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Abstract

Shannon information theory aims at finding fundamental limits for storage and commu-
nication, including rates of convergence to these limits. Indeed, many interesting information
theoretic phenomena seem to appear in the second order asymptotics. So we first discuss
precise analysis of the minimax redundancy that can be viewed as a measure of learnable
or useful information. Then we highlight Markov types unveiling some interesting connec-
tions to combinatorics of graphical enumeration and linear Diophantine equations. Next we
turn our attention to structural compression of graphical objects, proposing a compression
algorithm achieving the lower bound represented by the structural entropy. These results
are obtained using tools of analytic combinatorics and analysis of algorithms, known also
as analytic information theory. Finally, we argue that perhaps information theory needs
to be broadened if it is to meet today’s challenges beyond its original goals (of traditional
communication) in biology, economics, modern communication, and knowledge extraction.
One of the essential components of this perspective is to continue building foundations in
better understanding of temporal, spatial, structural and semantic information in dynamic
networks with limited resources. Recently, the National Science Foundation has established
the first Science and Technology Center on Science of Information (CSoI) to address these
challenges and develop tools to move beyond our current understanding of information flow
in communication and storage systems.

1 Introduction

It is widely accepted that the information revolution started in 1948 with the publication of
Shannon “A Mathematical Theory of Communication”. It not only inaugurated a new research
field, that of information theory, but also paved the way to today’s technological advances in
storage and communication such as CDs, iPod, DVD and the internet. Shannon accomplished
it all by first introducing a mathematical definition of information that quantifies the extent
to which a recipient of data can reduce its statistical uncertainty, and then formulating two
fundamental results giving us a lower bound for compression and an upper bound for reliable
communication. Furthermore, Shannon declared “these semantic aspects of communication
are irrelevant”, somewhat abandoning his own dictum in the rate distortion theory (e.g., the
distortion measure of audio is incompatible with image compression).

In this article we shall follow another Shannon commandment [66] “it is hardly to be ex-
pected that one single concept of information would satisfactorily account for (all) possible
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applications”. So we shall argue that information theory may benefit by expanding its original
goals to meet today’s challenges in biology, economics, modern communication, and knowledge
extraction from massive datasets (see also [1]). For this to happen more foundational work in
better understanding of temporal, spatial, structural and semantic information is essential.

We are all aware of Shannon warning in his “bandwagon” paper [67] where he thundered
“Information theory has, in the last few years, become something of a scientific bandwagon.” It
is no wonder that some developments in the 50’s irked Shannon. Let us just look at the early
application of information theory, say to biology. Henry Quastler launched information theory in
biology in 1949 (just a year after Shannon’s landmark paper and four years before the inception
of molecular biology shaped by the work of Crick and Watson) in the paper written together with
Dancoff “The Information Content and Error Rate of Living Things”. Continuing this effort,
Quastler organized two symposiums on “Information Theory in Biology”. These attempts were
rather unsuccessful as argued by Henry Linschitz [41], who pointed out that there are difficulties
in defining information “of a system composed of functionally interdependent units and channel
information (entropy) to “produce a functioning cell”. To be fair, we need to point out that
in 70’s Manfred Eigen, Nobel laureate in biochemistry opined, “the differentiable characteristic
of the living systems is information. Information assures the controlled reproduction of all
constituents, thereby ensuring conservation of viability. Information theory, pioneered by Claude
Shannon, cannot answer this question ... in principle, the answer was formulated 130 years
ago by Charles Darwin.” Eigen’s challenge was picked up recently in two new special issues
[20, 53] on information theory in molecular biology and neuroscience. The editorial of [20]
concludes: “Information Theory is firmly integrated in the fabric of neuroscience research, and a
progressively wider range of biological research in general, and will continue to play an important
role in these disciplines.”

We are now fifty years after the bandwagon paper. In today’s world the dynamic flow of
information is around us from biology to modern communication to economy. Many scholars
argue to broaden information theory beyond its original goals of point-to-point communication
and compression of sequences: Sudan and his collaborators [25, 40] suggest that the meaning
of information does start to become relevant whenever there is diversity in the communicating
parties and when parties themselves evolve over time. For example, when a computer attempts
to communicate with a printer both parties must talk the same language in the same format
(i.e., “printer driver”). This leads Sudan and his collaborators to consider communication in
the setting where encoder and decoder do not agree a priori on the communication protocols,
thus encoder and decoder do not understand each other. Bennett in [5] observes that from
the earliest days of information theory it has been appreciated that information is not a good
message value. He continues to propose that the value of information lies in “parts predictable
only with difficulties, things that the receiver could figure out without being told”. This led him
to define the logical depth. However, we still do not have a good understanding of the value of
information; particularly, in biology and economics. As a matter of fact, in biology, P. Nurse in
his 2008 paper [55] claims that biology is on the crossroad and further advances may be required
to understand information flow. In Nurse’s own words “focusing on information flow will help
to understand better how cells and organisms work . . . and temporal order in cell memory and
reproduction are not fully understood.” Furthermore, in computer science F. Brooks claims
[8]: “we have no theory that gives us a metric for the information embodied in structure . . .
this is the most fundamental gap in the theoretical underpinning of information and computer
science.” Finally, Zeilinger goes even further in [9, 85] claiming that reality and information are
two sides of the same coin, that is, they are in a deep sense indistinguishable. In communication
it is widely accepted that understanding (value and flow of) temporal information is the key to
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further advances in computer communication [29] and wireless ad-hoc networks [26].
As the matter of fact, in recent decades the information theory community has been pursuing

post-Shannon challenges as witnessed in [17, 20, 26, 29, 33, 45, 53, 58, 54, 79], to mention a few.
To continue on this path, we propose two approaches that include short(er)-term and long-term
research goals:

(i) Back off from infinity: Following Ziv’s 1997 Shannon Lecture, we propose to extend
Shannon findings to finite size data structures (i.e., graphs, sets, social networks), that
is, develop information theory of data structures beyond first-order asymptotics. We shall
argue (see Section 2) that many interesting information-theoretic phenomena appear in
the second-order terms. Analytic information theory — which applies complex-analytic
tools to information theory — is particularly suited for such investigations. We illustrate
it in the next section by studying the minimax redundancy problem.

(ii) Science of Information: In general, we endeavor to do some foundational work in struc-
tural, temporal, spatial and semantic information in dynamic networks with cooperating
users (see also recent panel discussion [1]). we also argue that we need a better under-
standing of complex systems with representation-invariant information. In Section 3 we
describe some attempts towards this goal.

In 2010 the National Science Foundation established the first Science and Technology Center
for Science of Information (http://soihub.org) “to advance science and technology through a
new quantitative understanding of the representation, communication and processing of infor-
mation in biological, physical, social and engineering systems.” The center is located at Purdue
University and partner institutions include: Bryn Mawr, Berkeley, Howard, MIT, Princeton,
Stanford, Texas A&M, UIUC, and UCSD. Some specific Center goals are to: (i) define core
theoretical principles governing transfer of information; (ii) develop meters and methods for
information; (iii) apply science of information to problems in physical and social sciences, and
engineering; and (iv) offer a venue for multi-disciplinary long-term collaborations.

The plan for the paper is as follows. In the next section we discuss the maximal minimax
redundancy for memoryless, Markovian, and renewal sources solved by analytic and combinato-
rial methods. In Section 3 we present a few problems illustrating broader science of information.
In particular, we offer some new results on graphical compression as an illustration of structural
information.

2 Analytic Information Theory

Jacob Ziv in his 1997 Shannon Lecture presented compelling arguments for “backing off” from
first-order asymptotics in order to predict the behavior of real systems with finite length descrip-
tion. To overcome these difficulties, the so called non-asymptotic analysis, in which lower and
upper bounds are established with controllable error terms, becomes quite popular. However,
we argue that developing full asymptotic expansions and more precise analysis may be even more
desirable. Furthermore, following Hadamard’s precept1, we propose to study information the-
ory problems using techniques of complex analysis2 such as generating functions, combinatorial
calculus, Rice’s formula, Mellin transform, Fourier series, sequences distributed modulo 1, sad-
dle point methods, analytic poissonization and depoissonization, and singularity analysis [76].

1The shortest path between two truths on the real line passes through the complex plane.
2Andrew Odlyzko wrote: “Analytic methods are extremely powerful and when they apply, they often yield

estimates of unparalleled precision.”
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This program, which applies complex-analytic tools to information theory, constitutes analytic
information theory.

Analytic information theory can claim some successes in the last decade. We mention a
few: proving in the negative the Wyner-Ziv conjecture regarding the longest match [72, 73];
establishing Ziv’s conjecture regarding the distribution of the number of phrases in the LZ’78
compression scheme [35, 39]; showing the right order of the LZ’78 redundancy [62, 49]; disproving
the Steinberg-Gutman conjecture regarding lossy pattern matching compression schemes [50, 84,
46]; establishing precise redundancy of Huffman’s code [75] and redundancy of a fixed-to-variable
no prefix free code [77]; deriving precise asymptotics of minimax redundancy for memoryless
sources [81, 74, 78], Markov sources [59, 37] and renewal sources [23, 21]; precise analysis of
variable-to-fixed codes such as Tunstall and Khodak codes [22]; designing and analyzing error
resilient Lemple-Ziv’77 data compression scheme [48], and finally establishing entropy of hidden
Markov processes [64] and the noisy constrained capacity [30, 38].

In this section, we illustrate the power of analytic information theory on a few examples
taken from the analysis of the minimax redundancy and enumeration of Markov types. First,
however, we interpret minimax redundancy as a measure of learnable or useful information
capturing regularity properties of an object.

2.1 Learnable/Useful Information and Redundancy

One of the fundamental questions of information theory and statistical inference probes how
much “useful or learnable information” one can actually extract from a given data set. To shed
some light on this problem, let a binary sequence xn = x1 . . . xn be given.

indistinquishable
 models

1 n⁄

Cn Θ( ) balls  ;  logCn θ( ) useful bits

θ̂

θ θ'

.

. .

Figure 1: Illustration to C(Θ)

We would like to understand how much useful in-
formation, structure, regularity, or summarizing prop-
erties are in xn. For example, for a binary sequence
the number of ones is a regularity property, the posi-
tions of ones are not. Let in general S be such a sum-
marizing property. We can describe it in two parts.
First, we describe the set S, and then the location of
xn in S that requires log |S| bits (the latter is a good
measure of the string complexity). We denote by I(S)
the number of bits describing it. Usually, S can be de-
scribed in many ways, however, one should choose S
so that it extracts all relevant information and noth-
ing else. It means we need S that minimizes I(S). We
denote such a set as Ŝ and call it I-sufficient statistic.
It makes sense to call I(Ŝ) the learnable information.

We now consider two concrete measures of learn-
able information. If Ŝ is the shortest program on a universal Turing machine, then I(Ŝ) becomes
Kolmogorov-information [13] K(Ŝ), and K(xn) = K(Ŝ) + log |Ŝ|. For example, if xn is a binary
sequence, we first describe the type of xn (e.g., the number of ones) that requires O(log n) bits,
and then location of xn within the type which requires log

(n
k

)
≈ nH(k/n) bits. While this

sounds reasonable, in general Kolmogorov information is not computable, so we need another
approach.

We now turn our attention to computable useful information contained in a sequence xn

generated by a source belonging to a class of parameterized distributions M(Θ) = {Pθ : θ ∈ Θ}
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for some k-dimensional space Θ. We follow here Rissanen [60] and Grunwald [28]. Let θ̂(xn)
be the maximum likelihood (ML) estimator, that is, θ̂(xn) = argmaxθ∈Θ Pθ(x

n). Observe that
for a given sequence xn, produced either by θ or by θ′, we can use θ̂(xn) to decide which model
generates the data with a small error probability, provided these two parameters are far apart
in some distance. If these two models, θ and θ′ are too close to each others, they are virtually
indistinguishable, and they do not introduce any additional useful information. In view of this,
it is reasonable to postulate that learnable information about xn is summarized in the number of
distinguishable distributions (models), as illustrated in Figure 1. In general, useful information
is closely related to distinguishibility. In summary, if there are Cn(Θ) such distinguishable
distributions, it is natural to call In(Θ) = logCn(Θ) the useful information.

Let us estimate Cn(Θ) in the MDL (Minimum Description Length) world, as discussed in
[3, 28, 60]. As a distance between distributions/models we adopt the Kullback-Leibler (KL)
divergence D. Using Taylor expansion around θ̂, we find

D(Pθ̂||Pθ) := E[log Pθ̂(X
n)]−E[logPθ(X

n)] =
1

2
(θ − θ̂)T I(θ̂)(θ − θ̂) + o(||θ − θ̂||2), (1)

where I(θ) = {Iij(θ)}ij is the Fisher information matrix defined as

Iij(θ) = −E

[
∂2

∂θi∂θj
logPθ(X)

]

.

As a distance we use

dI(θ, θ0) =

√

(θ − θ̂)T I(θ̂)(θ − θ̂)

which is the so called Mahalanobis distance [28]. This is a rescaled version of Euclidean distance,
and by (1) we have dI(θ, θ0) = O(

√

D(θ||θ0)). One property of the dI distance is that the volume
V of a ball (ellipsoid) at center θ and radius ε is

V (BI(θ, ε)) = 1/
√

det I(θ)V (B(ε),

where B(ε) is the regular Euclidean ball and det I(θ) is the determinant of I(θ) [3, 28].
To proceed, we need to specify the error probability and distinguishibility. Let BKL(θ0, ε) =

{θ : D(θ||θ0) ≤ ε} be the KL-ball or radius ε around θ0. Observe that the KL-ball BKL(θ, ε)
becomes BI(θ,

√
ε) ball in the dI distance. The distinguishibility of models depends on the error

probability that can be estimated as follows [3] for some θ ∈ Θ0 with dim(Θ0) = k [28]

Pθ(θ̂ 6= θ) = Pθ(arg min
θ∈Θ0

D(θ̂(Xn)||θ) 6= θ) ≈ Pθ(θ(X) 6∈ BKL(θ, ε/n)) ∼ 1−O(εk/2)

for some small ε > 0, where we use the fact that for Markov sources (more generally, for an
exponential family of distributions)

log
Pθ̂(x

n)

Pθ(xn)
= nEθ̂

[

log
Pθ̂(X)

Pθ(X)

]

= nD(θ̂||θ).

We conclude that the number of distinguishable distributions Cn(Θ) is approximately equal
to the volume VI(Θ) of Θ under distance dI divided by the volume of the ball size BI(θ,

√

ε/n).
In [3] it is proved that

VI(Θ) =

∫

Θ

√

det I(θ) dθ, V (BI(θ,
√
ε) ≈ O(εk/2/

√

det I(θ)).
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Setting up the error probability at level O(1/
√
n) as indicated above, we conclude that the

number of distinguishable distributions Cn(Θ) (i.e., the number of centers of the balls BI(θ,
√
ε))

is (see [21, 28, 60])

Cn(Θ) =
( n

2π

)k/2
∫

Θ

√

det I(θ)dθ +O(1) =
∑

xn

sup
θ∈Θ

Pθ(x
n) = inf

θ∈Θ
max
xn

log
Pθ̂

Pθ
(2)

where the second equality follows from [28, 59]. In order to justify the last equality we need to
turn our attention to the maximal minimax redundancy.

Let us begin with a precise information-theoretic definition of the minimax redundancy
and its Shtarkov’s bounds. Throughout this section, we write L(Cn, x

n) for the length of a
fixed-to-variable code Cn;An → {0, 1}∗ assigned to the source sequence xn over the alphabet
A = {1, 2, . . . ,m} of size m that can be finite or not. In practice, one can only hope to have some
knowledge about a family of sources S that generates the data, such as the family of memoryless
sources M0 or Markov sources Mr of order r > 0. Following Davisson [18] and Shtarkov [69],
we define the minimax worst-case (maximal) redundancy R∗

n(S) for a family S as

R∗
n(S) = min

Cn

sup
P∈S

max
xn
1

[L(Cn, x
n
1 ) + logP (xn1 )] , (3)

where Cn represents a set of prefix codes, and the source P ∈ S generates the sequence xn =
x1 . . . xn. If we ignore the integer nature of the code length L(Cn, x

n), then we can approximate
it by log 1/Pθ for some θ. Furthermore, log supP∈S P (xn) = log(1/Pθ̂), where θ̂ is the ML
estimator, so that

R∗
n(S) = inf

θ
max
xn

log
Pθ̂

Pθ
+O(1) (4)

which is the right-hand side of (2), and therefore C(Θ) = R∗
n(S) +O(1).

We still need to justify the last equality in (2). We derive now Shtarkov’s bound [69]. Define
first the maximum likelihood distribution

Q∗(xn) :=
supP∈S P (xn)

∑

yn∈An supP∈S P (yn)
.

Then observe [21]

R∗
n(S) = min

Cn

sup
P∈S

max
xn

(L(Cn, x
n) + logP (xn))

= min
Cn

max
xn

(

L(Cn, x
n) + sup

P∈S

log P (xn)

)

= min
Cn

max
xn

(L(Cn, x
n) + logQ∗(xn)) + log

∑

yn∈An

sup
P∈S

P (yn)

= RGS
n (Q∗) + log

∑

yn∈An

sup
P∈S

P (yn) = log
∑

yn∈An

sup
P∈S

P (yn) +O(1)

where 0 < RGS
n (Q∗) ≤ 1 is the redundancy of the optimal generalized Shannon code (see [21]).

Therefore, ignoring again the integer constraint (i.e., setting RGS
n (Q∗) = 0) and using (4) rather

than (3) we arrive at
∑

xn

sup
θ∈Θ

Pθ(x
n) = inf

θ∈Θ
max
xn

log
Pθ̂

Pθ
= R∗

n(S)
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which establishes the right-hand side of (2). From now on, we assume that R∗(S) = logDn,m(S)
where

Dn,m(S) =
∑

xn∈An

sup
P∈S

P (xn). (5)

The O(1) term in (4) can be computed for finitely parameterized sources as in [21], but we will
not elaborate on it here.

In summary, useful or learnable information is closely related to the minimax redundancy
R∗

n(S) which can be viewed as a measure of certain regularity properties of a source (regularity
beyond the randomness/complexity expressed by the entropy). Next, using analytic tools we
estimate asymptotically the minimax redundancy for various classes of sources such as memo-
ryless for finite and infinite alphabets, renewal sources, and Markov sources. When discussing
Markov sources, we rather turn our attention to combinatorial aspects of Markov types.

2.2 Minimax Redundancy for Memoryless Sources

In this section we study the minimax redundancy for a class of memoryless sources over finite
and infinite alphabet of size m. We follow here [74]. Observe that Dn,m := Dn,m(M0) defined
in (5) takes the form

Dn,m =
∑

k1+···+km=n

(
n

k1, . . . , km

)(
k1
n

)k1

· · ·
(
km
n

)km

, (6)

where ki is the number of times symbol i ∈ A occurs in a string of length n. Indeed, observing
that P (xn) = pk11 · · · pkmm where pi are unknown parameters θ representing the probability for
symbol i ∈ A, we proceed as follows

Dn(M0) =
∑

xn
1

sup
P (xn

1
)
P (xn1 )

=
∑

xn
1

sup
p1,...,pm

pk11 · · · pkmm

=
∑

k1+···+km=n

(
n

k1, . . . , km

)

sup
p1,...,pm

pk11 · · · pkmm

=
∑

k1+···+km=n

(
n

k1, . . . , km

)(
k1
n

)k1

· · ·
(
km
n

)km

,

where the last line follows from

sup
P (xn

1
)
P (xn1 ) = sup

p1,...,pm
pk11 · · · pkmm =

(
k1
n

)k1

· · ·
(
km
n

)km

.

We should point out that (6) has a form that re-appears in the redundancy analysis of other
sources. Indeed, the summation is over tuples k = (k1, . . . , km) representing a (memoryless) type
(cf. Section 2.4) and under the sum the first term

(
n

k1,...,km

)
counts the number of sequences xn

of the same type while the second term is the maximum likelihood distribution.
It is argued in [74] that the asymptotics of such a sum can be analyzed through its so-called

tree-like generating function defined as

Dm(z) =
∞∑

n=0

nn

n!
Dn,mzn.
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Here, we will follow the same methodology and employ the convolution formula for tree-like
generating functions (cf. [76]). Observe that Dm(z) relates to another tree-like generating
function defined as

B(z) =
∞∑

k=0

kk

k!
zk.

This function, in turn, can be shown to be (cf. [76]) B(z) = (1 − T (z))−1 for |z| < e−1, where

T (z) =
∑∞

k=1
kk−1

k! zk is the well-known tree function — that counts the number of rooted labeled
trees on n vertices [24] — satisfying the implicit equation

T (z) = zeT (z) (7)

with |T (z)| < 1. The convolution formula [76] applied to (6) yields

Dm(z) = [B(z)]m − 1. (8)

Consequently, Dn,m = n!
nn [zn] [B(z)]m where [zn]f(z) denotes the coefficient of zn in f(z).

Defining β(z) = B(z/e), |z| < 1, noticing that [zn]β(z) = e−n[zn]B(z), and applying Stir-
ling’s formula, (8) yields

Dn,m =
√
2πn

(
1 +O(n−1)

)
[zn] [β(z)]m . (9)

Thus, it suffices to extract asymptotics of the coefficient at zn of [β(z)]m, for which a standard
tool is Cauchy’s coefficient formula [24, 76], that is,

[zn][β(z)]m =
1

2πi

∮
βm(z)

zn+1
dz (10)

where the integration is around a closed path containing z = 0 inside which βm(z) is analytic.
However, asymptotic evaluation of the above depends whether m is finite or is a function of n.
We consider these two cases next.

2.2.1 Finite Alphabet Size

First we assume that the size of the alphabetm is finite and does not depend on n. This case was
analyzed in [74] (see also [81, 82]). To evaluate the integral in (10) we

Figure 2: Singularity analysis

apply Flajolet and Odlyzko singularity analysis [24,
76] because [β(z)]m has only algebraic singularities.
Indeed, using (7) it can be shown that the singular
expansion of β(z) around its singularity z = 1 is [12]

β(z) =
1

√

2(1 − z)
+

1

3
−

√
2

24

√

(1− z) +O(1− z).

From [24, 76] we know that

[zn](1− z)−α ∼ nα−1

Γ(α)
, α /∈ {0,−1,−2, . . .}.

This is illustrated in Figure 2. The singularity anal-
ysis then yields the minimax redundancy [74]

R∗
n,m := logDn,m =

m− 1

2
log
(n

2

)

+ log

( √
π

Γ(m2 )

)

+
Γ(m2 )m log e

3Γ(m2 − 1
2)

·
√
2√
n
+O

(
1

n

)

(11)
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for large n and fixed m, where Γ is the Euler gamma function. We conclude that the first
term above coincides with Rissanen’s lower bound: we pay a penalty of log n/2 per unknown
parameter.

2.2.2 Unbounded Alphabet

Now we assume that the alphabet size is unknown and unbounded. In fact, it may depend
on n. When m grows with n, the singularity analysis does not apply because βm(z) grows
exponentially with n. The growth of βm(z) determines that the saddle point method [24, 76],
which we briefly review next, can be applied to (10). We will restrict our attention to a special
case of the method, where the goal is to obtain an asymptotic approximation of

Dn,m =
√
2πn

1

2πi

∮
β(z)m

zn+1
dz =

√
2πn

1

2πi

∮

eg(z)dz,

where g(z) = m ln β(z) − (n+ 1) ln z. For example, when m = n + 1 the function under the
integral grows as exp ((n+ 1)[ln β(z) − ln z]) which becomes very large around z where ln β(z)−
ln z is maximized, and almost negligible everywhere else. This determines the asymptotics.

m = o(n) m = n n = o(m)

Figure 3: Illustration of the saddle point method for Theorem 1.

In general for any m and n, the saddle point z0 is a solution of g′(z0) = 0, which yields

g(z) = g(z0) +
1

2
(z − z0)

2g′′(z0) +O(g′′′(z0)(z − z0)
3).

Under mild conditions (see Table 8.4 in [76]), satisfied by our g(z) (e.g., z0 is real and unique),
the saddle point method leads to

Dn,m =
√
2πn

eg(z0)
√

2π|g′′(z0)|
×
(

1 +O

(
g′′′(z0)

(g′′(z0))
ρ

))

,

for some ρ < 3/2. In our case, the saddle point z0 varies from near 1 to near 0 depending on
the relation between n and m as illustrated in Figure 3. It turns out that three cases must be
considered: m = o(n) (the saddle point z0 ≈ 1), m = O(n) (saddle point 0 < z0 < 1), and the
case n = o(m) (in this case z0 ≈ 0).

The following result is proved in [78] (see also [56])

9



Theorem 1 (Szpankowski and Weinberger, 2010). For memoryless sources M0 over an m-ary
alphabet, where m → ∞ as n grows, the minimax worst-case redundancy behaves asymptotically
as follows:
(i) For m = o(n)

R∗
n,m =

m− 1

2
log

n

m
+

m

2
log e+

m log e

3

√
m

n
− 1

2
− log e

4

√
m

n
+O

(
m2

n
+

1√
m

)

. (12)

(ii) For m = αn+ ℓ(n), where α is a positive constant and ℓ(n) = o(n),

R∗
n,m = n logBα + ℓ(n) logCα − log

√

Aα − ℓ(n)2 log e

2nα2Aα
+O

(
ℓ(n)3

n2
+
ℓ(n)

n
+

1√
n

)

, (13)

where

Cα :=
1

2
+

1

2

√

1 +
4

α
, Aα := Cα +

2

α
, Bα = αCα+2

α e−
1

Cα .

(iii) For n = o(m)

R∗
n,m = n log

m

n
+

3

2

n2

m
log e− 3

2

n

m
log e+O

(
1√
n
+

n3

m2

)

. (14)

In summary, we conclude that for finitem and m = o(n) the minimax redundancy, represent-
ing useful information embodied in regularity properties of a sequence, grows like (m − 1)/2 ×
log(n/m). This coincides with Rissanen’s lower bound. However, for m = O(n) the minimax
redundancy grows linearly with n while for m growing faster than n the growth of the minimax
redundancy is n log(m/n).

2.3 Minimax Redundancy for Renewal Sources

Let us continue our analytic extravaganza and consider non-finitely parameterized sources before
we return to Markovian sources over finite alphabets in the next section. We study here the
so called renewal sources first introduced in 1996 by Csiszár and Shields [15]. Such a source is
defined as follows:

• Let T1, T2 . . . be a sequence of i.i.d. positive-valued random variables with distribution
Q(j) = Pr{Ti = j}.

• The process T0, T0 + T1, T0 + T1 + T2, . . . is a renewal process.

• In a binary renewal sequence the positions of the 1’s are at the renewal epochs T0, T0+T1, . . .
with runs of zeros of lengths T1 − 1, T2 − 1, . . . in between the 1’s.

• The process starts with x0 = 1.

We follow here the analysis presented in [23]. A sequence generated by such a source becomes

xn0 = 10α110α21 · · · 10αn1 0 · · · 0
︸ ︷︷ ︸

k∗

where km is the number of i such that αi = m. Then

P (xn1 ) = [Q(0)]k0 [Q(1)]k1 · · · [Q(n− 1)]kn−1Pr{T1 > k∗}.

10



The last term introduces some difficulties in finding the maximum likelihood distribution, but
it can be proved that the minimax redundancy R∗

n(R0) = logDn(R0) of the renewal source R0

satisfies

rn+1 − 1 ≤ Dn(R0) ≤
n∑

m=0

rm

where rn =
∑n

k=0 rn,k and

rn,k =
∑

I(n,k)

(
k

k0 · · · kn−1

)(
k0
k

)k0 (k1
k

)k1

· · ·
(
kn−1

k

)kn−1

. (15)

Above I(n, k) is is the integer partition of n into k terms, i.e.,

n = 1k0 + 2k1 + · · ·+ nkn−1, k = k0 + · · · + kn−1.

Since rn is too difficult to analyze, we rather study sn =
∑n

k=0 sn,k where

sn,k = e−k
∑

P(n,k)

kk0

k0!
· · · k

kn−1

kn−1!
,

rn,k
sn,k

=
k!

kke−k

since

S(z, u) =
∑

k,n

sn,k(u/e)
kzn =

∑

Pn,k

z1k0+2k1+···+nkn−1

(u

e

)k0+···+kn−1 kk0

k0!
· · · k

kn−1

kn−1!
=

∞∏

i=1

β(ziu)

where β(z) = B(z/e) is defined in the previous section.
To compare sn to rn, we introduce the random variable Kn as follows

Pr{Kn = k} =
sn,k
sn

.

Figure 4: Saddle Point

Stirling’s formula yields

rn
sn

=

n∑

k=0

rn,k
sn,k

sn,k
sn

= E[(Kn)!K
−Kn
n eKn ]

= E[
√

2πKn] +O(E[K
− 1

2

n ]).

Thus

rn = snE[
√

2πKn](1 + o(1)) = sn
√

2πE[Kn](1 + o(1)).

To understand probabilistic behavior of Kn, we
apply sophisticated tools of analytic combinatorics
such as Mellin transform and the saddle point [24, 76].
In particular, we must evaluate [zn]S(z, 1) by the sad-
dle point that leads to the following

sn = [zn]S(z, 1) = [zn] exp

(
c

1− z
+ a log

1

1− z

)

which is illustrated in Figure 4. We prove in [23] the following.

11



Lemma 1. Let µn = E[Kn] and σ2
n = Var(Kn). Then

µn =
1

4

√
n

c
log

n

c
+ o(

√
n), σ2

n = O(n log n) = o(µ2
n),

where c = π2/6− 1, d = − log 2− 3
8 log c− 3

4 log π.

This leads to our final result proved in [23].

Theorem 2 (Flajolet and Szpankowski, 1998). We have the following asymptotics

sn ∼ exp

(

2
√
cn− 7

8
log n+O(1)

)

,

log rn =
2

log 2

√
cn− 5

8
log n+

1

2
log log n+O(1).

that yields

R∗
n(R0) =

2

log 2

√
cn+O(log n).

where c = π2

6 − 1 ≈ 0.645.

In passing we should point out that the renewal source technically is reminiscent of the
memoryless sources with unbounded alphabet (cf (3) and (15)). The analysis of renewal sources
is, however, much more sophisticated.

2.4 Markov Minimax Redundancy and Markov Types

In this section, we return to the finite size alphabet A = {1, . . . ,m} but now we consider a class
M1 of Markovian sources of order r = 1. More precisely, the probability of a sequence xn is
given by

P (xn) = P (x1)

m∏

i,j=1

p
kij
ij

where kij is the number of pairs (i, j) ∈ A2 in xn, pij are the (unknown) transition probabilities
while P (x1) is the initial probability. Then the minimax redundancy (ignoring again the integer
nature of coding) is [37]

Dn(M1) =
∑

xn
1

sup
P

P (xn) =
∑

k∈Qn(m)

|Tn(k)|
(
k11
k1

)k11

. . .

(
kmm

km

)kmm

, (16)

where Qn(m) denotes a set of Markov types discussed in the sequel, and Tn(k) := Tn(xn1 ) is
the number of sequences of the same Markov type represented by the frequency count matrix
k = {kij}i,j∈A2 . The frequency matrix k, which we also write [kij ], satisfies two important
properties

∑

i,j∈A

kij = n− 1, (17)

and additionally for any i ∈ A [37, 83]

m∑

j=1

kij =

m∑

j=1

kji + δ(x1 = i)− δ(xn = i), ∀i ∈ A, (18)

12



k =

[
1 2
2 2

]

Figure 5: A frequency matrix and its corresponding Eulerian graph.

where δ(A) = 1 when A is true and zero otherwise. The last property is called the flow conser-
vation property and is a consequence of the fact that the number of pairs starting with symbols
i ∈ Amust be equal to the number of pairs ending with symbol i ∈ A with the possible exception
of the first and last pairs. To avoid this exception, hereafter we focus on cyclic strings in which
the first element x1 follows the last xn. For such cyclic strings the frequency matrix k satisfies
a simplified system of linear equations, namely

∑

i,j∈A

kij = n, (19)

m∑

j=1

kij =
m∑

j=1

kji, ∀ i ∈ A. (20)

Such integer matrices k will be called balanced frequency matrices or simply balanced matrices.
We also call (20) the “conservation law” equation or simply the balanced boundary condition
(BBC). We denote by Fn(m) the set of nonnegative integer solutions of (19) and (20).

We are now ready to define cyclic Markov types. Two cyclic sequences have the same (cyclic)
Markov type if they have the same empirical distribution

P (xn) =
∏

i,j∈A

p
kij
ij .

Thus, we assume the initial condition is a cyclic one. We denote by Pn(m) the set of cyclic
Markov types and enumerate them by comparing them to the cardinality of Fn(m), and also to
the set of Markov types Qn(m) over linear strings. In passing, we should point out that for a
given sequence xn, the type class is defined as

Tn(xn) = {yn : P (xn) = P (yn)}

for all empirical distributions Pxn in a given model class. Clearly,
⋃

xn Tn(xn) = An, and |Tn(xn)|
counts the number of sequences of the same type as xn; it is required to estimate the minimax
redundancy for Markov sources as shown in (16).

Our goal is to enumerate the number of cyclic Markov types |Pn(m)| that from now on we
simply call Markov types. Enter combinatorics: we shall show that the number of Markov types
is asymptotically equivalent to estimating; (i) the number of the balanced frequency matrices,
(ii) the number of integer solutions |Fn(m)| of a system of linear Diophantine equations (19)–
(20), and finally (iii) the number of connected Eulerian multigraphs, as defined next. To see the
latter, we present another characterization of Markov types. Let us define a directed multigraph
G = (V,E) with the set of vertices V = A and kij edges between vertices i, j ∈ A. For

13



A = {0, 1} such a graph is shown in Figure 5. Then, as already observed in [6, 27, 37], the
number of sequences of a given type k, i.e., |T (k)|, is equal to the number of Eulerian cycles
in G. On the other hand, the number of types |Pn(m)| coincides with the number of Eulerian
digraphs G = (V,E) such that V ⊆ A and |E| = n (here V ⊆ A since there may be sequences
composed of only some symbols of the alphabet). The point we emphasize is that G may be
defined over a subset of A, as shown in the next Figure 6 (i.e., there may be some isolated
vertices).

Figure 6: Examples of graphs belonging to P7(5), E11(5) and F9(5) sets.

Let us explore further these two sets Pn(m) and Fn(m) in the language of graphs. In fact,
we need to introduce another set. We denote it by En(m), the set of connected Eulerian digraphs
on A; the middle of Figure 6 shows an example of a graph in this set. Finally, the set Fn(m)
can be viewed as the set of digraphs G with V (G) = A, |E(G)| = n and satisfying the flow
conversation property (in-degree equals out-degree). We call such graphs conservative digraphs.
Observe that a graph in Fn(m) may consist of several connected (not communicating) Eulerian
digraphs, as shown in the third example in Figure 6.

There is a simple relation between |En(m)| and |Pn(m)|. Indeed,

|Pn(m)| =
∑

k

(
m

k

)

|En(k)| (21)

since there are
(m
k

)
ways to choose m − k isolated vertices in Pn(m). Now, observe that a

conservative digraph may have several connected components. Each connected component is
either a connected Eulerian digraph or an isolated node without an edge. This leads to

|Fn(m)| = |En(m)|+
m∑

i=2

∑

A=A1∪···∪Ai

∑

n1+···+ni=n

i∏

j=1

|Enj
(Aj)| (22)

where the sum is over all (unordered) set partitions A = A1∪· · ·∪Ai into i ≥ 2 (nonempty) parts
with nj edges in each di-subgraph Enj

(Aj) over Aj vertices. Observe that every set partition
A = A1∪· · ·∪Ai with |Aj| = mj > 0 is a partition of A into i distinguished subsets of cardinality
mj . In fact, using the so called exponential formula [24] (page 118) we may conclude even more,
namely [34]

|Fn(m)| = |En(m)|+
m∑

i=2

1

i!

∑

m1+···+mi=m

(
m

m1 · · ·mi

)
∑

n1+···ni=n

i∏

j=1

|Enj
(mj)|.
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A direct consequence of this is the following asymptotic equivalence [34].

Lemma 2. The following holds for all m ≥ 2 and n → ∞
|Fn(m)| = |Pn(m)|+O(2mm3nm2−3m+3). (23)

In view of the above we need to enumerate the number of solutions |Fn(m)| of the system
of linear Diophantine equations (19)–(20). Again, we accomplish it by analytic methods. Let

F ∗
m(z) =

∑

n≥0

|Fn(m)|zn.

However, to find F ∗
m(z) we need to evaluate a more complicated generating function that enu-

merates all balanced matrices, that is,

F ∗
m(z) =

∑

k∈Fn(m)

zk,

where zk :=
∏

ij z
kij
ij . Notice that the summation is over all balances matrices k ∈ Fn(m). This

is a daunting task, but we can easily compute the above generating function if the summation
is over all matrices (satisfying only (19)). Indeed,

Fm(z) =
∑

k

zk =
∏

ij

(1− zij)
−1. (24)

The remaining problem is to translate Fm(z) into F ∗
m(z). This is presented in the next lemma,

where we consider a multivariate generating functionsG(z) =
∑

k
gkz

k andG∗(z) =
∑

k∈F gkz
k =

∑

n≥0

∑

k∈Fn(m) gkz
k over general sequences gk indexed by matrices k. The following was proved

in [37].

Lemma 3. Let G(z) =
∑

k
gkz

k be the generating function of a complex matrix z. Then

G∗(z) :=
∑

n≥0

∑

k∈Fn

gkz
k =

(
1

2iπ

)m ∮ dx1
x1

· · ·
∮

dxm
xm

G

([

zij
xj
xi

])

with the convention that the ij-th coefficient of the matrix [zij
xj

xi
] is zij

xj

xi
, and i =

√
−1. In

other words, [zij
xj

xi
] = ∆−1(x)z∆(x) where ∆(x) = diag(x1, . . . , xm).

Proof. Observe that

G(∆−1(x)z∆(x)) = G

([

zij
xj
xi

])

=
∑

k

gkz
k

m∏

i=1

x
∑

j kji−
∑

j kij
i . (25)

Therefore, G∗(z) is the coefficient of G([zij
xj

xi
])(·) at x01x

0
2 · · · x0m denoted as

[
x01 · · · x0m

]
since

∑

j kji −
∑

j kij = 0 for matrices k ∈ F . The result follows from the Cauchy coefficient formula
(cf. [76]).

Now we are ready to enumerate Fn(m). Setting in Lemma 2 zij = zxi/xj and using (24) we
conclude that

F ∗
m(z) =

1

(1− z)m
[x01x

0
2 · · · x0m]

∏

i 6=j

[

1− z
xi
xj

]−1

. (26)

Thus, by the Cauchy formula

|Fn(m)| = [zn]F ∗
m(z) =

1

2πi

∮
F ∗
m(z)

zn+1
dz.

This allows us to formulate our main result on the enumeration of (cyclic) Markov types.
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Theorem 3 (Knessl, Jacquet, and Szpankowski, 2012). (i) Cyclic Types. For fixed m and
n → ∞ the number of cyclic Markov types is

|Pn(m)| = d(m)
nm2−m

(m2 −m)!
+O(nm2−m−1) (27)

where d(m) is a constant that also can be expressed by the following integral

d(m) =
1

(2π)m−1

∫ ∞

−∞

· · ·
∫ ∞

−∞
︸ ︷︷ ︸

(m−1)−fold

m−1∏

j=1

1

1 + ϕ2
j

·
∏

k 6=ℓ

1

1 + (ϕk − ϕℓ)2
dϕ1dϕ2 · · · dϕm−1. (28)

When m → ∞ we find that

|Pn(m)| ∼
√
2m3m/2em

2

m2m2

2mπm/2
· nm2−m (29)

provided that m4 = o(n).
(ii) Markov Types. The number of Markov types |Qn(m)| with arbitrary initial conditions
satisfies

|Qn(m)| = (m2 −m+ 1)|Pn(m)|(1 −O(n−2m))

where |Pn(m)| is presented in (i).

In order to finish our analysis of the minimax redundancy, we need to estimate the number
of sequences of a given type. First, we replace (16) by

Dn(M1) = m
∑

b∈A

∑

k∈Fn,kba>0

|T ba
n (k− [δba])|k−[δba](kb − 1)−kb+1

∏

i 6=b

(ki)
−ki , (30)

where |T ba
n (k)| is the number of cyclic strings xn of type k starting with b and ending with a.

To compute it we first introduce

Bk =

(
k1

k11 · · · k1m

)

· · ·
(

km
km1 · · · kmm

)

where ki =
∑

j kij . It may be viewed as the number of ways to depart from all m vertices in
the multiple graph G associated with the frequency matrix k (but not necessarily completing
an Eulerian cycle). Observe that

B(z) =
∑

k

Bkz
k =

∏

a∈A

(1−
∑

b∈A

za,b)
−1.

Lemma 2 yields [37]

B∗(z) =
∑

k∈Fn(m)

Bkz
k =

1

det(I− z)

where I is the m×m identity matrix. Using this approach we can finally estimate the number
of sequences starting with an a and finishing with a b of a given Markov type as follows

|T ba
n (k)| = kba

kb
Bk · det

bb
(I− k∗)

(

1 +O

(
1

n

))

,

where k∗ is the matrix whose ij-th element is kij/ki, that is, k
∗ = [kij/ki] (cf. [83, 37]).

Putting everything together, in [37] we prove the following asymptotic expansion for the
minimax redundancy of Markov sources (cf. [59]).
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Theorem 4 (Rissanen, 1996, Jacquet and Szpankowski, 2004). (i) Let M1 be the class of
Markov sources over a finite alphabet A of size m. The worst case minimax redundancy is
R∗

n(M1) = logDn(M1) where

Dn(M1) =
( n

2π

)m(m−1)/2
Am ×

(

1 +O

(
1

n

))

(31)

with

Am = m

∫

K(1)
Fm(yij)

∏

i∈A

√∑

j∈A yij
∏

j∈A
√
yij

∏

ij∈A2

dyij

where
K(1) = {yij : yij ≥ 0,

∑

ij

yij = 1,∀i :
∑

j

yij =
∑

j

yji},

Fm(y) =
∑

b∈A detbb(1− y∗), and y∗ is the matrix whose ij-th coefficient is yij/
∑

j′ yij′.

(ii) Let Mr be the class of Markov sources of order r over a finite alphabet A of size m. The
minimax redundancy is R∗

n(M1) = logDn(Mr) where

R∗
n(Mr) =

( n

2π

)mr(m−1)/2
Ar

m ×
(

1 +O

(
1

n

))

(32)

with

Ar
m = mr

∫

Kr(1)
F r
m(y)

∏

w∈Ar

√
yw

∏

j
√
yw,j

,

where Kr(1) is the convex set of mr × m matrices y with non-negative coefficients such that
∑

w,j yw,j = 1, w ∈ Ar. The function

F r
m(yr) =

∑

w

det
ww

(I − y∗
r),

where y∗
r is the mr×mr matrix whose (w,w′) coefficient is equal to yw,a/

∑

i∈A ywi if there exist
a in A such that w′ is a suffix of wa, otherwise the (w,w′)th coefficient is equal to 0.

The evaluation of the constants Am is not easy. But, for a binary alphabet (m = 2) we have

A2 = 2

∫

K(1)
(det
11

(I− y∗) + det
22

(I − y∗))

√
y1√

y11
√
y12

√
y2√

y21
√
y22

dy11dy12dy21dy22. (33)

Since det11(I − y∗) = y21
y2

and det22(I − y∗) by symmetry, and since the condition y ∈ K(1)
means y1 + y2 = 1 and y12 = y21 we arrive at, A2 = 16 · G where G is the Catalan constant

defined as G =
∑

i
(−1)i

(2i+1)2
≈ 0.915965594.

3 Science of Information: Beyond Shannon

In science of information the goal is to pursue the theory of information beyond Shannon’s
original objectives (of communication), by applying it to problems of biology, neuroscience,
economics, physics, and massive data where knowledge extraction is the game changer. We
believe that in order to make fundamental contributions to these applications, we first need
better understanding of new aspects of temporal, spatial, structural and semantic information.
In this section, we first briefly review some recent results on semantic and temporal properties
and on cooperation, to focus on structural information.
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3.1 Delay, Semantic, and Cooperation

The mathematical theory of information arose from Shannon’s theorem on channel capacity,
defined as the maximum rate that can be achieved over a channel with asymptotically small
probability of error. Shannon capacity of a channel places no restrictions on complexity or delay
in transmission or reception. Methods to properly characterize the complexity and the delay
could potentially fill a large gap that would extend Shannon capacity to dynamic networks with
multi-point communication and often unpredictable delays [26, 29]. Furthermore, the increasing
demands for using wireless networks require such delay guarantees. Applications include VoIP,
video streaming, real time surveillance, networked control, etc. One common characteristic of
these applications is that they have a strict deadline associated with each packet. Further, the
channel reliabilities of different clients can be different, and can even vary over time. These are
compelling reasons why we need to understand the role of delay in distributed communication.

In [58] Polyanskiy, Poor, and Verdu extend the fundamental channel coding theorem of
Shannon to a finite blocklength regime. In particular, it is shown that coding rate M∗

n(n, ε) for
finite block length n is

1

n
logM∗(n, ε) ≈ C −

√

V

n
Q−1(ε)

where C is the capacity, V is the channel dispersion, ε is error probability, and Q is the com-
plementary Gaussian distribution. This is a non-asymptotic result (i.e., precise lower and upper
bounds are presented), and it allows us to compute the degradation in capacity, even for small
blocklengths. Recently, these results are extended to lossy compression [47].

In another line of research in a real time coding system with lookahead, Asnani and Weissman
[2] investigate the impact of delay on expected distortion. The system consists of a memoryless
source; a memoryless channel; an encoder, which encodes the source symbols sequentially, with
knowledge of future source symbols up to a fixed finite lookahead, with or without feedback of the
past channel output symbols; and a decoder, which sequentially constructs the source symbols
using the channel output. The objective is to minimize the expected per-symbol distortion
using a control theory approach. The authors provide one of the first results in this line of
research. This bridges the gap between causal encoding (delay=0) and the infinite lookahead
case (delay=∞) where Shannon theoretic arguments show that encoding-decoding separation is
optimal.

However, any further progress in information theory of networks requires us to understand
distributed information and link delay with flow of information. In a novel line of research
P.R. Kumar and co-authors [31, 42] design reliable scheduling policies with delay constraints for
unreliable wireless networks. They focus on a formulation that appears to provide a useful and
tractable framework for modeling, analyzing and designing real-time wireless communications.
This framework is built on top of an analytical model that jointly considers the three important
aforementioned challenges: a strict deadline for each packet, the timely throughput requirement
specified by each client or application, and finally the unreliable and heterogeneous nature of
wireless transmissions. An important feature is that this model is suitable for characterizing
the needs of a wide range of applications, and the model allows each application to specify its
individual demand.

We turn now our attention to semantic aspect of information. Shannon in his 1948 pa-
per asserted “Frequently the messages have meaning, that is, they refer to or are correlated
according to some system with certain physical or conceptual entities. These semantic aspects
of communication are irrelevant to the engineering problem.” However, Sudan and his collab-
orators [25, 40] argue that the meaning of information does start to become relevant whenever

18



there is diversity in the communicating parties and when parties themselves evolve over time.
For example, when a computer attempts to communicate with a printer they must talk the same
language in the same format (i.e., “printer driver”). This leads Sudan and his collaborators to
consider communication in the setting where encoder and decoder do not agree a priori on the
communication protocols, thus encoder and decoder do not understand each other. In [25, 40]
a mathematical theory of goal-oriented communication is proposed from the complexity theory
point of view. Perhaps these are among the first results that may lead to a new information
theory of semantic communication.

Finally, we discuss information theory of cooperation and dependency. In an extension
of the Shannon framework, Cuff, Permuter and Cover [17] initiate a theory of cooperation and
coordination in networks. A general understanding of the limits of dependence yields rate distor-
tion theory (data compression) as a special case and provides a general approach to distributed
data compression and cooperation. It also elucidates such diverse processes as intercellular bio-
logical communication. The role of dependence is exemplified by the telephone system, wireless
communication, the internet, news services, the economies of large countries and the internal
workings of computer architecture. The efficacy of all of these systems depends on fast com-
munication and consequent cooperative behavior. Such distributed dependence is also found in
chemical reactions, landslides, hurricanes, the dynamics of the sun and the universe itself. What
are the necessary information exchanges? What limits on physical dependence are imposed by
the speed of information? Are there energy constraints on computation? Some of these vast
generalities can be addressed by developing a science of information for dependence. In [17]
the authors ask what dependence can be established among nodes given communication con-
straints. More precisely, the authors compute the achievable joint distribution among network
nodes, provided that the communication rates are given. Such a distributed cooperation can be
the solution to many problems, such as distributed games, distributed control, and bounds on
the influence of one part of a physical system on another.

Dependency and rational expectation are critical ingredients in Sims’ work on modern dy-
namic economic theory [51]. Sims points out that existing theories of rational expectations with
continuous optimization imply infinite mutual information between market and person actions.
By imposing information flow constraints, discrete behavior emerges (as already seen in [61])
that better describe real economic behavior (cf. also [71]).

3.2 Information Content of Graphical Structures

Structural information appears in myriad applications, from biology to social networks to mate-
rial sciences. In fact, in recent years we have become inundated with new (unconventional) data:
the internet, social networks, biological networks, and medical records are all key examples that
present grand challenges. For instance, in recent paper [80] Varshney et al. reported a pretty
complete wiring (graph) of 302 neurons in the C.elegans worm that allows inference of biological
functions from the neuronal network structure.

Unconventional data often are represented by more sophisticated data structures such as
graphs, sets, and trees. For example, a graph can be described by a binary matrix that further
can be viewed as a binary sequence. However, such a sequence does not exhibit internal symme-
tries that are conveyed by the so-called graph automorphism (such automorphisms make certain
sequences/matrices “indistinguishable”). The main challenge in dealing with such structural
data is to identify and describe these structural relations. In fact, these “regular properties”
constitute “useful (extractable) information” discussed in Section 2.1. Furthermore, such data
structures often have two types of information: the information conveyed by the structure itself,
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and the information conveyed by the data labels implanted in the structure. We still do not
have good metrics of information embodied in structure.

As the first step in understanding structural information, we restrict our attention to struc-
tures on graphs, specifically, we study unlabeled graphs (or structures). In particular, given n
distinguishable (labeled) vertices, a random graph is generated by adding edges randomly. This
random graph model G produces a probability distribution on graphs, and the graph entropy
HG is defined naturally as

HG = E[− logP (G)] = −
∑

G∈G

P (G) log P (G),

where P (G) is the probability of a graph G. However, to focus on structural properties, we
consider here unlabeled graphs in which the vertices are indistinguishable. We denote such an
unlabeled graph by S ∈ S and clearly

P (S) =
∑

G∼=S,G∈G

P (G).

Here G ∼= S means that G and S have the same structure, that is, S is isomorphic to G. Thus,
if all isomorphic labeled graphs have the same probability, then for any labeled graph G ∼= S,

P (S) = N(S) · P (G), (34)

where N(S) is the number of different labeled graphs that have the same structure as S. The
structural entropy HS of a random graph can be defined as the entropy of a random structure
S, that is,

HS = E[− logP (S)] = −
∑

S∈S

P (S) log P (S),

where the summation is over all distinct structures.
In order to compute the probability of a given structure S, one needs to estimate the number

of ways, N(S), to construct a given structure S (i.e., unlabeled graph). For this, the automor-
phisms of a graph is to be considered. An automorphism of a graph G is an adjacency preserving
permutation of the vertices of G. The collection Aut(G) of all automorphisms of G is called the
automorphism group of G. In the sequel, Aut(S) of a structure S denotes Aut(G) for some
labeled graph G such that G ∼= S. In group theory, it is well known that

N(S) =
n!

|Aut(S)|

and therefore, 1 ≤ |Aut(S)| ≤ n!.
This trivial observation leads to a relation between the graph entropy and the structural

entropy [10].

Lemma 4. If all isomorphic graphs have the same probability, then

HS = HG − log n! +
∑

S∈S

P (S) log |Aut(S)|

for any random graph G and its corresponding random structure S, where Aut(S) is the auto-
morphism group of S.
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In order to further advance our theory, we need to adopt a graph generation model. From now
on, we assume a memoryless Erdős-Rényi model G(n, p) over n vertices in which edges are added

independently and randomly with probability p. Thus P (G) = pkq(
n

2
)−k, where q = 1 − p. To

compute the entropy of S(n, p) we need to estimate N(S). For this, we must study an important
property of G(n, p), namely asymmetry. A graph is said to be asymmetric if its automorphism
group does not contain any permutation other than the identity (i.e., |Aut(G)| = 1); otherwise
it is called symmetric. It is known that almost every graph from G(n, p) is asymmetric [7, 43].
In the sequel, we write an ≪ bn to mean an = o(bn) when n → ∞.

Lemma 5 (Kim, Sudakov, and Vu, 2002). For all p satisfying lnn
n ≪ p and 1 − p ≫ lnn

n , a
random graph G ∈ G(n, p) is symmetric with probability O (n−w) for any positive constant w.

Using this property, we can now present the structural entropy and establish the asymptotic
equipartition property (AEP), that is, the typical probability of a structure S. In [10] we prove.

Theorem 5 (Choi and Szpankowski, 2009). For large n and all p satisfying lnn
n ≪ p and

1− p ≫ lnn
n , the following holds:

(i) The structural entropy HS of G(n, p) is

HS =

(
n

2

)

h(p)− log n! +O

(
log n

nα

)

, for some α > 0,

(ii) (AEP) For a structure S ∈ S(n, p) and ε > 0,

P

(∣
∣
∣
∣
∣
− 1
(n
2

) logP (S)− h(p) +
log n!
(n
2

)

∣
∣
∣
∣
∣
< ε

)

> 1− 2ε, (35)

where h(p) = −p log p− (1− p) log (1− p) is the entropy rate of a binary memoryless source.

By Shannon’s source coding theorem, the structural entropy computed in Theorem 5 is a
fundamental lower bound for the lossless compression of structures from S(n, p). However, the
challenge is to design an asymptotically optimal compression algorithm matching the first two
leading terms

(
n
2

)
h(p) − n log n of the structural entropy with high probability. We discuss it

next.
Our algorithm, called Szip (Structural zip), is a compression scheme for unlabeled graphs.

In other words, given a labeled graph G, it compresses G into a codeword, from which one can
construct a graph S that is isomorphic to G. The algorithm consists of two stages. First it
encodes G into two binary sequences and then compresses them using an arithmetic encoder.

The main idea behind our algorithm is quite simple (see [10] for details and Figure 7): We
select a vertex of a graph, say v1 (v1 = i in Figure 7), and store the number of neighbors of
v1 in a binary string B1 (0100 in Figure 7). We remove this vertex, and then partition the
remaining n − 1 vertices into two sets: the neighbors of v1 (d, f, g, i in Figure 7) and the non-
neighbors of v1 (a, b, c, e, h in Figure 7). We continue by selecting (and removing) a vertex, say
v2 (v2 = f in Figure 7), from the neighbors of v1 and store two numbers in either string B1 or
B2 (if there is only one neighbor or none): the number of neighbors of v2 among each of the
above two sets. Then we partition the remaining n− 2 vertices into four sets: the neighbors of
both v1 and v2, the neighbors of v1 that are non-neighbors of v2, the non-neighbors of v1 that
are neighbors of v2, and the non-neighbors of both v1 and v2. This procedure continues until
all vertices are processed. This process of selecting and splitting vertices can be described by a
tree as illustrated in Figure 7.
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Figure 7: Illustration to Szip

During the construction the number of neighbors of the selected vertex is appended to either
sequence B1 or sequence B2, where B2 contains those numbers for singleton sets (i.e., we store
either “0” when there is no neighbor or “1” otherwise). The sequence B2 is represented by a
“square” in the associated tree in Figure 7. We then compress B1 and B2 using an arithmetic
encoder.

In [10] we prove that the algorithm just presented achieves the structural entropy up to
the first two leading terms by showing that the length of B2 (in compressed form) dominates
the compression rate. In fact, we also observe that by the construction B2 can be viewed as
generated by a memoryless source with probability p. We prove the following.

Theorem 6 (Choi and Szpankowski, 2009). Let L(S) be the length of the codeword generated
by our algorithm for Erdős-Rényi graphs G ∈ G(n, p) isomorphic to a structure S. Then:
(i) For large n,

E[L(S)] ≤
(
n

2

)

h(p)− n log n+ (c+Φ(log n))n+ o(n),

where c is an explicitly computable constant, and Φ(log n) is a fluctuating function with a small
amplitude independent of n.
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(ii) Furthermore, for any ε > 0,

P (L(S)−E[L(S)] ≤ εn log n) ≥ 1− o(1).

(iii) Our algorithm Szip runs either in time O(n2) in the worst case for any graph or in time
O(n+ e) on average for graphs generated by G(n, p), where e is the average number of edges.

In the remaining part of this section, we present a sketch of the proof of Theorem 6 (i). We
need to compute the average lengths L(B1) and L(B2) of strings B1 and B2, respectively. These
lengths can be evaluated through the associated tree Tn shown in Figure 7. In fact,

L(B1) =
∑

x∈Tn and Nx>1

⌈log(Nx + 1)⌉ (36)

L(B2) =
∑

x∈Tn and Nx=1

⌈log(Nx + 1)⌉ =
∑

x∈Tn and Nx=1

1 (37)

where Nx is the degree of a node x in the associated tree Tn.
To analyze L(B1) and L(B2) it is convenient to introduce an auxiliary tree that we call (n, d)-

tries3 and denote as Tn,d. The root of such a tree contains n balls (vertices of the underlying
graph) that are consequently distributed between two subtrees according to a simple rule: In
each step, all balls independently move down to the left subtree (say with probability p) or the
right subtree (with probability 1 − p), and a new node is created as long as there is at least
one ball in that node. Finally, a non-negative integer d is given so that at level d or greater
one ball is removed from the leftmost node before the balls move down to the next level (in our
case we set d = 0). These steps are repeated until all balls are removed (i.e., after n+d steps).
Of interest are such tree parameters as the depth, path length (sum of all depths), size, and so
forth.

We compute now the averages of L(B1) and L(B2) for a randomly generated Erdős-Rényi
graph. For L(B1), in the tree Tn,d define

An,d =
∑

x∈Tn,d and Nx>1

⌈log(Nx + 1)⌉,

and then E[L(B1)] = an,0. Also let an,d = E[An,d]. Clearly, a0,d = a1,d = 0 and a2,0 = 0. For
n ≥ 2 and d = 0, we observe that

an+1,0 = ⌈log (n+ 1)⌉+
n∑

k=0

(
n

k

)

pkqn−k(ak,0 + an−k,k), (38)

an,d = ⌈log (n+ 1)⌉+
n∑

k=0

(
n

k

)

pkqn−k(ak,d−1 + an−k,k+d−1). (39)

To estimate L(B2) we observe that

L(B2) =
∑

x∈Tn,0

Nx −Bn,0 =
n(n− 1)

2
−Bn,0. (40)

3A trie [44, 76] is an ordered tree data structure that stores keys usually represented by strings. Tries were in-
troduced by de la Briandais (1959) and Fredkin (1960) who also introduced the name trie derived from “retrieval”.
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where Bn,d =
∑

x∈Tn,d,Nx>1 Nx. The last equality follows from the fact that the sum of Nx’s for

all x at level ℓ in Tn,0 is equal to n − 1 − ℓ. Let bn,d = E[Bn,d]. Clearly, b0,d = b1,d = 0 and
b2,0 = 0. For n ≥ 2, we observe that to an,d:

bn+1,0 = n+

n∑

k=0

(
n

k

)

pkqn−k [bk,0 + bn−k,k] , for n ≥ 2, (41)

and

bn,d = n+

n∑

k=0

(
n

k

)

pkqn−k [bk,d−1 + bn−k,k+d−1] , for n ≥ 2, d ≥ 1. (42)

Indeed, recurrence (41) follows from the fact that starting with n+1 balls in the root node, and
removing one ball, we are left with n balls passing through the root node. The root contributes
n since each time a ball moves down it adds 1 to the path length. Those n balls move down to
the left or the right subtrees. Let us assume k balls move down to the left subtree (the other
n − k balls must move down to the right subtree); this occurs with probability

(n
k

)
pkqn−k. At

level one, one ball is removed from those k balls in the root of the left subtree. This contributes
bk,0. There will be no removal from n − k balls in the right subtree until all k balls in the left
subtree are removed. This contributes bn−k,k. Similarly, for d > 0 we arrive at recurrence (42).

We are then faced with the reduced problem to find asymptotic solutions of two-dimensional
recurrences (38)–(39) and (41)–(42). We concentrate on the latter and follow [11].

If we let d → ∞ in (42) and assume that bn,d tends to a limit bn,∞, then (42) becomes

bn,∞ = n+
n∑

k=0

(
n

k

)

pkqn−k [bk,∞ + bn−k,∞] (43)

with b0,∞ = b1,∞ = 0. This is the same as the recurrence for the mean path length in a standard
trie, discussed above. For example, in [44, 76] it is proved that

bn,∞ =

n∑

ℓ=2

(−1)ℓ
(
n

ℓ

)
ℓ

1− pℓ − qℓ
. (44)

The asymptotic expansion of (43) and the above as n → ∞ may be obtained by a combination
of singularity analysis and depoissonization arguments (see [24, 36, 76]). We obtain

bn,∞ =
1

h
n log n+

1

h

[

γ +
h2
2h

+Φ(logp n)

]

n+ o(n), (45)

where h := h(p) is the entropy, h2 = p log2 p+ q log2 q, γ is the Euler constant, and Φ(x) is the
periodic function

Φ(x) =

∞∑

k=−∞,k 6=0

Γ

(

−2kπir

log p

)

e2kπrix, (46)

provided that log p/ log q = r/s is rational, with r and s being integers with gcd(r, s) = 1. If
log p/ log q is irrational, then the term with Φ is absent from the O(n) term of (45).

Let now b̃n,d = bn,d− bn,∞ measures how the path lengths in the (n, d)-trie differs from those
in a regular trie. From (42) and (43), we then obtain

b̃n,d =

n∑

k=0

(
n

k

)

pkqn−k
[

b̃(k, d − 1) + b̃(n− k, k + d− 1)
]

, for n ≥ 2, d ≥ 1, (47)
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which unlike (42) is a homogeneous recurrence. It turns out that the second term under the
sum is negligible, which even further simplifies the recurrence. Then analytic techniques such
as Mellin transform and depoissonization can be applied leading to asymptotic solution of (47).

We summarize our main result proved in [11].

Theorem 7. For n → ∞ and d = O(1) we have b̃(n, d) = O(log2 n). More precisely

b̃n,d =
1

2h log p
log2 n+

d

h
log n+

[

− 1

2h
+

1

h log p

(

γ + 1 +
h2
2h

+Ψ(logp n)

)]

log n+O(1), (48)

where Ψ(·) is the periodic function

Ψ(x) =

∞∑

k=−∞,k 6=0

[

1 +
2kπir

log p

]

Γ

(

−2kπir

log p

)

e2kπirx (49)

and log p/ log q = r/t is rational, as in (46). If log p/ log q is irrational, the term involving Ψ in
(48) is absent. Thus

bn,0 =
1

h
n log n+

1

h

[

γ +
h2
2h

+Φ(logp n)

]

n+O(log2 n)

for large n.

To complete the proof of Theorem 6 we need to evaluate the an,0 = E[L(B1)] that satisfies
the set of recurrences (38)-(39). Using the same approach as above we prove in [10, 11]

E[L(B1)] =
n

h
A∗(−1) + o(n), A∗(−1) =

∞∑

ℓ=2

⌈log(ℓ+ 1)⌉
ℓ(ℓ− 1)

if log p/ log q is irrational. If log p/ log q = r/s is rational, the constant A∗(−1) must be replaced
by the oscillatory function

∞∑

k=−∞,k 6=0

A∗

(

−1 +
2kπir

log p

)

e2kπir logp n (50)

where

A∗(s) =
∑

n≥2

⌈log (n+ 1)⌉
n!

Γ(n+ s).

Summing up, we compute E[L(S)] = E[L(B̂1) + L(B̂2)] + O(log n), where B̂1 and B̂2 are
strings B1 and B2 compressed by the arithmetic encoder, while O(log n) bits are needed to
encode n. The arithmetic encoder can compress a binary sequence of length m on average up
to mh+ 1

2 logm+O(1) = mh+O(logm), where h is the entropy rate of the binary source. For
string B2 we know that h = h(p), and this completes the part (i) of Theorem 6(i).
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