standard families.
The class of occurrences relative to standard families is A� × (A�)2sb−s−1 ×

B[s]
2s × A�; this class involves the collection B[s]

2s of all full friendly 2s-tuples of
occurrences with a number of blocks equal to s. Since B[s]

2s is exactly a shuffle of s
copies of B[1]

2 (as introduced in the study of the variance), the associated generating
function is (

1

1 − z

)2sb−s+1

(2sb − s)!

(
B[1]

2 (z)

(2b − 1)!

)s

,

where B[1]
2 (z) is the already introduced autocorrelation polynomial. Upon taking

coefficients, we obtain the estimate∑
Q(2s)

��n

E
[
YI1 · · · YI2s

] ∼ n(2b−1)sσ 2s . (31)

In view of the formulas (28), (29), (30), and (31) above, this yields the estimate of
even moments and leads to the second relation of (26). This completes the proof of
Theorem 2.

The even Gaussian moments eventually come out of the number of involutions,
which corresponds to a fundamental asymptotic symmetry present in the problem.
In this perspective the specialization of the proof to the fully unconstrained case
is reminiscent of the derivation of the usual central limit theorem (dealing with
sums of independent variables) by moments methods: compare with pp. 408–410
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of Billingsley [1986]. Proceeding along different tracks, Janson [2004] has related
this particular case to his treatment of U–statistics via Gaussian Hilbert spaces; see
Chapter XI of Janson [1997] for the type of method employed.

5. The Fully Constrained Case

This section develops the special case of a (fully) constrained pattern specified by a
word W = w1w2 · · · wm and the attached between-letters spacings corresponding
to the constraint D = (d1, d2, . . . , dm−1), where all the d j ’s are finite. Like before,
we set D = ∏

j d j , and � = ∑
j d j . The alphabet is A = {a1, . . . , ar }, and, in

order to avoid trivialities, we assume its cardinality to be at least 2. Also, � denotes
the parameter “number of occurrences of the pattern (W,D)”, so that, for some
text T , the symbol �(T ) denotes the number of occurrences of the pattern (W,D)
in T . We can then use � to denote the corresponding random variable over the
probability space An equipped with the Bernoulli (memoryless) model.

The mean and variance of � are, from earlier theorems, known to be of order
O(n). The central limit theorem is then applicable to this case. However, quite a bit
more is available as expressed in the following statement:

THEOREM 3. Consider a fully constrained pattern with mean and variance
coefficients Dπ (W) and σ 2(W).

(i) The random variable � satisfies a Central Limit Law with speed of convergence
1/

√
n:

sup
x

∣∣∣∣Pn

{
� − Dπ (W)n

σ (W)
√

n
≤ x

}
− 1√

2π

∫ x

−∞
exp (−t2/2)dt

∣∣∣∣= O
(

1√
n

)
.

(32)

(ii) Large deviations from the mean value have exponentially small probability:
there exist a constant η > 0 and a nonnegative function I defined throughout
(0, η) such that I (x) > 0 for x �= Dπ (W) and⎧⎪⎪⎪⎨⎪⎪⎪⎩

lim
n→∞

1

n
log Pn

(
�

n
≤ x

)
= −I (x) if 0 < x < Dπ (W)

lim
n→∞

1

n
log Pn

(
�

n
≥ x

)
= −I (x) if Dπ (W) < x < η

, (33)

except for at most a finite number of exceptional values of x. Precisely, I (x)
can be computed as a function of an eigenvalue of a matrix (cf Eq. (49) below).

I (x) = − log
λ(ζ )

ζ x
with ζ ≡ ζ (x) defined by

ζλ′(ζ )

λ(ζ )
= x, (34)

where λ(u) is the largest eigenvalue of T (u).
(iii) Finally, for patterns called primitive (cf. Definition 1 below), a Local Limit

Law holds:

sup
k

∣∣∣∣Pn (� = k) − 1

σ (W)
√

n
exp(x(k)2/2)√

2π

∣∣∣∣=o
(

1√
n

)
, x(k)= k − Dπ (W)n

σ (W)
√

n
.

(35)
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For patterns that are not primitive, it can be proved that, with d the period of the
pattern, there exists a bounded quantity a (depending solely on the beginning and
end of the text) such that

�̂ = � − a
d

satisfies a local limit law in the sense of (35).
We proceed to establish this theorem in stages. First, we introduce a finite-state

model: a deterministic finite automaton with weighted edges may be used to count
all the occurrences of the pattern in texts. In fact, this automaton possesses a definite
structure as it is a weighted variant of the classical de Bruijn graph. The finite-state
property is then a reflection of the finiteness of all the gaps in the fully constrained
case under study. This implies the existence of a matrix representation for our prob-
lem, a fact related to the technique of transfer matrices [Bender et al. 1983]; (see
Section 5.1). Then, Perron–Frobenius properties and their perturbed versions apply,
as detailed in Section 5.2; see especially Lemmas 2 and 3. A quasi-powers approx-
imation (in the sense of Bender 1973 and Hwang [1996, 1998]) for the probability
generating function of � is then inferred, see Eq. (46). As developed in Section 5.3,
this suffices to establish the central limit law (32) by a well-known process that par-
allels the usual proof of the central limit theorem for sums of independent random
variables [Bender 1973; Flajolet and Soria 1993; Hwang 1996, 1998]. Speed of con-
vergence estimates expressed by (32) arise in this context from the Berry–Esseen
inequalities. A similar analysis provides large deviation estimates as represented in
a simplified form by (33). Additional strong positivity properties that are available
when the pattern is primitive then induce estimates for the probabilities themselves
(and not just for the cumulative distribution function), as expressed by (35).

Before embarking into technical developments, we briefly comment on the
methodology employed in this section. The shape of our results is not unexpected
since the central and local limit theorems that we obtain are closely related to ma-
trix recursions developed in an important paper of Bender et al. [1983]. The de
Bruijn graph is classically associated with the combinatorial construction of de
Bruijn sequences, and an early use of it in the context of word enumeration appears
in Flajolet et al. [1988]. Bender and Kochman [1993] make an implicit use of this
construction combined with the central and local limit theorems of Bender et al.
[1983] to derive a very general class of estimates for subword counts. This shows
the shape of the results that are to be expected in such situations, and our statement
in Theorem 3 is definitely along these lines. However, the rather abstract charac-
ter of the statements of Bender and Kochman [1993] renders the specialization to
our case somewhat unclear (to us at least), since a number of auxiliary technical
conditions regarding nondegeneracy and aperiodicity would need to be established.
For these reasons, we opt for a treatment that clearly draws its spirit from previous
works [Bender and Kochman 1993; Bender et al. 1983; Flajolet et al. 1988; Hwang
1996, 1998], while remaining largely self-contained.

5.1. THE DE BRUIJN GRAPH MODEL. First, we construct a matrix representation
for the problem.

LEMMA 1. Consider a pattern (W,D), and let δ = ∑
j d j = �(D) − 1 be the

total length of all the gaps. Denote by � the quantity r δ. There exist a matrix T (u)
of dimension � × � and two column vectors x(u), y of dimension � such that
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FIG. 5. The de Bruijn graph corresponding to the binary alphabet A = {0, 1} and to block size equal
to � has 2� vertices (associated to blocks of length �) and 2�+1 edges: the cases displayed are � = 3
(left) and � = 7 (right).

the probability generating function of the number of occurrences, � satisfies, for
n ≥ δ,

En(u�) = x(u)t T (u)n−δ y.

The entries of T (u) and x(u) are polynomials in u with nonnegative coefficients.
The vector y = (1, . . . , 1)t is the column vector whose entries are all equal to the
constant 1.

PROOF. The basic idea amounts to constructing a device that scans the text
t1t2 · · · tn and, at each stage, keeps in its (finite) memory the last δ letters read
from the text. Formally, the de Bruijn graph is a finite automaton with state space
B = Aδ; the transition from a state b ∈ B upon scanning letter α is τ (bα), where
τ ( f ) for a word f just erases the leftmost symbol of f (this is a left shift of b
concatenated with α). A text of length n ≥ δ is then associated to a path of length
n − δ that begins at the state b formed with the first δ symbols of the text.

The de Bruijn graph lends itself to pleasant graphic renderings when vertices
are ordered by lexicographic order and represented at regularly spaced points on a
circle, with edges corresponding to nonzero entries in the transition matrix. Figure 5
exemplifies the case of a binary alphabet (r = 2) when the block size equals 3 or 7.

One can easily equip the automaton with a counter that gets incremented each
time a transition is effected; this, in such a way that the value of the counter when
the text is exhausted will contain the number � of occurrences of W . Indeed,
consider a transition (b, α) �→ c of the automaton; this requires c = τ (bα) or
equivalently bα ∈ Ac. When this transition is effected, one can “cash in” all
the “new” occurrences of W which arise when reading the last letter α, that is,
all the occurrences of the pattern that end at the letter α. Precisely, for a transition
(b, α) �→ c of the automaton, the number of occurrences of the patternW contained
in bα and ending at the letter α is determined by either the pair (b, α) or the pair
(b, c); we denote this number by φ(b, α) or ψ(b, c), depending on context, so that
φ(b, α) = ψ(b, c) whenever c = τ (bα). Since the length of word bα exactly equals
δ + 1 = �(W), all the occurrences of W that end at α are contained in a text of the
form bα with b ∈ Aδ so that the relation φ(b, α) = �(bα) − �(b) holds. We build
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a matrix T (u) indexed by B × B as follows ([[·]] is Iverson’s bracket):

(T (u))b,c := pαuφ(b,α)[[ bα ∈ Ac ]] = pαu�(bα)−�(b)[[ bα ∈ Ac ]]. (36)

By construction and by usual combinatorial properties of matrix products, the entry
of index b, c of the power T (u)k cumulates all terms corresponding to starting in
state b, ending in state c, and recording the total number of occurrences of the
patternW found upon scanning the last k letters of the text which allow the transition
from state b to state c,

(T (u)k)b,c =
∑

f ∈Ak | b f ∈Ak c

π ( f ) u�(b f )−�(b). (37)

Now, the entry of index b of the vector x(u) is simply to be taken as

(x(u))b = π (b) u�(b).

Then, the summation of all the entries of the row vector x(u)tT (u)k is achieved
by means of the vector y so that the quantity x(u)tT (u)ky gives the probability
generating function of � taken over all texts of length δ + k. The statement follows
upon setting n = δ + k.

Here is for instance the matrix associated with the pattern a#2b corresponding
to (W,D) = (ab, 2), that is, occurrences of ab separated by at most one letter:

T (u) =

aa ab ba bb
aa
ab
ba
bb

⎛⎜⎝ pa pb u2 0 0
0 0 pa pb u
pa pb u 0 0
0 0 pa pb

⎞⎟⎠ . (38)

5.2. SPECTRAL PROPERTIES OF TRANSFER MATRICES. Perron–Frobenius the-
ory together with its analyticly perturbed versions provides valuable information
on the growth of quantities attached to matrix powers. We develop here a basis of
facts. In essence, the developments that follow are generic (i.e., applicable to any
strongly connected graph equipped with a “flow” ψ defined on edges by integer
weights). For the sake of simplicity, however, we only develop the theory on the
particular instance of the de Bruijn graph.

Let λ j (u), for j = 1 . . � be a numbering of the eigenvalues of T (u) taken so that
|λ1(u)| ≥ |λ2(u)| ≥ · · · ≥ |λ�(u)|. The spectral radius of T (u) is defined as usual
as the maximum modulus of eigenvalues, ρ(u) = |λ1(u)|. As it is well known, the
spectral radius governs the asymptotic growth of quantities involving T (u)n , since,
for any matrix norm || · ||, one has the property

ρ(u) = lim
n→∞ ||T (u)n||1/n. (39)

The following lemma summarizes some of the main properties of the dominant
eigenvalue of T (u) that intervene in the proof of Theorem 3.

LEMMA 2. Consider the matrix T (u) relative to a fully constrained pattern
(W,D). The following properties hold:

(i) for u > 0, the matrix T (u) has a unique dominant eigenvalue strictly positive
denoted by λ(u) and a dominant eigenvector a(u) whose entries are all strictly
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positive. There exists a complex neighborhood of the real positive axis on
which the mappings u → λ(u), u → a(u) are well defined and analytic; in
addition, all the entries of a(u) are nonzero.

(ii) At u = 1, the function λ(u) satisfies

λ(1) = 1, λ′(1) = Dπ (W), λ′′(1) + λ′(1) − λ′(1)2 = σ 2(W).
(40)

For any cycle C of the de Bruijn graph, denote by ψ(C) := ∑
(b,c)∈C ψ(b, c)

the total weight of C relative to the pattern (W,D). One has also

lim
u→0+

uλ′(u)

λ(u)
= 0, lim

u→+∞
uλ′(u)

λ(u)
= η := max

{
ψ(C)

|C| ; C a cycle
}

.

(41)

(iii) For positive u, the function u → λ(u) is strictly increasing and its logarithm
is strictly convex.

Formula (41) expresses information on the order of growth of λ(u), namely, λ(u) �
u0 (near 0+) and λ(u) � uη (near +∞). Formulas (40) and (41) are best understood
when expressed in terms of the function �(s), which has the character of a cumulant
generating function:{

�(0) = 0, �′(0) = Dπ (W), �′′(0) = σ 2(W),

lim
s→−∞ �′(s) = 0, lim

s→+∞ �′(s) = η.

(The Quasi-Powers approximation of (46) can be similarly interpreted in terms of
cumulant generating function.)

PROOF
(i) Take u real positive. Then, the matrix T (u) has nonnegative entries, and for

any exponent L ≥ δ, the Lth power of matrix T (u) has strictly positive entries.
This results from the fact that, for any L ≥ δ, there is always a path in the de
Bruijn graph of length L connecting two states b and c; see also Eq. (37). Then,
the classical Perron–Frobenius theory of nonnegative matrices applies to matrix
T (u) (see, e.g., Gantmacher [1986, Chap. 13]), to the effect that there exists an
eigenvalue that dominates strictly all the other ones. Moreover, this eigenvalue is
simple and strictly positive. In other words, one has

λ(u) := λ1(u) > |λ2(u)| ≥ |λ3(u)| ≥ · · · , (42)

as well as ρ(u) = λ(u) for positive u. Also, by this theory, the eigenvector a(u)
corresponding to λ(u) has all its components that are strictly positive. Then, by
classical (analytic) perturbation theory [Kato 1980, Chap. II], there exists a neigh-
borhood of the real positive axis where the functions u → λ(u), u → a(u) remain
well defined and analytic in u. (In fact, λ(u) is a branch of an algebraic function
since it satisfies the characteristic equation det(λI −T (u)) = 0; an alternative direct
proof of (i) could be given based on this observation.)

(ii) For u = 1, the matrix T (u) is stochastic, so that λ(1) = 1. Two differentiations
at u = 1 of the Quasi-Powers approximation, (46) below, show that the mean and
variance of �n are related to the first two derivatives of λ(u) at 1. This establishes
the relations (40).
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We next prove the relation (41). We shall only do so for the maximum, de-
scribing the behavior of λ(u) as u → ∞, since the dual relation at 0 follows from
similar arguments (based on the minimum of the ψ values along cycles). Let pn(u)
denote En(u�). The maximum relation in (41) is equivalent to asserting the co-
incidence of the combinatorially defined “cyclic index” η of the flow ψ with an
analytically defined “Puiseux index” � , as we now explain.

The cyclic index is defined as

η := max
c : simple cycle

ψ(c)

|c| .

Any path in a graph decomposes into a short header, a short trailer, and a collection
of simple cycles—the construction is akin to the loop-erasing random walk. As a
consequence, the cyclic index is seen to satisfy

η = sup
c path

ψ(p)

|p| = sup
c cycle

ψ(c)

|c| . (43)

In other words, the cyclic index determines the worst-case behavior of ψ on long
paths.

The Puiseux index is defined as

� := lim
u→∞

log λ(u)

log u
,

its existence being guaranteed by general properties of algebraic functions (the
Newton–Puiseux theorem). The coincidence of � and η then derives from the fact
that there exist two positive constants A, B such that, for n ≥ n0 and all u > 1,
one has

u−C3 Anuηn < pn(u) < uC2 Bnuηn, (44)

where C2, C3 are (unessential) constants. Indeed, taking nth roots in (44) and pass-
ing to the limit, one finds for any u > 1,

Auη ≤ λ(u) ≤ Buη,

an inequality that is incompatible with � �= η.
There only remains to justify (44). For the upper bound, observe that the

ψ-value of any path of length n is at most η n + C2 (for some C2) by previous
considerations, while the total number of paths of length n is bounded from above
by �n+1 and the probability of any such path is at most Pn , where P is the largest of
all the edge probabilities. For the lower bound, observe that there is at least a path
of length n having weight n η + O(1) (obtained by repeating a maximal simple
cycle), this path having probability at least P

n
, with P the smallest of all edge

probabilities.
(iii) The increasing property for λ(u) depends on the well known fact that if A

and B are nonnegative irreducible matrices such that Ai, j ≥ Bi, j for all (i, j), then
the spectral radius of A is larger than the spectral radius of B. (This easily results
from the matrix norm property (39).)

By a well known property, any (nondegenerate) probability generating function
f (u) is strictly log-convex at positive points within its domain of convergence,
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namely

log f
(

a + b
2

)
<

1

2
(log f (a) + log f (b)) ,

for a �= b. This relation is a fortiori valid for the probability generating function
pn(u) = En(u�) given by Lemma 1, which satisfies the Quasi-Powers approxima-
tion of (46) below. Taking nth root and passing to limit shows convexity properties
to be inherited by λ(u).

For the continuation of our analytic treatment, the notions of primitivity and
period must be introduced.

Definition 1. Let again ψ(C) be the total weight of cycle C in the de Bruijn
graph relative to the pattern (W,D). The quantity ψ(W,D) := gcd{ψ(C); C a cycle}
is called the period. Accordingly, a pattern is said to be primitive when its period
is equal to 1.

LEMMA 3. The following additional properties of the spectral radius of T (u)
hold.

(iv) For any θ ∈]0, 2π [, one has ρ(r exp iθ ) ≤ ρ(r ).
(v) Let d = ψ(W,D) be the period of pattern (W,D).

(v.a) When d = 1, then ρ(r exp iθ ) < ρ(r ) for all θ ∈]0, 2π [.
(v.b) When d > 1, then ρ(r exp iθ ) = ρ(r ) if and only if θ = 2kπ/d. In this

case, the characteristic polynomial det(λI − T (u)) of matrix T (u) is a
polynomial of R[ud, λ].

PROOF. We denote by pi | j the probability of the transition j → i .
(iv) This part easily results from domination properties of matrices (cf., the ar-

gument used for Part (iii) of Lemma 2). However, as a preparation to the later part
of the proof, we offer an alternative argument. For |u| = 1, and r real positive, con-
sider the two matrices tT (r ) and tT (ru). With (i), there exist a dominant eigenvalue
λ := λ(r ) strictly positive and a dominant eigenvector a := a(r ) of tT (r ) relative to
λ(r ) whose all entries a j are strictly positive. Consider an eigenvalue μ of tT (ru)
and an eigenvector c relative to μ. Denote by v j the ratio c j/a j . One can always
choose vectors a and c such that max1≤ j≤� |v j | = 1. Suppose that this maximum
is attained for some index i . One has

|μci | =
∣∣∣∣∣∑

j

pi | j (ru)ψ( j,i) c j

∣∣∣∣∣ ≤
∑

j

pi | j rψ( j,i) a j = λai , (45)

so that |μ| ≤ λ, and (iv) is established.
(v) Suppose now that the equality |μ| = λ holds. Then, the previous inequali-

ties (45) all become equalities. First, for all indices � such that pi |� �= 0, we deduce
that |c�| = a�, so that v� has modulus 1. For these indices �, we have the same
equalities in (45) as previously for i . Finally, the transitivity of the de Bruijn graph
entails that that each complex v j is of modulus 1. Now, the converse of the triangular
inequality shows the relation,

for each edge ( j, i), uψ( j,i)v j = μ

λ
vi ,
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so that,

for any cycle of length L ,
(μ

λ

)L
= uψ(C).

However, for any pattern W , there exists a cycle C of length one with weight
ψ(C) = 0: if β ∈ A is distinct from the last symbol wm of W , the cycle labeled by
β that starts at βδ is convenient. This proves that μ = λ and that uψ(C) = 1 for any
cycle C.

Denote by ψW the gcd of all the quantities ψ(C). If the period of (W,D) equals 1,
ψW = 1, then u = 1 and (v .a) is proven.

As regards (v .b), suppose now that the period is some integer d > 1. Then,
for any integer k, the trace of the matrix T (v)k is a polynomial in vd , so that the
characteristic polynomial whose coefficients can all be expressed with these traces
belongs to R[vd, z]. Consequently, the dominant eigenvalue λ(v) is itself a function
of vd .

Observe, as a consequence of the discussion of Part (v), that the period d is
effectively computable via the symbolic form of the characteristic polynomial of
matrix T (u).

We conclude by listing situations where the hidden pattern W is guaranteed to
be primitive. The conditions given in the following statement are likely to cover
most cases of practical interest, although a few patterns will be left out like, in the
Latin alphabet, “The quick brown foxes jump over lazy dogs”(!). (It might even be
the case that all patterns are primitive, but we do not have a proof of this fact.)

LEMMA 4. The following are sufficient conditions for a pattern to be primitive:

(a) W is a string, that is, all spacings satisfy d j = 1;
(b) the pattern alphabet is incomplete: At least one symbol of the alphabet A does

not appear in W;
(c) the symbols w1, w2, . . . , wm−1 each differ from the last symbol wm.

PROOF

(a) Consider first a string W , and denote by i the first index i > 0 where the
autocorrelation polynomial has a nonzero coefficient ci . If such an index, does
not exist, let i := m. Then, the cycle that starts at the state w1w2 · · · wm−1 and
whose successive edges are labeled by the i symbols wm−i , wm−i+1, . . . , wm−1
of W has a total weight equal to one, since the first edge has a weight equal to
1 while all the other edges have a zero weight.

Consider finally a pattern (W,D) that is not a string. Since it possesses at
least one gap at least equal to 2, one has m ≤ δ. Let δ = m + p,.

(b) Choose a letter z ∈ A not occurring in the pattern. Consider the cycle that
starts at state b := z pW , and whose edges are labeled by successive symbols
of zδ+1W . Clearly, this cycle has a weight equal to 1.

(c) Suppose now that all the symbols w1, w2, . . . , wm−1 differ from the last symbol
wm . Choose a letter z ∈ A distinct of w1 and wm . Consider the cycle that starts
at state b := z pW , and whose edges are labeled by successive symbols of b.
Clearly this cycle has a weight equal to 1.
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5.3. DISTRIBUTIONAL PROPERTIES. We now apply the results derived in the pre-
vious subsections to fine characterizations of the law of the number of occurrences,
that is, we complete the proof of Theorem 3.

As already remarked, the spectral radius and the dominant eigenvalue dictate the
growth of all the entries of matrix powers T (u)n . Then, by Lemma 2 (i), for u on or
near the positive real line, the matrix T (u) has a dominant eigenvalue λ(u) which is
unique, and strictly dominates all the other eigenvalues. Consequently, there exists
a constant A < 1 such that |λ2(u)|/λ(u) < A < 1. More precisely, the spectral
decomposition of T (u) when u lies in a sufficiently small complex neighbourhhod
of any compact subinterval of (0, +∞) is of the form

T (u) = λ(u)Q(u) + R(u),

where Q(u) is the projection under the dominant eigensubspace and R(u) a matrix
whose spectral radius equals |λ2(u)|. Now, for any n ≥ 1, the decomposition

T (u)n = λ(u)n Q(u) + R(u)n,

entails, with Lemma 1 granting En[u�] = x(u)tT (u)n−δy, the estimate

En[u�] = c(u)λ(u)n−δ(1 + O(An)), (46)

for a nonzero analytic function c(u). A uniform approximation like (46) for a
sequence of probability-generating functions is known as a Quasi-Powers approx-
imation. Its existence in regions around 1, +∞, and on the unit circle are respec-
tively associated with central limits, large deviations, and local limits [Bender 1973;
Hwang 1996, 1998], as we see now.

5.3.1. Central Limit Law. Given a Quasi-Powers approximation valid when u
lies in a complex neighborhood of 1, the classical proof of the central limit theorem
for sums of independent random variables [Gnedenko and Kolmogorov 1968] can be
mimicked and convergence to the Gaussian distribution results, following Bender
[1973] and Hwang [1998]. The speed of convergence is found to be O(1/

√
n)

as results from the Berry–Esseen inequalities; see Hwang [1998] for the general
argument. In this way, Eq. (32) in Theorem 3 is established.

5.3.2. Large Deviations. We next consider large deviations and relate them
to the existence of a Quasi-Powers approximation along the positive real axis.
We concentrate on the left part of the distribution and write pn,k = Pn(� = k),
pn(u) = En(u�). First, by trivial bounds, one has elementarily∑

k≤xn

pn,k = [
u�xn�] pn(u)

1 − u
≤ pn(θ )

(1 − θ )θ �xn� , (47)

for any fixed θ ∈ (0, 1). Then, the Quasi-Powers approximation (46) applied to (47)
yields ∑

k≤xn

pn,k = O
(

λ(θ )n

θ xn

)
. (48)
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The next move consists in adopting in (48) the particular value of θ that produces
the best upper bound in (48). To this effect, define

I (x) = − log
λ(ζ )

ζ x
with ζ ≡ ζ (x) ∈ (0, 1) defined by

ζλ′(ζ )

λ(ζ )
= x . (49)

(The existence of ζ is guaranteed by (ii) and (iii) of Lemma 2.) Then, the upper
bound (48) becomes

1

n
log Pn

(
�

n
≤ x

)
≤ −I (x) + o(1). (50)

There remains to prove that the upper bound coincides with the right rate. This is
done following a classical technique of Cramér, also known as “shifting the mean”.
To wit, introduce the shifted version Yζ of � defined by

Yζ : E(uYζ ) = pn(ζu)

pn(ζ )
,

for the particular ζ of (49). The shifted Yζ satisfies a Quasi-Powers approximation
in the central region u ≈ 1 and is thus asymptotically normal provided

lim
n→∞

1

n
V(Yθ ) = λ′′(ζ ) + λ′(ζ ) − λ′(ζ )2 (51)

is nonzero. The limit quantity in (51) represents an analytic function of ζ that is
nonzero at ζ = 1 and hence can only vanish sporadically at most at a finite set of
isolated points. Except possibly for such isolated values, the quantity

1

pn(ζ )

∑
xn−√

n< j≤xn

pn,kζ
j (52)

then tends to a nonzero limit (expressible as a Gaussian error function). Since the
weights in (52) are all of the form ζ xn exp (O(

√
n)), a lower bound on the pn,k

follows. Thanks to this, the inequality in (50) can then be changed to equality,
which is what Theorem 3 asserts.

A mirror argument (with ζ taken larger than 1) establishes the right part of the
large deviation estimate in Theorem 3. Observe that Conditions (ii) and (iii) of
Lemma 2 guarantee the existence of a suitable value of ζ over the complete range
of the distribution of �n .

5.3.3. Local Limit Law. Stronger “regularity conditions” are needed in order to
obtain local limit estimates. Roughly, one wants to exclude the possibility that the
discrete distribution is of lattice type, being supported by a nontrivial sublattice of
the integers. (For instance, we need to exclude the possibility for � to be always
odd, or of the parity of n, and so on.) Observe first that positivity and irreducibility
of the matrix T (u) are not enough. For instance, the matrix

M =
(

1 u4

u2 u3

)
has a spectrum that depends on u via u3 only. In particular, the spectral radius is a
function of u3. It is precisely this type of pathological behavior that is excluded in
the case when T (u) stems from a primitive pattern.
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Granted Lemma 3, one can estimate the probability distribution of � by the
classical saddle point method in the case whenW is primitive. This is similar to what
is done to establish local limit laws for sums of discrete random variables [Gnedenko
and Kolmogorov 1968]. One starts from Cauchy’s coefficient integral,

Pn(� = k) = 1

2iπ

∫
|z|=1

pn(u)
du

uk+1
, (53)

where k is now of the form k = Dπ (W)n + xσ (W)
√

n. Property (v .a) of Lemma 3
grants us precisely the fact that any closed arc of the unit circle not containing z = 1
brings an exponentially negligible contribution. A standard application of the saddle
point technique (details omitted) does the job. In this way, the proof of the local
limit law, Eq. (35) of Theorem 3 is completed.

Theorem 3 invitingly points to similar statements that would be applicable to
general hidden patterns. Guivarc’h (personal communication) has suggested the
use of the theory of random walks on nilpotent Lie groups, as the pattern count-
ing problem can be expressed as a product of random matrices that are nilpotent
deformations of the identity; see Guivarc’h [2000] for a survey of some of the
relevant methods. Also, Janson [2004] has very recently obtained bounds for large
deviations in the general case of hidden-words statistics using a generalization of
Hoeffding’s method for dependent random variables.

6. Experiments

It is of interest to try and assess the relevance of our analyses in contexts closer
to real-life applications. For this purpose, we have set up a small campaign of
experiments on “actual” data, in fact, pieces of English text. These experiments
have no pretense of constituting an exhaustive study. They are merely intended as
a coarse verification of some of the major phenomena inherent in hidden-pattern
matching. Since the source model considered, of the memoryless type, is rather
simplistic, one could be fairly satisfied with analytical results that correctly predict
at least the orders of magnitude of the observed phenomena.

The experiment have been conducted with our own dynamic programming im-
plementation of (constrained and unconstrained) sequence comparison and start
with a brief discussion of the algorithmic complexity issues involved. Globally,
both the “recognition problem” (i.e., does a pattern occur or not?) and the “report-
ing problem” (i.e., report the number of all occurrences and possibly a factored
representation of the occurrence places) may be considered. In the unconstrained
case, the recognition problem can be solved simply by a deterministic finite au-
tomaton (DFA) with m states, so that its complexity is O(n). For the reporting
problem, the basic dynamic programming algorithm has cost O(nm). (This is a
simplification of the Longest Common Subsequence algorithm.) In the constrained
case, a DFA can be set up so that the complexity of the recognition problem is O(n),
but the preprocessing and storage costs are exponential in the size of the pattern
specification, which is certainly prohibitive in most practical application. Alterna-
tives exist: see, for example, [Kucherov and Rusinowitch 1997] for a flavour of the
methods (Directed Acyclic Word Graphs and suffix trees are useful) and Kucherov’s
fast implementation called grappe of the recognition problem. With d being the
maximum gap allowed between letters, the reporting problem can be solved by
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FIG. 6. A hidden-pattern counting machine.

a suitable implementation of the dynamic programming approach in total time
O((n + d)m)—this is a simple programming exercise in circular list management;
see Figure 6.

We used a piece of natural language text both as a source of characters and as a
source of words. The complete works of Shakespeare are found under

http://the-tech.mit.edu/Shakespeare/.
We first extracted the full text of Hamlet stripped of all the comments:

Hamlet Who’s there? || Nay, answer me: stand, and unfold yourself. || Long live the
king! || Bernardo? || He. || You come most carefully upon your hour. [ . . . ]

In this, all nonalphabetic characters are suppressed and upper-case letters are
normalized to lower case. This gives us a (rather unpoetical looking) text that has
one long line with 150,372 characters:

H0 : who s there nay answer me stand and unfold yourself long live [. . . ]

Stripped of its spaces (‘ ’), the text now shrinks to n = 120, 057 characters:
H1 : whostherenayanswermestandandunfoldyourselflonglive [ . . . ]

This text, H1, is the one used for experiments.
As somewhat arbitrary patterns, we adopt the phrase, “The law is Gaussian”, and

its mirror image,

W0 = thelawisgaussian, W̃0 = naissuagsiwaleht,
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w = thelawisgaussian w̃ = naissuagsiwaleht
d Expected (E) Occurred (�) �/E Occurred (�) �/E
13 9.195E+01 0 0.00 18 0.19
14 2.794E+02 693 2.47 371 1.32
15 7.866E+02 1,526 5.46 2,379 3.02
18 1.211E+04 31,385 2.58 14,123 1.16
20 5.886E+04 124,499 2.11 41,066 0.69
25 1.673E+06 2,527,148 1.51 1,277,584 0.76
30 2.577E+07 40,001,940 1.55 25,631,589 0.99
40 1.928E+09 2,757,171,648 1.42 2,144,491,367 1.11
50 5.482E+10 76,146,232,395 1.38 48,386,404,680 0.88
∞ 1.330E+48 1.36554E+48 1.03 1.38807E+48 1.04

FIG. 7. Observed occurrences (�) versus predicted values (expectations, E) in the alphabetical
characters of Hamlet.

corresponding to m = 16. Consider first the (fully) unconstrained case. If letters
were all equally likely the configuration n = 120, 057, m = 16 and alphabet cardi-
nality r = 26 would lead us to expect a number of occurrences of W0 or W̃0 about
5 · 1087. The observed counts, which are 1.365 1048 and 1.388 1048 respectively,
are much smaller. In fact, when estimated from the empirical distribution of letter
frequencies in the text, the expected number of occurrences drops to 1.330 1048,
so that the observed counts only deviate by less than 5% from what is expected.
Turning to the (fully) constrained problem, say we bound uniformly the separation
distance between any two letters by d. Analysis (based on the natural frequencies
of letters in the text) predicts that the pattern might start occurring near d = 10,
while its presence is unlikely for smaller values, d < 10. In the text, w starts
occurring at d = 14 while w̃ starts at d = 13—a deviation of some 30–40%
from what the model predicts. A table of observed versus predicted values when d
varies is given in Figure 7. This shows a fair fit between the theoretical model and
the observed data even though the text chosen is far from being “random” (and
memoryless!).

Globally, as is perceptible from Figure 7, the less constrained patterns (d large
or even d = ∞) are the ones in closest agreement with theory. Indeed, the fact
that sequences like “the” or “law”are naturally present in English seems to give
an advantage to pattern W for small values of d. (For instance, based on letter
frequencies, the string the would be expected to occur 85 times but is actually
present 1972 times in the text.) In contrast, the mirror image W̃ , which has no clear
“natural” structure, tends to be more compliant to theory. (Such fine phenomena
would most likely be well captured by a Markovian model; see Bourdon and Vallée
[2002] for such an extension.) Figure 8 further illustrates this by displaying the
evolution of the ratios Observed/Expected (�/E) as letters in the text are scanned
one by one.

As yet another test, we have examined the evolution of occurrence ratios �/E
for two patterns, namely

W1 = ffffff (d = 25), W2 = iamtheking (d = 50).

These are displayed by thick lines in Figure 9. The “advantage” of patternW2 which
is in the language is perceptible as the number of observed occurrences is about
twice what is expected. For comparison, we have also plotted the similar evolutions,
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FIG. 8. The evolutions of �/E for the 1 block patterns W (left) and W̃ (right) when the separation
distance is d = 50.

FIG. 9. The evolutions of �/E for patterns W1 (left) and W2 (right): a comparison between the
original text (thick lines) and 5 randomly permuted versions (dashed lines).

but now relative to five random permutations of the Hamlet text (dashed lines): this
conveys an impression of the ambient stochastic fluctuations, but also shows at the
same time that, for random text, both patterns conform comparably well with what
theory predicts.

The data so far have concerned events (letters) corresponding to characters in the
text. We next turn to a situation where elementary events are words (now playing the
rôle of individual letters) and a pattern is a succession of events satisfying various
distance constraints. There is however a statistical difficulty as most meaningful
words have a rather small probability of occurrence, so that any reasonably complex
pattern is almost surely not observed at all. The text of Hamlet comprises 30,316
words, of which 4490 are different (with related forms like close, closely, closes,
closet, or command, commanded, commandment, commands). In view of possible
data mining applications, where it is mostly rough “contents” (roots?) of words that
matter, we simplify the text of Hamlet by applying the Soundex algorithm. (The
Soundex algorithm as described by Knuth [1997] is intended to hash words (in
particular surnames) into a small space using a simple model which approximates
the sound of the word when spoken by an English speaker. For instance, Gauss and
Gosh both hash to G200; Hilbert and Heilbronn to H416.) When subjected to this
transformation, Hamlet consists of “letters” in the form of compressed words (each
formed of four alphanumerical characters). Under this encoding, the text of Hamlet
(H0) becomes the even less poetical string:

H2 :W000 S000 T600 N000 A526 M000 S353 A530 U514 Y624 L520 L100 T000
K520 B656 H000 Y000 C500 M230 C614 U150 Y600 H600 T200 N000 [ . . . ]
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FIG. 10. The Soundex-ed version of Hamlet. The patterns are W3 ≡ “to be or not to be” and
W5 ≡ “who is the king” taken with distance d = 100.

The new text H2 now has length 30316 and its reduced vocabulary (“alphabet”)
consists of 1625 different “letters”. The patterns we consider here are:

W3 = “to be or not to be” (T000 B000 O600 N300 T000 B000)
W4 = “be it or not” (B000 I300 O600 N300)
W5 = “who is the king” (W000 I200 T000 K520).

With distances all taken at d = 100, the observed number of occurrences and the
observed/expected ratios �/E are then found to be (see also Figure 10):

W3 : � = 15767, �/E = 0.68; W4 : � = 238, �/E = 0.60;
W5 : � = 1038, �/E = 1.40.

Examples like the ones above could be multiplied ad libitum. The overall con-
clusion of such observations is the following. For expected values well above 1, and
for gaps that are longer than the short-term correlations of the text, the mean value
estimates of the number of occurrences are quite faithful to reality; fluctuations
from the mean value do then help discriminate between “signal” and “noise” (e.g.,
compare the left and right graphics in Figures 8 and 9).

7. Conclusions

The general probabilistic aspects of the statistics of hidden words can now be
regarded as fairly well quantified, at least under the simple model of Bernoulli
texts. In particular, we can return to the question that originally motivated the
present study, that of finding reliable thresholds. For instance, if false alarms in
intrusion detection are to be avoided, the problem is rephrased as one of finding a
threshold α0 = α0(W; n, β) such that

Pn(� > α0) ≤ β,

where the data are the pattern �, the length n of the text, and a given small β (say β =
10−5). Based on frequencies of letters and the assumption that a memoryless model
is (at least roughly) relevant, one can calculate the mean value and the standard
deviation coefficients π (W), σ (W) by methods of Section 3.3. The Gaussian limits
granted by Theorems 2 and 3 then reduce the problem to solving an approximate
system, which in the (fully) constrained case reads

α0 = nπ (ω) + x0σ (W)
√

n, β = 1√
2π

∫ ∞

x0

e−t2/2 dt.
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This system admits of the approximate solution (for β small):

α0 ≈ nπ (ω) + σ (W)
√

2n log(1/β). (54)

In practical situations, where the probabilistic data model is unknown and data may
be rather irregular, some caution should be exercized in applying formulas blindly
and experimentation with what one observes on real data is likely to be a necessity.
The moment, central limit, and large deviation results of this paper at least pro-
vide a firm conceptual basis under which one can interpret the facts and should
permit a fine tuning of pragmatically developed threshold strategies stemming
from (54).

Concerning open problems, an intriguing question is that of quantifying the speed
of convergence to the Gaussian limit as well as large deviations in the (fully or partly)
unconstrained cases. The corresponding questions appear to be related to products
of random matrices and to the difficult case of random walks on nilpotent Lie groups;
see Guivarc’h [2000] for context and references. An alternative approach has been
recently proposed by Janson [2004], whose methods provide useful bounds for the
probability of deviating from the mean value.

Finally, as already mentioned, some of the results developed here (the analysis
of the first two moments as well as concentration of distribution) have recently
been shown to hold [Bourdon and Vallée 2002] for Markovian sources and more
generally for all dynamical sources in the sense of Vallée. This points to possible
extensions of the present work in the direction of more realistic data models than
the memoryless case that has been considered here.
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GUIVARC’H, Y. 2000. Marches aléatoires sur les groupes. Fascicule de probabilités. Publ. Inst. Rech.

Math. Rennes.
GWADERA, R., ATALLAH, M., AND SZPANKOWSKI, W. 2004. Detection of significant sets of episodes in

event sequences. In Proceedings of the 4th IEEE International Conference on Data Mining (ICDM-04)
(Brighton, UK, Nov.) IEEE Computer Science Press, Los Alamitos, CA, 3–10.

GWADERA, R., ATALLAH, M., AND SZPANKOWSKI, W. 2005. Markov models for identification of signif-
icant episodes. In Proceedings of the 2005 SIAM International Conference on Data Mining (SDM-05)
(Newport Beach, Cal. Apr.). SIAM, Philadelphia, PA.

HWANG, H.-K. 1996. Large deviations for combinatorial distributions: I. Central limit theorems, Ann.
Appl. Prob. 6, 297–319.

HWANG, H.-K. 1998. On convergence rates in the central limit theorems for combinatorial structures,
Europ. J. Combinat. 19, 329–343.

JANSON, S. 1997. Gaussian Hilbert spaces, Cambridge University Press, Cambridge, MA.
JANSON, S. 2004. Large deviations for sums of partially dependent random variables. Rand. Struct.

Algorithms 24, 234–248.
KATO, T. 1980. Perturbation theory for Linear Operators. Springer-Verlag, New York.
KNUTH, D. E. 1997. The Art of Computer Programming, Fundamental Algorithms, Vol. 1, 3rd Ed.,

Addison-Wesley, Reading, MA.
KNUTH, D. E. 1998. The Art of Computer Programming. Sorting and Searching, Vol. 3, 2nd Ed., Addison-

Wesley, Reading, MA.
KUCHEROV, G., AND RUSINOWITCH, M. 1997. Matching a set of strings with variable length don’t cares.

Theoret. Comput. Sci. 178, 129–154.
KUMAR, S., AND SPAFFORD, E. H. 1994. A pattern-matching model for intrusion detection. In Proceedings

of the National Computer Security Conference. 11–21.
LOTHAIRE, M. 2005. Applied Combinatorics on Words. In Encyclopedia of Mathematics and Its Appli-

cations, vol. 90. Cambridge University Press, Cambridge, MA.
MCKAY, B. D., BAR-NATAN, D., BAR-HILLEL, M., AND KALAI, G. 1999. Solving the Bible code puzzle,

Statistical Science, 14, 150–173.
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RÉGNIER, M., AND SZPANKOWSKI, W. 1997. On the approximate pattern occurrences in a text. In Pro-

ceedings of the Compression and Complexity of Sequences, IEEE Computer Society Press, Los Alamitos,
CA, 253–264.



Hidden Word Statistics 183
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