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Abstract—This paper studies the sample complexity of learn-
ing in a quantum environment under a quantum counterpart of
the well-known probably approximately correct (PAC) model. In
this model, available are n randomly generated quantum states
with classical labels for the training. The objective is to find a
quantum measurement that with high probability predicts the
labels of unseen samples correctly. The model is agnostic as the
labeling law and the quantum states are unknown to the learner.
It subsumes well-studied problems such as state discrimination,
quantum property testing, and even classical PAC. Moreover,
it abides by quantum mechanical laws such as no-cloning,
state collapse, and measurement incompatibility. Such properties
prohibit sample reuse and, thus, raise unique challenges for
learning in quantum settings. We propose a new learning
algorithm called shadow quantum risk minimizer and derive
upper bounds on the sample complexity of several quantum
concept classes. Particularly, we prove that the sample complexity
of any quantum concept class C grows with O

(
1
ϵ2

log |C∗|
δ

)
,

where C∗ is the set of extreme points of the convex closure of C.
Hence, in the worst case, the bound grows with the logarithm of
the size of the concept class. This is a significant improvements
compared to prior works.

I. INTRODUCTION

Quantum learning is one of the leading applications of
quantum computing both for classical and quantum prob-
lems. While some models suggest quantum-enhancements
of classical learning by mapping data into input quantum
states [1]–[6], quantum computers (QCs) have a far greater
capability to learn patterns from inherently quantum data.
This is possible by directly operating on quantum states of
physical systems (e.g., photons or states of matter) or their
qubit representations [7]–[14]. Learning from quantum data
has been studied extensively in recent literature in the context
of diverse applications, including condensed matter for phase-
of-matter detection [7], [15], ground-state search [8], [9], [16],
entanglement detection [10], [11], [17]–[20], and theoretical
chemistry [12]–[14], [21], [22].

The focus of this paper is on the fundamental limits of
quantum learning, particularly the quantum sample complexity
as a measure of the hardness of training a model or tuning a
quantum device. In classical learning theory, limits of learning
has been studied for decades under the well-known PAC
framework [23], [24]. In this work, we study a quantum
counterpart of this problem under the quantum probably
approximately correct (QPAC) framework [25].

Several models for quantum learning have been introduced
and studied [26]–[29]. A survey on this topic is provided
in [30]. In quantum state discrimination, the objective is to
distinguish an unknown quantum state ρ from another (known
or unknown) state using measurements on multiple samples
[27], [29], [31]–[36]. In another model, introduced by Bshouty
and Jackson [28], one is interested in solving a classical PAC
problem using a quantum oracle that outputs identical copies
of an associated superposition state [28], [37]–[40].

QPAC is a recent framework that subsumes several models
such as state discrimination, quantum property testing, quan-
tum state classification and classical PAC. It consists of a set
of n labeled quantum states (ρi, yi)ni=1 as the training samples.
The samples are randomly generated independent and identi-
cally distributed (i.i.d.) and according to an unknown but fixed
probability distribution. There is no structural assumption
about the states ρi, the labeling yi, and the underlying dis-
tribution. Here, predictors are quantum measurements applied
to the quantum states. Thus, one seeks a model training
procedure for finding a quantum measurement to minimize the
prediction loss. The objective is to obtain a loss that is close
to the optimal loss within a library of predictors (a.k.a concept
class). Quantum sample complexity is, then, the minimum
number of samples to guarantee such requirement for all
quantum states, labeling, and the underlying distributions.

Therefore, QPAC is a stronger requirement than the above
models, as it is a distribution-free and state-free condition. It
is also stronger than PAC, as PAC is only distribution-free.
Moreover, QPAC abides by quantum mechanical laws such
as no-cloning, state collapse, and measurement incompatibil-
ity. Such properties prohibit sample reuse and, thus, raise
new challenges for learning in quantum settings. Moreover,
quantum models are significantly richer than classical models.
Hence, given the fragility of quantum samples, the strictness
of QPAC, and the richness of quantum models, one expects
that quantum sample complexity to be significant, if not
exponentially, greater than the classical one.

This paper presents a new bound on quantum sample
complexity which is rather surprising. We show that with so-
phisticated algorithms the quantum sample complexity could
potentially be comparable to the classical one. We introduce
a novel algorithm called quantum shadow risk minimization
(QSRM).



In classical learning empirical risk minimization (ERM) is
a brute-force search in a given concept class C to minimize
the empirical loss. With that ERM is an agnostic PAC learner
as long as the training samples are a good representation of
the true distribution which is guaranteed if the sample size
is n = O(log |C|) [41]. Extending this algorithm to quantum
is not straightforward. One could naively propose the same
technique to compute the empirical risk of each quantum
predictor and chose the one with the minimum risk. However,
the no-cloning and measurement incompatibility make this
approach prohibitive. Essentially, the training samples will
be distorted each time we measure the empirical risk of a
predictor. If we use that naively, then we might need fresh
samples for each predictor. That gives a sample complexity
that grows with the size of the class n = O(|C|). There have
been multiple attempts [25], [42]. [25] introduced an algorithm
that measures the risk of compatible predictors together and
hence obtained a better bound that grows with O(log |C|)
in fully compatible scenarios to O(|C|) in the worst case
scenario with fully incompatible class. This is clearly larger
than classical. Whether one can reduce the bound remains the
question.
Contributions: We propose a new approach called QSRM
to measure the empirical risk of the predictors in the class.
that substantially improves the quantum sample complexity.
Particularly, we prove that the quantum sample complexity of
any measurement concept class C grows with O

(
1
ϵ2 log

|C∗|
δ

)
,

where C∗ is the set of extreme points generating C. Hence, in
the worst case, the bound grows with O(log |C|) if C is finite.
Interestingly, the bound can be much lower than log |C|. This
is surprising especially since sample duplication is prohibited
and measurement incompatibility would lead to an exponen-
tially larger sample complexity with standard methods. We
derive these bounds by proposing a quantum algorithm that
tackles the issue of measurement incompatibility.

II. MODEL FORMULATION

Notations: For shorthand, denote [d] as {1, 2, ..., d}. For any
d ∈ N, let Hd be the Hilbert space of d-qubits with dim = 2d.
The identity operator on Hd is denoted by Id. As usual,
a quantum state is defined as a density operator; that is
a Hermitian, unit-trace, and non-negative linear operator. A
quantum measurement M is a positive operator-valued mea-
sure (POVM) represented by a set of operators M := {Mv,
v ∈ V}, where V is theset of possible outcomes, Mv ≥ 0 for
any v ∈ V , and

∑
v∈V Mv = Id. For an operator A, denote

∥A∥1 = tr{|A|} as the trace norm, and ∥A∥2 =
√

tr{A†A}
as the Hilbert–Schmidt norm.

A. Quantum Learning Model

Before presenting the main results, we formally define our
quantum learning model. In this model [25], the objective is
to distinguish between multiple groups of unknown quantum
states without prior knowledge about the states. Available is
only a training set of quantum states with a classical label
determining their group index. We seek an agnostic procedure

that given enough samples learns the labeling law. The model
is defined more precisely as follows.

Let Y denote the labeling set and H be the underlying
Hilbert space1. Each time, a sample (|ϕ⟩i , yi), i ∈ [n] is
randomly generated according to an unknown but fixed prob-
ability distribution D. A predictor is a quantum measurement
M := {Mŷ : ŷ ∈ Y} that acts on the quantum states and
outputs ŷ ∈ Y as the predicted label. Note that, unlike classical
learning, the predicted label is random even for a fixed input.
From Born’s rule, ŷi is generated randomly with probability
⟨ϕi|Mŷi |ϕi⟩ . The prediction loss is determined via a loss
function l : Y × Y → [0,∞). The risk of a predictor M
is computed by randomly generating a test sample (|ϕ⟩test ,
ytest) according to D and measuring |ϕ⟩test with M to get
ŷtest. Hence, from Born’s rule, the generalization (expected)
loss is calculated as LD(M) = E[l(Y, Ŷ )], where the ex-
pectation is taken over the sample’s distribution D and the
distribution of Ŷ .

Remark 1. The generalization can be written compactly in
terms of the density operators. Let ρy be a mixed state (density
operator) representing the overall state of the system under
label y. We can view ρy is the state averaged under the
condition that the label is y. Then, the generalization loss
of M is given by

LD(M) =
∑
y∈Y

∑
ŷ∈Y

DY (y)l(y, ŷ) tr{Mŷρy}. (1)

The problem in the binary case is simplified. The following
is an example of this setting.

Example 1. As an example, consider a simple setting where
there are only three types of states |ψj⟩ , j = 0, 1, 2 with label
set Y = {0, 1}. Each labeled sample is either of the four
possibilities: (|ψ0⟩ , 0), (|ψ1⟩ , 1), (|ψ2⟩ , 0), and (|ψ2⟩ , 1) with
probabilities p0,0, p1,1, p2,0, and p2,1, respectively. Hence, the
label of |ψ2⟩ is probabilistic. Also consider the 0-1 loss l(y,
ŷ) := 1{y ̸=ŷ}. Then, the generalization loss of a measurement
M = {M0,M1} is given by L0-1(M) = p0,0 ⟨ψ0|M1|ψ0⟩ +
p1,1 ⟨ψ1|M0|ψ1⟩+p2,0 ⟨ψ2|M0|ψ2⟩+p2,1 ⟨ψ2|M0|ψ2⟩. Hence,
the corresponding density operators are ρ0 = p0,0 |ψ0⟩⟨ψ0|+
p2,0 |ψ2⟩⟨ψ2|, and ρ0 = p1,1 |ψ1⟩⟨ψ1|+ p2,1 |ψ2⟩⟨ψ2|.

The generalization loss is compared to the optimal value
within a concept class which is a collection C of quantum
predictor measurements. With this setup, a quantum learning
algorithm processes the training samples and finds a predictor
M which may or may not belong to C. Let opt be the
minimum loss among all the predictors in C. We are interested
in algorithms that without any knowledge of the sample’s
description, the labeling, and D, output a predictor whose
loss is close to opt.

Definition 1 (QPAC). A quantum learning algorithm agnos-
tically QPAC learns a measurement class C if there exists

1For presentation simplicity, we assume Y is finite and H is finite-
dimensional.
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a function nC : (0, 1)2 7→ N such that for every ϵ, δ ∈ [0,
1] and given n > nC(ϵ, δ) samples drawn i.i.d. according
to any probability distributions D and any unknown states
|ϕ⟩i , i ∈ [n], the algorithm outputs, with probability of
at least (1 − δ), a measurement whose loss is less than
optC = infM∈C LD(M) + ϵ.2

Consequently, the quantum sample complexity of a concept
class C is the minimum of nC for which there exists a QPAC
learning algorithm.

Note that the state discrimination problem is a special
case in which samples are identical and are either of two
a priori known states. Also, note that QPAC also subsumes
classical PAC as classical samples can be embedded into pure
and orthogonal states, and functions can be considered as a
special form of quantum measurements. Therefore, QPAC is
a stronger requirement than PAC and other methods. It is a
agnostic, distribution-free and state-free condition; whereas
PAC is only distribution-free. In addition, principles such as
the no-cloning and state collapse after measurements, indicate
that quantum samples are more fragile than classical ones.

B. Related Works on QERM
It is known that classical ERM PAC learns any (classical)

finite concept class C with sample complexity that scales with
O
(

1
ϵ2 log

|C|
δ

)
. In quantum settings, there have been various

attempts in developing counterparts of ERM algorithm. Due
to the no-cloning theorem, the straightforward quantum exten-
sion of ERM results in a sample complexity of O

(
|C|
ϵ2 log 1

δ

)
,

see [25] for more details. This is problematic as the sample
complexity grows linearly with the size of the concept class.

In [25], a new ERM-type algorithm is introduced to improve
this bound. The new bound depends on the measurement
incompatibility structure of the concept class. Incompatible
measurements cannot be measured simultaneously (for more
details see [43]). On one extreme, all the measurements in the
concept class are mutually compatible; on another extreme,
there is no pair of compatible measurements. Based on this,
an improved bound on sample complexity is as follows.

Remark 2 ( [25]). Quantum sample complexity of any finite
concept class C is upper bounded as

nC(ϵ, δ) ≤ min
CrComp. partition

m∑
r=1

⌈ 8

ϵ2
log

2m|Cr|
δ

⌉
,

where the minimization is taken over all compatibility parti-
tioning of C. This bound ranges from O

(
1
ϵ2 log

|C|
δ

)
, for fully

compatible class, to O
(

|C|
ϵ2 log 1

δ

)
for fully incompatible class.

In [42], this result was extended to infinite concept classes
through an ϵ-netting argument. In this paper, we propose a new
quantum ERM that substantially improves the above bounds
to one that, in the worst case, grows with O

(
1
ϵ2 log

|C|
δ

)
even

for fully incompatible concept classes.

2Naturally, we are interested in efficient learning with nC being at most
polynomial in ϵ, δ and dim(H).

III. MAIN RESULTS

In this section, we present the main results of the paper.
We first, start with studying the convex closure of the concept
class.

Let C̄ denote the convex closure (envelope) of C. When C
is finite, then C̄ is the set of all POVMs that can be written as
a convex combination of measurements in C. More precisely,
POVMs of the form M̄ =

{
M̄ŷ, ŷ ∈ Y

}
such that

M̄ŷ =

k∑
j=1

αjM
j
ŷ , ∀ŷ ∈ Y,

where each Mj =
{
M j

ŷ , ŷ ∈ Y
}

belongs to C, and αj ∈ [0,

1] with
∑

j αj = 1.

Theorem 1. Suppose ℓ is a bounded loss function and C is a
measurement class with finite extreme points. Then, QSRM
(Algorithm 1) agnostically QPAC learns C with quantum
sample complexity bounded as

nC(ϵ, δ) ≤ O
(

1

ϵ2
log

|C∗|
δ

)
,

where C∗ is the set of extreme points of convex closure of C.

Note that |C∗| ≤ |C|. Even when C is infinite C∗ can
be finite. Hence an interesting distinction compared to the
classical is observed. When C is finite, then the bound in
theorem scales at most with O

(
1
ϵ2 log

|C|
δ

)
. Interestingly, in

other scenarios where |C∗| ≪ |C| the bound is significantly
lower. However, even though the Hilbert space is finite-
dimensional and Y is finite, there could be infinitely many
extreme points in C̄. In that case, an ϵ-netting argument will
give a bound on the sample complexity.

IV. ALGORITHM AND ANALYSIS

In this section, we present our quantum learning algorithm
called quantum shadow risk minimization (QSRM). Further,
we propose a concentration analysis and prove the main
theorem.

A. Measuring the Empirical Loss

We start with defining the loss measurement for each pre-
dictor M. Without loss of generality, assume l : Y ×Y 7→ [0,
1]. Let Z be the image set of l. Since Y is a finite set,
then so is Z . With that, the loss observable for any predictor
M := {Mŷ : ŷ ∈ Y} is given by LM :=

{
LM
z : z ∈ Z

}
,

where

LM
z =

∑
y,ŷ∈Y

1{l(y,ŷ)=z}Mŷ ⊗ |y⟩⟨y| , ∀z ∈ Z. (2)

Therefore, the loss of M for predicting y from a given ρx
is obtained by applying LM on ρx ⊗ |y⟩⟨y|. The result is a
random variable Z = ℓ(y, Ŷ ) taking values from Z as in (2).
With this formulation the expected loss of M equals to

LD(M) = ⟨LM ⟩ρXY
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Moreover, a realization of the empirical loss of M over the
samples is

LSn
(M) =∆

1

n

∑
i

z(i),

where z(i) is the outcome of the measurement LM on the ith
sample. Note that, unlike classical learning, even for fixed
samples the empirical loss is not fixed. From Born’s law,
one can calculate the probability of each realization of the
empirical loss.

B. Joint Estimation of Empirical Loss

The main challenge in the quantum setting is to measure
the empirical loss for all the measurements in the class. This
however is impossible due to the no-cloning and measurement
incompatibility. The loss measurements LM might be incom-
patible for different M ∈ C — hence impossible to be mea-
sured simultaneously. In [25] it was proposed to partition C
into mutually compatible subsets. With that approach bounds
on the sample complexity were introduced. Unfortunately, in
the worst-case scenario, the bounds could grow with |C|. In
what follows, we introduce a new approach that, in the worst-
case, grows with log |C|.

Our approach is inspired by Shadow Tomography [44], [45]
that is applied to identical copies of quantum states. To the
best of our knowledge, this is the first work on applying
such a technique to a learning context. Moreover, we consider
an extension of it to randomly generated states; rather than
identical copies. we perform the following procedure for each
sample (ρi, yi), i ∈ [n]. In what followed, we explain our
approach.

First, we generate a unitary operator Ui randomly and
uniformly from the space of all unitary operators on the
underlying Hilbert space H. We rotate ρi by applying Ui

resulting the state U†
i ρiUi. Let {|j⟩ , j = 1, 2, ..., dimH} be

a basis on H. We measure the rotated state on this basis.
From Born’s rule the probability of getting the output j is
Pj = ⟨j|U†

i ρiUi|j⟩. Suppose the outcome for the ith sample
is ji ∈ [dimH]. Then, the following state is prepared

ωi = Ui |ji⟩⟨ji|U†
i .

As a result, the expected state ωi over the measurement
randomness (Pj) and the choice of unitary Ui equals to

Γ[ρi] := EU

[ ∑
j∈[dimH]

⟨j|U†ρiU |j⟩ U |j⟩⟨j|U†
]
. (3)

Remark 3. Γ is a linear mapping on B(H) with its inverse,
denoted as Γ−1, also a linear mapping.

Given this definition, we apply Γ−1 on ωi resulting in the
following final state

ρ̂i := Γ−1
[
Ui |ji⟩⟨ji|U†

i

]
. (4)

This state is the “shadow” of ρi. Since ji is classical, we
can create multiple copies of ρ̂i. Particularly, we create one
copy for each M ∈ C∗, measure it by the measurement, and

Ui

Ui

Fig. 1. The process for estimating the empirical loss of each measurement.

calculate the incurred loss l(yi, ŷi). Let Ẑi,ℓ be (random) loss
values on the ith shadow for the ℓth measurement in C∗ that
is Mℓ = {Mℓ,ŷ : ŷ ∈ Y}. Then,

E[Ẑi,ℓ] =
∑
ŷi∈Y

l(yi, ŷi) tr{Mℓ,ŷi
ρ̂i}.

This process is demonstrated in Figure 1. Then, we repeat
this process for each sample, to obtain ρ̂i and then ẑi,ℓ for
i ∈ [n] and ℓ ∈ [|C∗|]. Lastly, we compute the following as
the estimate of the empirical loss for each M ∈ C∗:

L̂(Mℓ) :=
1

n

n∑
i=1

ẑi,ℓ. (5)

Note that L̂ is different from LSn
as it is based on the shadows

ρ̂i, i ∈ [n]. In what follows, we provide the analysis for this
estimation.

Lemma 1. ρ̂i is an unbiased estimate of ρi, that is
EUi,Ji [ρ̂i] = ρi, where the expectation is taken over the
rotation U and measurement randomness.

Proof. By linearity of Γ−1, taking the expectation of ρ̂i over
the choice of Ui and the randomness of Ji gives

E∼(Ui,Ji)[ρ̂i] = Γ−1
[
E
[
Ui |Ji⟩⟨Ji|U†

i

]]
.

The expectation term equals to

EU

[ ∑
j∈[dimH]

⟨j|U†ρiU |j⟩ U |j⟩⟨j|U†
]
= Γ[ρi],

where the last equality is from (3). Hence, the expectation of
ρ̂i equals to Γ−1[Γ[ρi]] = ρi, as desired.

Lemma 2. The estimation L̂(M) is an unbiased estimate of
LD(M), that is E[L̂(M)] = LD(M), where the expectation
is taken over all sources of randomness including the training
samples.

4



Proof. By taking the expectation, from Lemma 1 we obtain
the following chain of equalities:

E[L̂(M)] =
1

n

∑
i

E(ρ̂i,yi)[⟨LM ⟩ρ̂i ⊗|yi⟩⟨yi|]

=
1

n

∑
i

⟨LM ⟩E(ρ̂i,yi)
[ρ̂i ⊗|yi⟩⟨yi|]

=
1

n

∑
i

⟨LM ⟩ρXY

= LD(M).

where we used the linearity of the expectation and the fact
that the average ⟨N⟩σ of any observable N over any state σ
is linear in σ.

C. Proof of Theorem 1

We start with the following lemma:

Lemma 3. Let C̄ be the convex closure of C and C∗ be
the set of all extreme points of C̄. Then, optC = optC̄ =
infM∈C∗ LD(M).

Proof. Note that LD(M) is linear, and hence convex, in M.
This is due to the linearity of the trace and the definition of
the loss given in (1). As a result, given that C ⊆ C̄ and that

optC̄ = inf
M∈C̄

LD(M)

then optC̄ = optC . Moreover, since the above expression is
a convex optimization, then the optimal values occur at the
extreme points of C̄. Hence the proof is complete.

This result implies that QPAC learning of C is reduced to
its extreme points C∗. Given Lemma 2, the theorem follows
by a large deviation analysis. From McDiarmid’s inequality:

P
{

max
M∈C∗

∣∣L̂(M)− LD(M)
∣∣ ≥ ϵ

}
≤ 2|C∗| exp

{
− 2nϵ2

(b− a)2

}
,

where b = max l(y, ŷ) and a = min l(y, ŷ). Equating the
right-hand side to δ, we obtain the following bound on the
estimation error:

max
M∈C∗

∣∣L̂(M)− LD(M)
∣∣ = O

(√
1

n
log

(
|C∗|
δ

))
. (6)

Now, let M̂ and M∗ be the measurements minimizing the L̂
and LD, respectively. Then, from (6), with probability (1−δ)
the following chain of inequalities hold:

LD(M̂) ≤ L̂(M̂) +
ϵ

2

≤ L̂(M∗) +
ϵ

2
≤ LD(M∗) + ϵ.

The left-hand side is the loss of the selected predictor by
QSRM (Algorithm 1, and the right-hand side equals optC + ϵ
and hence the proof is complete.

Algorithm 1: QSRM
Input: C∗ of the concept class and n training samples.

1 for i = 1 to n do
2 Generate a unitary Ui randomly.
3 Apply Ui on ρi as in Figure 1.
4 Measure along {|j⟩ , j ∈ [dimH]} to get ji.
5 for ℓ = 1 to |C∗| do
6 Prepare the state ρ̂i as in (4).
7 Measure ρ̂i by Mℓ to get ŷi,ℓ.
8 Calculate the incurred loss zi,ℓ = l(yi, ŷi,ℓ).

9 Compute the estimated empirical loss for each
measurement as L̂(Mℓ) =

1
n

∑
i ẑi,ℓ.

10 return M̂ as the measurement with the minimum L̂.

CONCLUSION

This paper studies the learning of quantum measurement
classes. It introduces a novel quantum algorithm called QSRM
for learning quantum concept classes. Using this algorithm,
a new upper bound on the quantum sample complexity is
derived. It is shown that the quantum sample complexity
grows at most with he logarithm of the size of the extreme
points of the convex closure of the concept class. This is
a significant improvement over prior results. The approach
is based on a novel method to estimate the empirical loss
of the concept class via creating random shadows of the
training samples. With that QSRM algorithm can perform risk
minimization while abiding to no-cloning, state collapse, and
measurement incompatibility.
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