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Abstract—A fundamental challenge in learning is the presence
of nonlinear redundancies and dependencies in the data. To
address this, we propose a Fourier-based approach to characterize
feature redundancies, in unsupervised learning, and feature-label
dependencies, in the supervised variant of the problem. We first
develop a novel Fourier expansion for functions (more generally
stochastic mappings) of correlated binary random variables. This
is a generalization of the standard Fourier expansion on the
Boolean cube beyond product probability spaces. As an important
application of this analysis, we investigate learning with feature
subset selection. In the unsupervised variant of this problem, we
characterize feature redundancies via the Shannon entropy and
group the features into sufficiently informative and redundant.
Then, we make a connection to the proposed Fourier expansion
and derive an upper bound on the joint entropy. Based on that,
we propose a measure to quantify feature redundancies and
present an unsupervised learning algorithm. We test our method
on various real-world and synthetic datasets and demonstrate
improvements on conventional unsupervised feature selection
techniques.

Then, we investigate the supervised feature subset selection
and reformulate it in the Fourier domain. Bridging the Bayesian
error rate with the Fourier coefficients, we demonstrate that
the Fourier expansion provides a powerful tool to characterize
nonlinear feature-label dependencies. Further, we introduce a
computationally efficient measure for selecting relevant features.
Via a theoretical analysis, we show that our proposed measure
finds provably asymptotically optimal feature subsets. Lastly, we
present an algorithm based on this measure and via numerical
experiments demonstrate its improvements on various supervised
feature selection algorithms.

Keywords—Feature Selection, Discrete Fourier Transform, Un-
supervised Learning, Supervised Learning

I. INTRODUCTION

A central challenge in learning with feature selection is
to jointly identify nonlinear redundancies within the features
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and the dependencies in the feature-label relation. Many well-
known feature selection approaches (supervised or unsuper-
vised) are based on measures that capture only linear relations
or focus on the features individually [1]–[3]. Kernel-based
methods are an exception; however, they are prohibitive in
large datasets as the computational complexity of computing
a kernel grows super linearly with the number of the samples
[4]. Alternatively, information-theoretic metrics are powerful
candidates in quantifying nonlinear dependencies among the
random variables. However, estimating such quantities usually
requires high sample complexity.

This work takes an alternative approach and adapts discrete
Fourier analysis with information-theoretic measures. Hence,
capturing nonlinear relations with low sample complexity
while avoiding kernel computations. The discrete Fourier ex-
pansion (on the Boolean cube) provides an essential tool to
characterize different levels of “nonlinearities” in a function.
In this expansion, any real-valued function on the Boolean
cube can be written as a linear combination of monomials
(parities) [5], [6]. Highly nonlinear functions have Fourier ex-
pansion with large coefficients for high-degree parities. Thus,
the Fourier expansion is potentially a powerful tool in learning
problems. However, limitations are making it impractical.
First, it is developed for product probability spaces (mutu-
ally independent input variables). Secondly, this expansion is
defined only for deterministic functions. These assumptions
are too strong, as learning problems often involve correlated
features with stochastic labeling. In this work, we make a
connection between the two approaches and aim to address
these challenges.

A. Main Contributions
We address the above challenges by developing a novel

Fourier expansion for stochastic mappings of correlated binary
random variables. Using this framework, we study feature
selection, where the objective is to remove as many features
as possible without significantly increasing classification loss.
We demonstrate that the Fourier expansion provides a pow-
erful tool to characterize nonlinear redundancies in features
and nonlinear dependencies in the features-label relation. We
propose two Fourier-based algorithms: one for supervised and
one for the unsupervised variant of the problem. We use the



Fourier expansion to provide a theoretical analysis and derive
conditions under which our algorithms find the optimal feature
subset. Further, through numerical experiments, we show that
our algorithms outperform several well-known feature selec-
tion techniques. That said, the contributions of this paper are
summarized below:
1) Fourier expansion for correlated random variables:
We develop a generalized Fourier expansion for functions
of correlated binary random variables (Proposition 1). For
this purpose, we adopt a Gram-Schmidt-type orthogonalization
and construct a set of orthogonal basis functions. Further,
we adapt our Fourier expansion to the more general space
of stochastic mappings (e.g., mappings from one probability
space to another). To the best of our knowledge, this is the first
generalization of the Fourier expansion for correlated binary
random variables. Although this Fourier expansion is defined
on the Boolean cube, our algorithms apply to non-binary
features too. We view the Binary Fourier as a framework that
captures a special class of nonlinearities — those characterized
via the parities. Alternatively, we could generalize our Fourier
expansion to discrete features and, based on it, design feature
selection algorithms. However, such a generalization requires
character theory, which is beyond the scope of this paper. We
note that there are other forms of orthogonal decomposition
including the Hoeffding-Sobel decomposition [7]–[9] and its
generalization [9]. However, such decompositions are basis-
free. Our Fourier expansion is defined by constructing a set
of orthonormal basis functions, which makes it suitable for
feature selection.
2) Sufficiently informative: In the unsupervised setting,
we take an information-theoretic perspective, and group the
features into redundant and sufficiently informative. All the
accessible information about the data can be captured from
the latter group. More precisely, we define a subset of features
as sufficiently informative when the joint entropy of all the
input features equals that of the chosen subset. The former
group is statistically a function of the latter, hence can be
removed without affecting the learning performance. This
approach extends the notion of Markov blanket for “redundant”
features to the unsupervised setting [10]–[12]. We then develop
a characterization of sufficiently informative features based on
our Fourier expansion (Theorem 1). Built upon this, we design
an Unsupervised Fourier Feature Selection (UFFS) algorithm,
which captures the redundant features in our new formulation.
Instead of ranking the features, the UFFS finds redundant
features and declares the rest of the features as sufficiently
informative. Through comprehensive numerical experiments in
Section V, we show that the UFFS outperforms conventional
methods for unsupervised feature selection.

Our unsupervised feature selection algorithm is multi-variate
(evaluating the dependencies of features jointly) and identifies
nonlinear dependencies. Whereas many well-known existing
works are considered univariate or focus on the linear depen-
dencies among the features [3]. Some common approaches in
unsupervised feature selection are pseudo-label based, “column
subset selection”, and spectral/manifold based. Methods in the
first approach, such as [13], [14] attempt to generate pseudo-
labels via certain clustering methods. However, such methods

focus on linear transformations between features and pseudo
labels and ignore the nonlinear relations. The second ap-
proach, “column subset selection”, assumes only linear depen-
dencies among the features and solves an optimization problem
that is similar to principal component analysis (PCA) [15],
[16]. Although methods in the third approach, such as [17],
capture nonlinear relations, they ignore the interaction between
the features.
3) Measure for feature subset selection: When the feature-
label probability distribution is known, features are ideally
selected based on the Bayes misclassification rate as the
measure. In practice, without knowledge of this distribution,
given the training set, one approach (wrapper method) is to
select feature subsets that minimize the empirical error rate of
a given classifier [1]. Alternatively, to reduce the computational
complexity, the common approach is to select feature subsets
based on similarity or correlation measures [2].

Unlike conventional wrapper methods whose performance
criteria depend on the given classifier, our measure for feature
subset selection is independent of the classifier. For that, we
first formulate the feature selection in an ideal setting as
follows: given a parameter k, the objective is to find k features
such that the misclassification rate of the Bayes classifier,
restricted to k features, is minimized. We reformulate this
problem in the Fourier domain and characterize the optimal
feature subset. Building upon such a formulation, we develop
a measure to evaluate feature subsets. We prove that when the
features are binary, an exhaustive search based on this measure
finds an asymptotically optimal feature subset. That is a feature
subset whose Bayes misclassification rate is at most O(n−γ),
γ ∈ (0, 1/2), larger than that of the optimal feature subset
(Theorem 3).
4) Search algorithm for Fourier-based measure: Since the
exhaustive search in the Fourier characterization is computa-
tionally expensive, we develop a search algorithm with fixed
depth – given a depth parameter t, the idea is to evaluate only
the feature subsets of size at most t. For numerical results,
we usually set t ≤ 3. With this approach, we propose the
Supervised Fourier Feature Selection (SFFS) algorithm with
computational complexity O(n(d+d̃t)), where n is the number
of the samples, d is the number of the features and d̃ is the
number of non-redundant features. Based on our numerical
experiments, d̃ is typically much smaller than d. Through our
numerical experiments, we show that SFFS, even with t = 1
or 2, perform consistently better on a variety of datasets unlike
several well-known feature selection algorithm (e.g., mRMR
[18],, MI, RFS [19], CCM [20], and ReliefF [21]) (See Section
V). We thus overcome two well-known demerits of wrapper
methods for feature selection that limits their usage in practice
– heavy dependency on the predictive performance of the
learning algorithm and huge search space.

B. Related Works
Feature selection methods are usually classified into three

main groups: wrappers, Filter, and embedded [1]. In the wrap-
per method, the feature subsets are evaluated directly by an
induction algorithm. In embedded methods, feature selection
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is performed during the training process of the given learning
algorithm. Such approaches are usually computationally ex-
pensive and, hence, prohibitive in large data sets. An alternative
solution is the filter approach in which an intermediate mea-
sure, independent of the induction learning algorithm, is used
to evaluate the feature subsets. Filter methods are preferred as
they are computationally more efficient and relatively robust
against overfitting. The challenge in this area that remains
open is to design a computationally efficient measure that is
provably related to the generalization loss. Several measures
have been introduced in the literature. Well-known criteria for
feature selection can be grouped into similarity-based measures
(e.g., Pearson correlation, Fisher Score), information-theoretic
measures [10], [18], [22]–[24], and Kernel-based measures
[20], [25], [26]. Although correlation criteria are computa-
tionally more efficient, they usually are not able to detect
nonlinear dependencies in features-label relations. Methods
based on kernels can detect nonlinear dependencies. However,
the computational complexity of computing a kernel grows
super linearly, if not quadratic, with the number of the samples
[4]. Mutual Information (MI) criteria, on the other hand,
can detect nonlinear dependencies with lower computational
complexity [24]. Also, mutual information can be used to
bound the Bayes misclassification rate [27], [28]. However,
estimating multi-variate mutual information is known to be a
difficult task with high sample complexity.
Notations: As a shorthand, in this paper, for any natural
number m, the set {1, 2, · · · ,m} is denoted by [m]. Also,
for any subset J ⊆ [d] with ordered elements {j1, j2, · · · ,
jk}, the vectors (Xj1 , Xj2 , · · · , Xjk), and (xj1 , xj2 , · · · , xjk)
are denoted, respectively, by XJ and xJ . For any pair of
functions g1, g2 denote 〈g1, g2〉 =∆ E[g1(X)g2(X)]. Further,
we write g1 ≡ g2, when g1(x) = g2(x) for all x ∈ X .

II. FOURIER EXPANSION FOR CORRELATED RANDOM
VARIABLES

As an ingredient for our results, we first propose a Fourier
expansion for functions of correlated binary features. We built
upon this framework and propose our results in Section III and
IV for feature selection.

A. Boolean Fourier expansion on product probability spaces
We start with a brief overview of the well-known Fourier

expansion on Boolean cube [5], [6] that has applications in
computational learning [29]–[33].

Let X = (X1, X2, ..., Xd) be a vector of mutually indepen-
dent random variables taking values from a subset X ⊂ Rd.
Let µj and σj be the mean and standard-deviation of Xj ,
j ∈ [d]. Suppose that these random variables are non-trivial,
that is σj > 0 for all j ∈ [d]. The Fourier expansion is defined
via a set of basis functions called parities. The parity for a
subset S ⊆ [d] is defined as

φS(x) =∆
∏
i∈S

xi − µi
σi

, for all x ∈ Rd.

Since Xi’s are mutually independent, the parities are or-
thonormal, that is E[φS(X)2] = 1 for any subset S, and

E[φS(X) φT (X)] = 0 when T 6= S (that is ∃x ∈ T
⋃
S such

that x /∈ T
⋂
S). Under the assumption that X = {−1, 1}d, the

parities form an orthonormal basis for the space of bounded
functions [5, Theorem 1.1]. That is, any bounded function
f : {−1, 1}d 7→ R can be written as a linear combination
of the form

f(x) =
∑
S⊆[d]

fS φS(x), for all x ∈ {−1, 1}d,

where fS ∈ R are called the Fourier coefficients of f with
respect to DX, the distribution of X. Further, the Fourier
coefficients can be computed as fS = E[f(X)φS(X)], for
all subsets S ⊆ [d].

B. Orthogonalization
We proceed by constructing a Fourier expansion for func-

tions of correlated random variables. Note that, in a general
probability space with correlated features, the standard Fourier
expansion is no longer well-defined. Because the parities φS
are not necessarily orthogonal. That said, we construct our
Fourier expansion by adopting a Gram-Schmidt-type procedure
to make the parities orthogonal. Then, we use this basis
to develop our Fourier expansion for functions of correlated
random variables. Based on that, we establish the following
result.

Proposition 1 (Correlated Fourier Expansion). Let DX be
any probability distribution on {−1, 1}d. Then there are a set
of orthonormal parity functions ψS ,S ⊆ [d] such that any
bounded function g : {−1, 1}d 7→ R is decomposed as

g(x) =
∑
S⊆[d]

gSψS(x),

for all x ∈ {−1, 1}d except a measure-zero subset. Further,
the coefficients gS are unique and obtained from gS =
E[g(X)ψS(X)].

Proof: Let µj and σj be the mean and standard deviation
of each input random variable Xj , j ∈ [d]. Suppose that these
random variables are non-trivial, that is σj > 0 for all j ∈ [d].
The proof is based on an orthogonalization process that is
explained in the following.
Orthogonalization process: Fix the following ordering for
subsets of [d]:

∅, {1}, {2}, {1, 2}, {3}, {1, 3}, {2, 3}, {1, 2, 3}, · · · , {1, 2, ..., d}.
(1)

We apply the Gram-Schmidt process on φSi with the above
ordering. The first orthogonalized parity is trivially given by
ψ∅ ≡ 1. The orthogonalized parity corresponding to the ith
subset is obtained from the following operation:

ψ̃Si ≡ φSi −
i−1∑
j=1

〈ψSj , φSi〉 ψSj ,

ψSi ≡

{
ψ̃Si
‖ψ̃Si‖2

if ‖ψ̃Si‖2 > 0,

0 otherwise.
(2)
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where ‖ψ̃Si‖2 =
√
〈ψ̃Si , ψ̃Si〉. By construction, the resulted

nontrivial parities ψSi ’s are orthonormal, that is 〈ψSi , ψSj 〉 =
0 for i 6= j and 〈ψSi , ψSi〉 = 1 if ψSi is not trivial. The rest of
the argument, given in Appendix A, follows by showing that
ψS ’s span the space of all bounded functions.

Depending on the statistics of the features, the number of
non-trivial parities ψSi ranges from 1 to 2d. On one extreme,
if the features are mutually independent, then ψSi = φSi . On
the other extreme, if the features are trivial, then ψSi = 0 for
i > 1, and hence there is only one non-trivial parity. Note also
that different orderings for the subsets of [d] result in different
orthogonalized parities. We show in Section III-B that this
ordering is beneficial to remove “redundant” features. Hence,
unless otherwise stated, we use the ordering in (1).

Remark 1. Contrary to our Fourier expansion, which is
established only for binary features, the orthogonalization
process is not restricted to such an assumption. Because, by
construction, the orthogonalized parities are orthonormal for
any value domain X ⊂ Rd. If X = {−1, 1}d, then the parities
span the space of all functions on X ; otherwise, they span a
subspace of such functions. We clarify this in the following
example.

Example 1. Set d = 3 and let X1 and X2 be independent
random variables with Gaussian distribution N(0, 1). Suppose
X3 = X1X2 with probability one. There are eight standard
parities, one for each subset, as

(1, x1, x2, x1x2, x3, x1x3, x2x3, x1x2x3).

By performing the orthogonalization process, as in (2), there
are only four non-trivial orthogonalized parities as ψ∅ = 1,
ψ{1} = x1, ψ{2} = x2, and ψ{1,2} = x1x2. The rest of
the parities are zero, because ‖ψ̃S‖2 = 0 for any of the
subsets {3}, {1, 3}, {2, 3}, {1, 2, 3}. Now, suppose we change
the relation of X3 to X3 = sign[X1X2]. In this case, after the
orthogonalization process, there are eight non-trivial parities.
For instance, it is not difficult to check that ψ̃{3} = x3− 2

πx1x2.
Hence, ‖ψ̃{3}‖2 > 0, implying that ψ{3} is not redundant.

We view our binary Fourier as a framework that captures
a special class of nonlinearities — those characterized via
orthogonalized parities. Our numerical experiments confirm
that such an approximation is sufficient to outperform many
unsupervised feature selection methods on several data sets
(see Table II). We further note that the orthogonalization
process is different from the dimension reduction methods such
as Kernel PCA. Because, unlike Kernel PCA, our process does
not mix the features– it is a feature selection method.

III. FEATURE SELECTION IN KNOWN STATISTICS

In this section, we analyze the optimal feature selection for
binary classification with 0− 1 loss function and in the ideal
setting, where the underlying statistics of the features and the
label are known. We first study the unsupervised variant of the
problem in Section III-B. Then, in Section III-C, we analyze
supervised feature selection in the Fourier domain.

A. Problem Formulation
The feature selection problem is formulated as follows.

There are d features X = (X1, X2, ..., Xd) with label Y
taking values from X d and {−1, 1}, respectively. Suppose
that (X, Y ) are generated according to a fixed, but unknown,
probability distribution D. Available are n independent and
identically distributed (i.i.d.) instances Sn =

{
(x(i), y(i)),

i = 1, 2, ..., n
}

generated from D. We describe the feature
selection problem by first defining the optimum feature subset
and the minimum misclassification probability in the ideal
setting, where D is known. For a feature subset J ⊆ [d], the
minimum attainable mislabeling probability is obtained from

LD(J ) = min
g∈Gk

P(X,Y )∼D
{
Y 6= g(XJ )

}
, (3)

where Gk is the collection of all functions on X k. Given k ≤
d, the optimum feature subset J ∗ and the minimum loss are
defined as

J ∗ = arg min
J⊆[d], |J |=k

LD(J ), L∗D(k) = LD(J ∗). (4)

In agnostic settings, where only a training data set is available,
the above optimization is infeasible to solve. Instead, an
intermediate measure Mn is defined to evaluate feature subsets
using the training instances. Then, feature selection using the
measure Mn is modeled by the following optimization

Ĵn = arg min
T ∈Tk

Mn(T ),

where Tk is a collection of feature subsets with at most k-
elements. Our objective is to propose a measure Mn so that
mislabeling probability based on Ĵn be as close as possible to
that using J ∗.

B. Information Sufficiency in Unsupervised Setting
We take an information-theoretic approach to identify fea-

ture redundancies in unsupervised feature selection. The goal
is to define a measure to identify the features as “sufficiently
informative” and “redundant”. Intuitively, the former group
contains all the information accessible from the features.
The latter consists of the features that are a function of the
“informative” features and hence, can be removed from the
data set.

Suppose X is a finite set. Then, we call a feature subset
J ⊆ [d] “sufficiently informative”, if H(X) = H(XJ ),
where H is the Shannon entropy. From the notion of Markov
Blanket [23], one can show that J is a Markov blanket for
any feature in J c. Further, J being sufficiently informative
immediately leads to J c being redundant. Because, the condi-
tion H(X) = H(XJ ) implies that there exists a mapping T ,
such that XJ

c

= T (XJ ), with probability one [28]. Hence,
all the features not included in J can be removed. As there are
multiple such J ’s, the objective is to find the smallest one1.
Tolerating small amounts of imperfections, we formalize the
above notion in the following.

1The set of all features is a trivial example of a sufficiently informative
feature subset.
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Definition 1 (Sufficiently Informative). For discrete features
and 0 ≤ ε ≤ 1, a feature subset J is said to be ε-
sufficiently informative, if H(X|XJ ) ≤ ε. The feature subset
J is sufficiently informative, if H(X|XJ ) = 0. Such J is
called minimal, if it has the minimum cardinality among all
sufficiently informative feature subsets.

We make a connection between the above definition and
the orthogonalization process in (2). We employ this process
to extract a sufficiently informative feature subset.

Theorem 1. For ε ∈ [0, 1], let Jε ⊆ [d] be the set of all j ∈ [d]
such that ‖ψ̃{j}‖2 > ε. Then, H(X|XJε) = dO(ε) as ε→ 0.
Further, if the features take values from {−1, 1}d, then there
exists a permutation of the features so that Jε with ε = 0 is a
sufficiently informative subset that is minimal.

Proof: We start by deriving an upper-bound on
H(X|XJε) in terms of the orthogonalized parities in (2).
Note that H(X|XJε) = H(XJ

c
ε |XJε), where J cε is the

complement of Jε. Thus, from the chain rule, this quantity
equals to

∑
i∈J cε

H(Xi|XJε , Xi−1). As Xi is a discrete
random variable and φ{i}(x) = (xi − µi)/σj , then

H(Xi|XJε , Xi−1) = H
(
φ{i}(X)|XJε , Xi−1

)
.

Since φ{i} is the standard parity as in Section II, then, from
the orthogonalization process in (2), we can write

φ{i} = ψ̃{i} +
∑
S⊆[i−1]

αSψS ,

where αS = 〈φ{i}, ψS〉. In this decomposition, the terms in the
summation depend only on Xi−1. This is due to the particular
ordering in (1). Therefore, we get the following upper-bound

H(φ{i}|XJε , Xi−1) = H(ψ̃{i}|XJε , Xi−1) ≤ H(ψ̃{i}),

where the last inequality follows by removing the conditioning
in the entropy. Lastly, adapting this bound for all i ∈ J cε , we
get the following upper-bound

H(Xd|XJε) ≤
∑
i∈J cε

H(ψ̃{i}). (5)

Now for any i ∈ [d] let

ai = min{|ψ̃{i}(x)| : x ∈ X d, ψ̃{i}(x) 6= 0},

and define amin =∆ mini ai. From the assumption in the
statement of the theorem, ‖ψ̃{i}‖22 ≤ ε2, for all i ∈ J cε . Then,
from Markov’s inequality, we obtain that

P{ψ̃{i}(X) 6= 0} = P{|ψ̃{i}(X)|2 ≥ a2
i } ≤

ε2

a2
i

≤ ε2

a2
min

.

Therefore, from grouping rule for entropy [28, Exercise 2.27],
we have that

H(ψ̃{i}) ≤ hb(
ε2

a2
min

) +
ε2

a2
min

log2 |X |, (6)

where hb(·) is the binary entropy function. When ε ≤ amin,
by combining (5) and (6), the following inequality holds:

H(Xd|XJε) ≤ (d− |Jε|)
(
hb(

ε2

a2
min

) +
ε2

a2
min

log2 |X |
)
. (7)

Note that ε is under our control and can be made sufficiently
smaller than amin. Also, note that the binary entropy satisfies
the inequality hb(p) ≤ 2

√
p(1− p). Hence, for fixed d, amin

and X , the right-hand side of the above inequality is dO(ε) as
ε→ 0. This completes the proof for the first statement of the
theorem.

Next, we prove the second statement: “if the features take
values from {−1, 1}d, then there exist a permutation of the
features so that Jε with ε = 0 is a sufficiently informative
subset with minimum cardinality.” Note that, from Definition
1, the subset J0 = Jε=0 is sufficiently informative. This
is because for any j /∈ J0 the parity ψ̃{j}(X) = 0 with
probability one. Therefore, from (2), the standard parity φ{j}
is a function of (X1, X2, ..., Xj−1). Implying that Xj is a
function of (X1, X2, ..., Xj−1). Hence, H(Xd|XJ0) = 0. It
remains to prove that J0 is minimal when the features take
values from {−1, 1}d and are permuted appropriately.

Let A ⊆ [d] be a sufficiently informative subset with min-
imum cardinality as in Definition 1. Consider a permutation
of the features such that the first |A| features are from A.
We perform the orthogonalization process on the permuted
features. Let J0 be the subset for which ‖ψ̃{i}‖2 > 0. We
show that |J0| = |A|, implying that J0 is minimal. By
contradiction, suppose |A| < |J0|. Consider the Hilbert space
of bounded functions f : {−1, 1}d 7→ R with inner product
defined as 〈f, g〉 = E[f(X)g(X)]. Since A is sufficiently
informative, there exists a mapping Γ such that Xd = Γ(XA)
with probability one. Therefore, any function f(Xd) can be
written as f(Xd) = f(Γ(XA)). This implies that the effective
dimension of the Hilbert space is at most 2|A|. However,
there are |J0| non-trivial parities ψSi that, from Proposition
1, form an orthonormal basis for this Hilbert space. Hence,
the dimension of this space cannot be less than 2|J0|. This is
a contradiction and completes the proof.

As a result of Theorem 1, ‖ψ̃{j}‖2 can be viewed as
a measure of the redundancy of each feature and that the
orthogonalization procedure can remove them. We use this
measure for unsupervised feature selection, where n i.i.d.
instances

{
x(i), i ∈ [n]

}
, with possible correlations across

feature dimension, are available. The idea is to perform the
orthogonalization process as in (2) and find the features j for
which ‖ψ̃{j}‖2 is smaller than a threshold ε. These features
are declared as redundant. Based on this idea we present our
unsupervised algorithm (UFFS) in Section IV-A.

C. Supervised Feature Selection
For the supervised version of the problem, we proceed by

developing a representation of L∗D(k) in the Fourier domain.
For that, we characterize the Bayes predictor via the Fourier
expansion. The Fourier expansion in the previous section is
defined for deterministic functions. The label Y in the feature
selection problem is not necessarily a function of the features;
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rather, it is a stochastic mapping. Therefore, we need to extend
the Fourier expansion to such mappings.

Let J be a subset of the selected features. Note that
the Bayes predictor of Y from the observation xJ is given
by g∗(xJ ) = sign

[
E[Y |xJ ]

]
. As a key ingredient in our

characterization, we need to define the notion of projection
onto a feature subset.

Denote the elements of J , in the ascending order, as j1 <
j2 < · · · < jk. Fix the following ordering of subsets of J :

∅, {j1}, {j2}, {j1, j2}, {j3}, {j1, j3}, {j2, j3},
{j1, j2, j3}, · · · , {j1, j2, n . . . , jk}.

Apply the orthogonalization process with respect to this
ordering and to all the parities ψS with S ⊆ J . Let ψSi ,
i = 1, 2, ..., 2k be the resulted orthogonalized parities. This
process is called orthogonalization with respect to the feature
subset J .

Lemma 1. Given J ⊆ [d], the Bayes predictor of the label Y
from observation xJ is given by sign[f⊆J (xJ )], where f⊆J
is a function admitting the following Fourier expansion

f⊆J (xJ ) =∆
∑
S⊆J

fSψS(xJ ), (8)

where ψS ’s are the parities resulted from the orthogonalization
with respect to J and fS = ED[Y ψS(X)].

Proof: Note that the MMSE estimator of Y from XJ is
E[Y |xJ ]. Since, Y take values from {−1, 1}, then the Bayes
predictor is obtained from sign[E[Y |xJ ]]. Define the function
e(x) = E[Y |xJ ]. Note that e can be viewed as a real-valued
function on {−1, 1}k. In addition, we can apply Proposition
1 on coordinates j ∈ J and with d = k. As a result, e has a
Fourier expansion of the form

e(x) =
∑
S⊆J

êSψS(x),

where ψS ’s are the orthogonalized parities w.r.t J , and êS =
〈e, ψS〉. Then, for each S ⊆ J , we obtain that

êS = E[e(X)ψS(X)] = E
[
E[Y |XJ ]ψS(X)

]
= E

[
E[Y ψS(X)|XJ ]

]
= E

[
Y ψS(X)

]
= fS ,

where the second equality holds as ψS(X) depends only on
Xj , j ∈ S, and the last equality follows from the definition
of fS as in the statement of the Lemma. Therefore, e admits
the same Fourier expansion as f⊆J . With that the proof is
complete.

Theorem 2. The minimum attainable misclassification proba-
bility equals to

L∗D(k) =
1

2

[
1− max

J⊆[d], |J |=k
‖f⊆J ‖1,D

]
. (9)

Further, an optimal k-variable predictor of the labels is given
by the function sign[f⊆J

∗
(x)], where J ∗ is an optimal feature

subset that maximizes the 1-norm expression above.

Proof: Fix a subset J ⊆ [d] with k elements. From the
definition of L∗D(k) in (4), any predictor is a function g : {−1,
1}k 7→ {−1, 1}. Here, g represents a predictor of Y from XJ .
Since Y and g(XJ ) take values from {−1, 1}, then,

P
{
Y 6= g(XJ )

}
=

1

2
− 1

2
E[Y g(XJ )].

Note that given J , the above probability is minimized by
the Bayes estimator. Further, such an estimator is given by
sign

[
E[Y |xJ ]

]
, for all xJ ∈ {−1, 1}k. Hence, it suffices

to calculate the above misclassification probability for g ≡
sign

[
E[Y |xJ ]

]
. For that, in the following, we calculate the

expectation E[Y g(XJ )] for g = sign
[
E[Y |xJ ]

]
.

E[Y g(XJ )]
(a)
= E

[
E[Y g(XJ )|XJ ]

]
(b)
= E

[
E[Y |XJ ]g(XJ )

]
(c)
= E

[∣∣E[Y |XJ ]
∣∣] (d)

= E
[∣∣f⊆J (X)

∣∣]
= ‖f⊆J ‖1,

where (a) follows from the law of total probability, (b) holds
because g is a function of XJ , equality (c) follows by
replacing g with sign

[
E[Y |xJ ]

]
, and lastly, (d) holds because

f⊆J (X) = E[Y |XJ ]. This equality is shown in Lemma 1.
As a result, the minimum misclassification probability for a
fixed subset J is equal to 1

2 −
1
2‖f

⊆J ‖1. Hence, optimizing
over all k-element subsets J gives the desired expression and
completes the proof.

D. A Measure for Feature Selection
The previous section provides the characterization in the

ideal setting where D is known. We leverage this characteri-
zation to the agnostic setting, where only the training set Sn
is available. For that, we derive a measure for selecting the
features.

Based on Theorem 2, we define Mn(J ) to be an empirical
estimate of ‖f⊆J ‖1. Therefore, if the estimations are accurate
enough, then maximizing Mn leads to a feature subset Ĵ for
which LD(Ĵ ) is close to the optimal loss LD(J ∗) as in (4).
In what follows, we describe the derivation of Mn in three
steps:
Step 1: We perform an empirical orthogonalization. Let D̂n

be the empirical distribution of the training set Sn, that is
D̂n(x, y) = 1

n if (x, y) ∈ Sn, and zero otherwise. We get
the empirical version of our results by replacing D with D̂n.
In particular, Proposition 1, and the orthogonalization in (2).
Let ψ̂S denote the parities resulted from the orthogonalization
with respect to D̂n. By construction, these functions are
orthonormal with respect to D̂n.
Step 2: Next, we construct the estimate of the function f⊆J
as in (8). Let

f̂S =∆ ED̂n [Y ψ̂S(X)] =
1

n

∑
i

yiψ̂S(xi).

6



Once the empirical parities and the Fourier coefficients f̂S are
calculated, the estimation of the projection function f⊆J is
obtained from the equation

f̂⊆J (x) =∆
∑
S⊆J

f̂S ψ̂S(x).

Step 3: The next step is to approximate ‖f̂⊆J ‖1. By definition,
‖f̂⊆J ‖1 =∆ EX[|f̂⊆J (X)|]. Hence, naturally, the estimation of
this quantity is obtained by the empirical averaging

1

n

n∑
i=1

∣∣f̂⊆J (x(i))
∣∣.

However, since we use the same training samples to obtain
both f̂⊆J and its empirical 1-norm, these two quantities are
correlated. Hence, the above estimation is possibly biased. That
said, we make a correction and define our measure Mn as in
the following

Mn(J ) = ‖̂f⊆J ‖1

=∆
1

n− 1

n∑
i=1

∣∣∣ ∑
S⊆J

f̂S ψ̂S(x(i))− 1

n
y(i)

(
ψ̂S(x(i))

)2∣∣∣. (10)

This correction is done by subtracting the quantity
1
ny(i)

(
ψ̂S(x(i))

)2
in the above.

We use Mn(J ) as an estimate of ‖f⊆J ‖1. We shown
that this estimator is asymptotically unbiased, that is∣∣ E[Mn(J )

]
− ‖f⊆J ‖1

∣∣∣→ 0 as n→∞.
We conclude this section by presenting our analysis for

the proposed measure. We note here that in our problem, the
function f⊆J is not necessarily bounded. Hence, the standard
concentration inequalities such as Rademacher complexity do
not apply. We address this issue and prove the following
theorem in Appendix B.

Theorem 3. Let Ĵn be the feature subset maximizing Mn

over all binary feature subsets with k elements. Let J ∗ be
the optimum feature subset as in (9). Then, with probability at
least (1− δ), the following bound holds

LD(Ĵn) ≤ LD(J ∗) +

√
λ(k)

n− 1
log(

d

δ
) +O(n−γ),

where γ ∈ (0, 1/2) and λ(k) = 8 k22kc2k, with ck =∆

maxS⊆[d],|S|≤k‖ψS‖2∞.

The exhaustive search over all k-element feature subsets
is computationally expensive. Hence, in the next section,
we present a few approximation methods and propose our
algorithm.

IV. PROPOSED ALGORITHMS

We build upon our Fourier expansion and propose our Su-
pervised Fourier Feature Selection (SFFS) and Unsupervised
Fourier Feature Selection (UFFS) algorithms. To reduce the
computational complexity, we propose a few approximations.

A. Unsupervised Feature Selection

As for the algorithm, two issues need to be addressed: 1)
estimation of ‖ψ̃{j}‖2 from the training instances and 2) the
orthogonalization is NP-hard, as there are 2d feature subsets.

To address the first issue, we propose a recursive formula
to perform the orthogonalization. Let bj,i = 〈φSj , φSi〉, and
define aj,i = 〈ψSj , φSi〉. With this notation, (2) can be written
as

ψ̃Si = φSi −
∑
j<i

aj,iψSj .

Hence, we only need to compute aj,i’s. Note that since ψSi ’s
are orthonormal, then we obtain that

‖ψ̃Si‖22 = bi,i −
∑
j<i

a2
j,i.

Further, the coefficients aj,i can be calculated recursively as

aj,i =
1√

bj,j −
∑
r<j a

2
r,j

(
bj,i −

∑
`<j

a`,ja`,i

)
. (11)

With this formulas, we first compute an empirical estimate of
bj,i’s, denoted by b̂j,i. Hence, given the training samples, we
compute

b̂j,i =
1

n

∑
`

φSj (x`)φSi(x`).

Then, we compute an estimation of aj,i’s (denoted by âj,i) by
calculating (11) with bj,i and aj,i replaced by b̂j,i and âj,i,
receptively.

Note that we further approximate (2) by declaring ψ̂S as
trivial, if ‖ψ̃S‖2 ≤ ε, where ε ∈ (0, 1) is a parameter. As a
result, we declare a feature j to be redundant if ‖ψ̃{j}‖2 ≤ ε.
Fixed-depth search: To address the second issue, we propose
to limit the size of the subsets involved in the orthogonal-
ization. Given a parameter t ≤ d, the orthogonalization is
performed only on feature subsets of size at most t. For that
we use the standard ordering as in (1), but restricted to subsets
of size at most t. For most practical purposes t ≤ 3. With
that the search space is reduced to

(
d
t

)
. Further, this limitation

is sufficient when the dependencies across the features are
bounded to at most t features.

Remark 2. One can provide a consistency analysis on asymp-
totic performance of FourierOrth. More precisely, let Ĵn
be the set of features declared FourierOrth(t). Then,
there exists a function λ such that Ĵn is a λ(ε, n)-sufficiently
informative and limn 7→∞ limε 7→0 λ(ε, n) = 0.

The main idea to show the above statement is as follows: Let
D̂n denote the empirical distribution of the training samples.
That is D̂n(x) = 1

n if x is in the training set; otherwise
D̂n(x) = 0. We apply Theorem 1 with D̂n as the distribu-
tion of the random variables in the statement. As a result,
Ĥn(X|XĴn) = O(ε), where Ĥn is the conditional entropy
calculated over D̂n as the distribution. The rest of the argument
is a concentration analysis. In particular, from McDiarmid’s
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Algorithm 1: Unsupervised Fourier Feature Selection
(UFFS)

Input: n training samples xi ∈ Rd, depth parameter
t ≤ d, and redundancy threshold ε ∈ (0, 1)

Output: Features’ measures norm(j), j = 1, 2, ...d
1 Procedure FourierOrth(t):
2 Compute the empirical mean µ̂j and standard

deviation σ̂j of each feature.
3 Generate all subsets Si ⊆ [d] with size at most t

and with the standard ordering as in (1). Compute
the matrix B̂ with elements:

b̂j,i ←
1

n

n∑
l=1

[ ∏
u∈Sj

xlu − µ̂u
σ̂u

][ ∏
v∈Si

xlv − µ̂v
σ̂v

]
.

4 Set Â← B̂

5 for row j of Â do
6 update the jth row:

Âj,∗ ← Âj,∗ −
∑
`<j â`,jÂ`,∗

7 Compute norm(Sj)←
√

[b̂j,j −
∑
r<j â

2
r,j ]

+

8 if norm(Sj) ≤ ε then
9 Set the jth row of Â zero: Âj,∗ ← 0

10 else
11 Normalize the jth row: Âj,∗ ← Âj,∗

norm(Sj)

12 Declare all j ∈ [d] with norm(j) ≥ ε as
non-redundant.

inequality and the continuity of entropy, we can show that Ĥn

converges to the true conditional entropy.
Feature partitioning: For large dimensional data sets, we
can further reduce the complexity by partitioning the features.
We randomly partition the features into multiple groups of
approximately equal size (say m features each). Then, we
perform FourierOrth on each group, and remove the
redundant features within it. With this approach, the computa-
tional complexity with depth parameter t and group size m is
O(n d

mm
2t). The parameters m and t are chosen depending on

the limitations on running time. These parameters are typically
chosen independent of the size of the data set. For instance,
we choose t ≤ 3 and m = 40 for our numerical results. As
a result, we obtain a complexity linear in the size of the data
set. We present our experimental results in Section V.

B. Supervised Feature Selection
The measure Mn captures the joint effect of the candidate

feature subsets. However, to further reduce the running time,
we adopt the fixed-depth search here. Hence, instead of search-
ing over all k-element feature subsets, we choose to search
over all t element subsets (say t = 3). For that we calculate
Mn(T ) for all t element feature subsets. Next, we rank these
subsets in the descending order base on Mn. Then, starting
from the top, we take the union of T ’s to obtain a k-element
feature subset. With this approach, we present Algorithm 2.

Note that with t = 1, our search algorithm reduces to feature-
ranking method.

Algorithm 2: Supervised Fourier Feature Selection
(SFFS)

Input: n training samples (xi, yi), desired number of
features k, and the depth parameter t ≤ k

Output: Feature subset Ĵn
1 Run FourierOrth(t) to get the non-trivial parities

and non-redundant features.
2 Procedure SFFS(t, k):
3 Rank all t-variable features subsets T according to

Mn as in (10).
4 If Ti are the subsets in the descending order, set

Ĵn =
⋃r
i=1Ti, where r chosen such that the union

has k different elements.
5 Return Ĵn

With that, the computational complexity of our SFFS algo-
rithm for a fixed parameter t is O(nd̃t), where d̃ is the number
of non-trivial features declared from the UFFS algorithm. Our
numerical results verifies that usually d̃ is much smaller than d,
see Table II. As a result, the overall computational complexity
of the algorithm O(nd + nd̃t) which is O(nd) for large data
sets.

V. NUMERICAL EXPERIMENTS

We now compare the performance of our UFFS and SFFS
algorithms (Algorithm 1 and 2) with several well-known
methods for unsupervised and supervised feature selection.
Our numerical results are presented in two parts: unsupervised
and supervised settings. We tested the algorithms on several
real-world data sets as given in Table I. These data sets are
benchmarks and taken from [2] and the UCI repository [34].
In addition, we generated five synthetic data sets: S1, S2, S3
are for unsupervised feature selection, and E1, E2 are for
the supervised variant of the problem. These data sets are
described below:

A. Synthetic data sets
For unsupervised feature selection, we generated three

data sets, denoted by S1, S2, and S3. Each data set has
30 features: 10 informative denoted by (X1, X2, ..., X10),
10 nonlinear redundant (X11, X12, ..., X20), and 10 linearly
redundant (X21, X12, ..., X30). The informative features are
generated according to three distributions, one for each data
set. The distribution for S1 is N(0, I10), for S2 is uniform
distribution over [−1, 1]10, and for S3 is uniform distribution
over {−1, 1}10. Each nonlinear redundant feature is generated
from Xj = 3Xi1Xi2Xi3 , where j = 11, 12, ..., 20, and
i1, i2, i3 are randomly and uniformly selected from {1, 2,
..., 10}. The linearly redundant features are generated from
Xj =

∑5
l=1 aj,lXil , where il’s are selected randomly from

{1, 2, ..., 10} and aj,l ∼ Unif(0, 1). We use the above redun-
dancy model for each data set. For the sake of performance

8



TABLE I: Properties of the tested data sets.

Data set S1 S2 S3 E1 E2 USPS Isolet COIL20 Covertype Australian Musk ALL AML
Features 30 30 30 20 20 256 617 1024 46 14 166 7128
Samples 1000 1000 1000 1000 1000 9298 1560 1440 581 690 467 72

TABLE II: Comparison of unsupervised algorithms and number of non-redundant features declared by UFFS (d̃).

S1 S2 S3 USPS Isolet COIL20 Covertype Australian Musk ALL AML

No FS 77.9 75.0 87.0 97.3 92.8 98.8 75.6 84.9 92.2 94.3

UFFS d̃ 11 12 11 93 309 331 34 12 35 39

UFFS 80.3 76.8 86.2 97.0 91.7 98.8 76.9 85.1 85.7 97.1
LS 55.1 61.2 71.0 95.6 88.6 98.9 72.8 85.4 84.5 97.2

MCFC 56.6 59.0 65.8 93.9 90.1 94.0 72.3 84.8 84.2 95.9
UDFS 64.0 60.6 64.3 80.8 90.2 98.0 72.0 84.9 80 86.2

comparison, we add a labeling to the above data sets. However,
the labels are not revealed to the algorithms. We generate a
fixed but randomly generated labeling function f(X) on R10.
This function is the sign of the following randomly generated
polynomial in R10:

f(x) = sign
[ ∏

1≤j≤3

(
b0,j +

∑
1≤i≤10

bi,jxi
)]
,

where bi,j ∼ Unif(0, 1) and mutually independent.
For supervised feature selection, we generate two data sets

denoted by E1 and E2. Each data set consists of 1000 samples
each having 20 features distributed according to uniform
distribution over {−1, 1}20 for E1 and N(0, I20) for E2. The
label is a function of only (X1, X2, ..., X6) and is of the
form f(x) = sign[p(x)], where p is a polynomial generated
randomly according to an Erlang distribution (See Appendix
D for more details).

B. Numerical Results for Unsupervised Algorithms
We compare the performance of UFFS with Laplacian

Score (LS) [17], MCFC [35], and UDFS [14] on the real
and the synthetic data sets. The labels are not revealed to
the algorithms but are used for measuring the performances.
Features are randomly ordered so that the initial ordering
would not affect the experiments’ outcomes. Contrary to other
algorithms, UFFS does not rank the feature; instead, it outputs
a set of indices as the non-redundant features. We run UFFS
three times: first with t = 1,m = d, second with t = 2,
m = 50 but on the selected features from the first run, and
third, with t = 3,m = 30 but on the selected features from the
second run. For each experiment, let d̃ denote the number of
the selected features by UFFS at the third run. For comparing
the performance to the ranking algorithms, we select only the
d̃ features with the highest rank. Once the features are selected
by each unsupervised algorithm, we reveal the samples of the
selected features with the labels to a classifier and compute
its prediction accuracy. A support vector machine (SVM)
classifier with radial basis function as kernel is employed for
all the studies. We perform a 5-fold cross-validation using this
classifier and on the entire data set.

Table II shows the average of the resulted classification
accuracies for each algorithm. The second row is the resulted

accuracy without any feature selection. The third row is d̃
which is the number of non-redundant features declared by
the UFFS. Observe that, in synthetic data sets, d̃ is very close
to 10, which is the actual number of non-redundant features.
The resulted accuracy by the UFFS is very close to or greater
than the accuracy without feature selection which verifies that
the removed features were redundant. Further, it significantly
outperforms other algorithms in the synthetic and many real
data sets. This result shows that the UFFS performs well on
data sets with nonlinear redundancies.

C. Numerical Results for Supervised Setting
In this part, we compare SFFS with ReliefF [21], mRMR

[18], MI [36], RFS [19], and CCM [20]. We run SFFS with
t = 1 and t = 2 for real data sets and with t = 3 for
synthetic ones. As a performance measure, we perform a 5-fold
cross-validation with feature selection and the SVM classifier
described above in a pipeline. The parameters of the SVM
classifier are the same as in our unsupervised experiments. The
the implementation details are given in Appendix E. Figure 1
shows the average classification accuracy for various values
of selected features (k). For real-world data sets, as the figure
shows, we obtain consistently good results in all the data sets
and leading in some ranges of k. The compared algorithms
perform well only in some data sets, while our algorithms have
reliable and steady performance in all the cases. For instance,
in the Isolet data set, we observe a dominant performance by
our SFFS for k > 40 as compared to other algorithms. In
Musk, we observe a notable performance improvement for
k ∈ [25, 50]. Note that SFFS with t = 1 and t = 2 are
overlapping in these data sets and for many values of k.

As explained before, in E1 and E2, there are no redundant
features and there are only 6 relevant features. This is verified
in Figure 1, where the maximum accuracy (100%) is obtained
at around k = 6. Further, we observe a significant performance
gap between our approach and the other algorithms except for
ReliefF. The low accuracy of these algorithms (below 60%
in E2) suggests their failure to find the relevant features in
these data sets. We believe this is due to the highly nonlinear
feature-label relations in such data sets, which are imposed by
the Erlang distribution in our constructions. This observation
calls for more sophisticated approaches in feature selection to
address highly nonlinear relations.
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Fig. 1: Classification accuracy (y-axis) versus number of selected features k (x-axis). Our algorithm SFFS has consistent top
performance, also leading in some ranges of k, in the above datasets. The kernel-based approach CCM has the computational
complexity cubic in n, and thus we were unable to run CCM for USPS with its author’s original implementation. Overlaps:
SFFS t = 3 with ReliefF for E1 and E2, SFFS t = 1 with SFFS t = 2 for USPS and Musk.
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Fig. 2: Classification accuracy vs depth t for SFFS algorithm

D. Classification accuracy vs t

Next, we analyze the effect of the depth parameter (t) on
the algorithm’s performance. Figure 2 presents classification
accuracy of SFFS for various values of t when the number of
selected features are k = 5, 10 and 20. We present the result
for three of our datasets. As shown there, low values of t
are sufficient to get a good performance. In some cases, as t
increases, the performance drops because the high value of t
demands a higher number of samples.

E. Comparison of Running Times

Lastly, in Table III, we compare the running time of SFFS
with other algorithms, and on the datasets we tested For the ex-
isting algorithms, the implementations are taken from [2] and
correspond to the original implementations, except for mRMR

and CCM where we used the optimized implementations from
the authors.
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APPENDIX A
PROOF OF PROPOSITION 1

Recall from the discussion in Section II that ψSi ’s are
orthogonormal. We complete the proof of the Proposition
by showing that any function g can be written as a linear
combination of these parities.

Let DXj , j ∈ [d], be the marginals of DX and let PXd be
the product probability distribution with the same marginals
DXj . Without loss of generality, assume that Xj’s are non-
trivial random variables. Then, from the Fourier analysis on
the Boolean cube [5, Theorem 1.1], the function g can be
written as

g(x) =
∑
S⊆[d]

gS φS(x), ∀x ∈ {−1, 1}d,

where gS = EP
Xd

[g(Xd)φS(Xd)] and the expectation is
taken with respect to PXd . By performing the reverse of the
orthogonalization process in (2), each parity φSi , i = 1, 2, ..,
2d, can be written as

φSi(x) =
∑
j≤i

αi,jψSj (x), (12)

where αi,j = 〈φSj , ψSj 〉 and the above equality holds for all
x ∈ {−1, 1}d except a measure-zero subset. Hence, replacing
φSi with the right-hand side of (12), we can write

g(x) =

2d∑
i=1

gSi
( ∑
j:j≤i

αi,jψSj (x)
)

=

2d∑
j=1

( ∑
i:i≥j

gSiαi,j
)
ψSj (x).

Hence, we obtain a decomposition of g as a linear combination
of ψSi ’s. Since, ψSi ’s are orthogonal, the coefficients in
this linear combination are unique and calculated as in the
statement of the proposition.

APPENDIX B
PROOF OF THEOREM 3

From the proof of Theorem 2 and the definition of f⊆J ,
we obtain that

LD(J ) =
1

2
− 1

2
‖f⊆J ‖1.

As a result,

LD(Ĵn)− LD(J ∗) =
1

2

(
‖f⊆J

∗
‖1 − ‖f⊆Ĵn‖1

)
. (13)

By adding and subtracting Mn(Ĵn) and Mn(J ∗), we obtain
that

‖f⊆J
∗
‖1 − ‖f⊆Ĵn‖1 =

(
‖f⊆J

∗
‖1 −Mn(J ∗)

)
+
(
Mn(J ∗)−Mn(Ĵn)

)
+
(
Mn(Ĵn)− ‖f⊆Ĵn‖1

)
≤
(
‖f⊆J

∗
‖1 −Mn(J ∗)

)
+
(
Mn(Ĵn)− ‖f⊆Ĵn‖1

)
, (14)

where the last inequality follows as Mn(J ∗) ≤ Mn(Ĵn).
Next, we provide upper bounds on the right-hand side of
the above inequality. Let µ̂j and σ̂j , j = 1, 2, ..., d, denote
the empirical estimate of the mean and standard deviation of
the features. For any subset S with at most k elements, let
φ̂S(xd) =

∏
j∈S

xj−µ̂j
σ̂j

. Now, fix a subset J with |J | ≤ k
and perform the orthogonalization process w.r.t J . We proceed
with the following lemma which is proved in Appendix C.

Lemma 2. The measure Mn(J ) as in (10) is an asymptoti-
cally unbiased estimate of ‖f⊆J ‖1. More precisely, given any
γ ∈ (0, 1

2 ) and for any feature subset J with |J | ≤ k,∣∣∣ ESn∼Dn[Mn(J )
]
− ‖f⊆J ‖1

∣∣∣ ≤ O(n−γ),

where the expectation is taken with respect to the training
samples.

Next, we apply McDiarmid inequality on Mn(J ) and show
that Mn(J ) is an accurate estimate of ‖f⊆J ‖1 with high
probability. Note that Mn is a function of the random training
samples (xi, yi). Suppose, for a fixed i, the training instant
(xi, yi) is replaced with an i.i.d. copy (x̃i, ỹi). Let M̃ (1)

n be
the resulted measure with (x̃i, ỹi) replacing (xi, yi). Then, we
can show that for any J with |J | ≤ k, the inequality holds
almost surely

|Mn(J )−M̃ (1)
n (J )| ≤ 4

n− 1
2k max
S⊆[d],|S|≤k

‖ψS‖2∞ =∆
4 2kck
n− 1

.

From McDiarmid’s inequality, for a fixed subset J ⊆ [d] with
|J | = k

P
{∣∣Mn(J )− E[Mn(J )]

∣∣ ≤ ε′} ≤ 2 exp
{
− (n− 1)ε′2

8 22kc2k

}
,

where the expectation is taken with respect to the training
samples. Using the union bound, we obtain that

P
{⋃

J :|J |=k

{∣∣Mn(J )− E[Mn(J )]
∣∣ ≤ ε′}} ≤

2

(
d

k

)
exp

{
− (n− 1)ε′2

8 22kc2k

}
.

Thus, with probability (1− δ), the inequality

∣∣Mn(J )− E[Mn(J )]
∣∣ ≤√ λ(k)

(n− 1)
log(

d

δ
),

holds for all J ⊆ [d] with |J | = k, where λ(k) = 8 k22kc2k.
Next, from Lemma 2 and the triangle inequality, we have, with
probability at least (1− δ), that

∣∣Mn(J )− ‖f⊆J ‖1
∣∣ ≤√ λ(k)

(n− 1)
log(

d

δ
) +O(n−γ), (15)

for all J ⊆ [d], |J | = k. The proof completes by combining
(13), (14), and (15).
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APPENDIX C
PROOF OF LEMMA 2

We first assume that there is no estimation error for mean
and standard deviation of the features; that is µ̂j = µj and
σ̂j = σj for all j ∈ [d]. Further, b̂ij = bij for all i, j for
which their corresponding feature subsets satisfy |Si| ≤ k and
|Sj | ≤ k. Let Mn be the Mn under this condition. Define, the
function

f̄⊆J(i) (x) =∆
n

n− 1

∑
S⊆J

(
f̄S −

1

n
Y (i)ψS(X(i))

)
ψS(x), (16)

for all x ∈ X d, where f̄S = 1
n

∑
i Y (i)ψS(X(i)). With this

definition, given any x, the quantity f̄⊆J(i) (x) is independent
of (X(i), Y (i)). Further, we can write Mn as the summation
Mn(J ) = 1

n

∑
i |f̄
⊆J
(i) (X(i))|. Hence, the expectation of Mn

taken over the training samples gives

E[Mn(J )] =
1

n

n∑
i=1

EX(1),...,X(n)

[ ∣∣∣ f̄⊆J(i) (X(i))
∣∣∣ ]

= EX(1),...,X(n)

[ ∣∣∣ f̄⊆J(1) (X(1))
∣∣∣ ]

= EX(2),...,X(n)EX(1)

[ ∣∣∣ f̄⊆J(1) (X(1))
∣∣∣ ]

= EX(2),...,X(n)

[
‖f̄⊆J(1) ‖1

]
, (17)

where the first equality is due to the symmetry with respect
to the index i of the training samples. The last equality is
due to the definition of 1-norm and the property that the
function f̄⊆J(1) is independent of (X(1), Y (1)). Note that f̄⊆J(1)

is as an estimation of the projection f⊆J using the (n − 1)
training samples (X(i), Y (i)), i = 2, 3, ..., n. Next, we bound
the difference

∣∣∣E‖f̄⊆J(1) ‖1 − ‖f
⊆J ‖1

∣∣∣. Observe that

∣∣∣E[‖f̄⊆J(1) ‖1
]
− ‖f⊆J ‖1

∣∣∣ ≤ E
[
‖f̄⊆J(1) − f

⊆J ‖1
]

≤ E
[
‖f̄⊆J(1) − f

⊆J ‖2
]

≤
√

E
[
‖f̄⊆J(1) − f⊆J ‖

2
2

]
,

where the first inequality is obtained by applying the triangle
inequality twice, one for ‖f̄⊆J(1) ‖1 and once for ‖f⊆J ‖1. The
second inequality is from the identity ‖·‖1 ≤ ‖·‖2. The third
inequality is due to the Jensen’s inequality. Next, by Parseval’s
identity we have

E
[
‖f⊆J − f̄⊆J(1) ‖

2
2

]
=
∑
S⊆J

E
[
|fS − f̄(1),S |2

]
=
∑
S⊆J

var
(
f̄(1),S

)
,

where f̄(1),S is the empirical average of i.i.d. random variables
Y (i)ψS(X(i)) for i = 2, 3, ..., n. Thus,

var
(
f̄(1),S

)
=

1

n− 1
var
(
Y ψS(X)

)
=

1

n− 1
(E
[
Y 2ψS

2(X)
]
− fS2)

=
1

n− 1
(1− fS2).

Hence,

E
[
‖f⊆J − f̄⊆J(1) ‖

2
2

]
=

1

n− 1

∑
S⊆J

(1− fS2)

=
1

n− 1
(2|J | − ‖f⊆J ‖22)

≤ 1

n− 1
2k.

Putting all together we get that∣∣∣E[Mn

]
− ‖f⊆J ‖1

∣∣∣ =
∣∣∣E[‖f̄⊆J(1) ‖1

]
− ‖f⊆J ‖1

∣∣∣
≤ 2k/2√

n− 1
. (18)

Next, we address the effect of mean and variance estima-
tions. For tractability of our analysis, we use a fraction of the
training samples just for the mean and variance estimations.
As a measure of accuracy of the estimations, we require the
following event

(B) :
∣∣µ̂j − µj∣∣ ≤ ε0, and

∣∣1− σj
σ̂j

∣∣ ≤ 2ε0
σ2
j

, ∀j ∈ [d],

(19)

to happen with probability close to one. This is a deviation
from standard measures of estimations in which the variance
of the differences are required to be small. In the following
lemma, we bound the estimation errors in terms of the number
of the samples.

Lemma 3. Given ε0, δ0 ∈ (0, 1), the event (B) happens with
probability at least (1−δ0), provided that atleast n0(ε0, δ0) =
2
ε20

log 2d
δ0

samples are available.

Proof: Form McDiarmid’s inequality, for each j ∈ [d] we
have

P{|µ̂j − µj | ≥ ε0} ≤ 2 exp{−nε
2
0

2
}.

Therefore, applying the union bound gives

P
{ d⋃
j=1

{
|µ̂j − µj | ≥ ε0

}}
≤ 2d exp{−nε

2
0

2
}.

Thus, the right-hand side of the above inequality is less than
δ0, if n ≥ 2

ε20
log( 2d

δ0
). As a result we obtain the inequalities

for the estimation of µj’s. Next, we prove the inequalities for
the estimation of σj’s. For any fixed µ̂ ∈ (−1, 1), define the

14



function hµ̂(x) =
√

1−x2√
1−µ̂2

. From Taylor’s theorem, there exists

ζ ∈ (−1, 1) which is between x and µ̂ such that

hµ̂(x) = 1− ζ(x− µ̂)√
(1− ζ2)(1− µ̂2)

.

As a result,

|hµ̂(x)− 1| = |ζ||x− µ̂|√
(1− ζ2)(1− µ̂2)

≤ |x− µ̂|√
(1− (max{x, µ̂})2)(1− µ̂2)

.

Now by setting x = µj and that |µ̂j − µj | ≤ ε0, we have

|σj
σ̂j
− 1| = |hµ̂(µ)− 1| ≤ ε0

σ̂min{σ̂, σ}
.

Note that, |µ̂j | ≤ |µj |+ ε0. Therefore,

σ̂2
j ≥ 1− (|µj |+ ε0)2 ≥ σ2

j − 2ε0|µj | − ε20 ≥ σ2
j − 3ε0.

As a result,

|σj
σ̂j
− 1| ≤ ε0

σ2
j − 3ε0

≤ 2ε0
σ2
j

,

which completes the proof of the lemma.
By conditioning on (B) and from triangle inequality we

obtain that∣∣∣E[Mn(J )|B
]
− ‖f⊆J ‖1

∣∣∣
≤
∣∣∣E[Mn(J )|B

]
− E

[
Mn(J )

]∣∣∣+
∣∣∣E[Mn(J )

]
− ‖f⊆J ‖1

∣∣∣
(a)

≤
∣∣∣E[Mn(J )|B

]
− E

[
Mn(J )

]∣∣∣+
2k/2√
n− 1

, (20)

where (a) follows from (18). We proceed with the following
lemma which is proved in Appendix C-A.

Lemma 4. Conditioned on (B) the inequalities∣∣ Mn(J )−Mn(J )
∣∣ ≤ λ(ε0),

hold, almost surely, for all k-element subsets J , where λ is a
function satisfying λ(ε0) = O(k2kckε0) as ε→ 0.

Consequently, from (20) we have∣∣∣E[Mn(J )|B
]
− ‖f⊆J ‖1

∣∣∣ ≤ λ(ε0) +
2k/2√
n− 1

A. Proof of Lemma 4

Recall, from (16) and the argument afterward, that Mn can
be written as Mn(J ) = 1

n

∑
i

∣∣∣f̄⊆J(i) (X(i))
∣∣∣, where f̄⊆J(i) is

defined in (16) and is repeated here

f̄⊆J(i) (x) =∆
n

n− 1

∑
S⊆J

(
f̄S −

1

n
Y (i)ψS(X(i))

)
ψS(x),

with f̄S = 1
n

∑
i Y (i)ψS(X(i)). Similarly, Mn can be written

as

Mn(J ) =
1

n

∑
i

∣∣∣f̂⊆J(i) (X(i))
∣∣∣,

where f̂⊆J(i) is defined as

f̂⊆J(i) (x) =∆
n

n− 1

∑
S⊆J

(
f̂S −

1

n
Y (i)

∏
j∈S

Xj(i)− µ̂j
σ̂j

)
ψ̂S(x).

Note that f̂⊆J(i) is similar to f̄⊆J(i) as in (16), but with µj , σj and
ψS replaced with their estimations µ̂j , σ̂j and ψ̂S , respectively.

With the above definitions, from triangle inequality and the
fact that ||a| − |b|| ≤ |a− b|, we obtain∣∣Mn(J )−Mn(J )

∣∣ ≤ 1

n

∑
i

∣∣f̄⊆J(i) (X(i))− f̂⊆J(i) (X(i))
∣∣

≤ ‖f̄⊆J(1) − f̂
⊆J
(1) ‖∞,

where the last inequality follows by maximizing over all
realizations of X(i) and the symmetricity with respect to i.
Define the function f̄⊆J as

f̄⊆J (x) =∆
∑
S⊆J

f̄SψS(x),

Note that, f̄⊆J(1) and f̂⊆J(1) are, respectively, equal to f̄⊆J and
f̂⊆J when the first sample (X(1), Y (1)) is removed from the
training samples. Hence, to bound ‖f̄⊆J(1) − f̂

⊆J
(1) ‖∞, it suffices

bound‖f̂⊆J − f̄⊆J ‖∞. That said, it remains to showing that

‖f̂⊆J − f̄⊆J ‖∞ ≤ λ(ε0), (21)

where λ(ε0) = O(k2kckε0) as ε0 → 0. The argument is as
follows.

From triangle inequality for ∞-norm and the definition of
f̂⊆J and f̄⊆J we obtain

‖f̂⊆J − f̄⊆J ‖∞ ≤
∑
S⊆J

‖f̂S ψ̂S − f̄S ψS‖∞. (22)

Again by triangle inequality and by adding and subtracting
f̄Sψ̂S , we obtain that

‖f̂S ψ̂S − f̄S ψS‖∞ ≤ ‖f̂S ψ̂S − f̄S ψ̂S‖∞
+ ‖f̄S ψ̂S − f̄S ψS‖∞

= |f̂S − f̄S | ‖ψ̂S‖∞ + |f̄S | ‖ψ̂S − ψS‖∞.
Next, note that from triangle inequality

|f̂S − f̄S | ≤
1

n

∑
i

|ψ̂S(x(i))− ψS(x(i))| ≤ ‖ψS − ψ̂S‖∞.

Therefore,

‖f̂S ψ̂S − f̄S ψS‖∞ ≤
(
‖ψ̂S‖∞ + |f̄S |

)
‖ψ̂S − ψS‖∞. (23)

We proceed by bounding each term on the right-hand side of
(23). As for the first term, we have that ‖ψ̂S‖∞ ≤ ‖ψS‖∞ +
‖ψ̂S − ψS‖∞.
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As for the second term,

f̄S =
1

n

∑
i

Y (i)ψS(X(i)) ≤ ‖ψS‖∞.

Lastly, the third term is bounded using the following lemma
which is proved in Appendix C-B.

Lemma 5. Conditioned on (B), the inequality ‖ψS− ψ̂S‖∞ ≤
γ(ε0) holds for all k-element subsets S, almost surely, where
γ is a function satisfying γ(ε0) = O(kε0

√
ck) as ε0 → 0.

Recall that ck is defined as ck = maxS:|S|≤k‖ψS‖2∞.
Therefore, combining these bounds for the terms in (23) gives
the following bound

‖f̂S ψ̂S − f̄S ψS‖∞ ≤
(
2‖ψS‖∞

+ ‖ψ̂S − ψS‖∞
)
‖ψ̂S − ψS‖∞

≤
(
2
√
ck + γ(ε0)

)
γ(ε0).

Plugging the above inequality into (22) gives the desired bound

‖f̂⊆J − f̄⊆J ‖∞ ≤ λ(ε0) =∆ 2k
(
2
√
ckγ(ε0) + γ2(ε0)

)
.

It is not difficult to check that λ(ε0) = O(k2kckε0) as ε0 → 0.

B. Proof of Lemma 5

We start with the triangle inequality for ∞-norm by adding
and subtracting bSψS :

‖ψS − ψ̂S‖∞ ≤ ‖ψS − bSψS‖∞ + ‖bSψS − ψ̂S‖∞.

Note that bSψS ≡
∏
j∈S

xj−µj
σ̂i

. Now, using the triangle
inequality on the second term above, we have

‖bSψS − ψ̂S‖∞

= ‖bSψS ±
(∑
l∈S

∏
j≤l

xj − µ̂j
σ̂i

∏
r>l

xr − µr
σ̂r

)
− ψ̂S‖∞

≤
∑
l∈S

|µl − µ̂l|
σ̂l

‖
∏
j<l

(xj − µ̂j)
σ̂j

∏
r>l

(xr − µr)
σ̂r

‖∞

≤ ε

σmin

∑
l∈S

‖
∏
j<l

(xj − µ̂j)
σ̂j

∏
r>l

(xr − µr)
σ̂r

‖∞

≤ ε

σmin

∑
l∈S

∏
j<l

(1 + |µ̂j |)
σ̂j

∏
r>l

(1 + |µr|)
σ̂r

(a)

≤ ε

σmin

∑
l∈S

∏
j<l

(1 + |µj |)(1 + ε)

σ̂j

∏
r>l

(1 + |µr|)
σ̂r

(b)

≤ ε

σmin
bS
∑
l∈S

∏
j∈S

(1 + |µj |)(1 + ε)

σj

(c)

≤ kε

σmin
bS(1 + ε)k‖ψS‖∞,

where (a) follows from the inequality (1 + |µ̂j |) ≤ (1 +
|µj |)(1+ε), and (b) follows from (1+|µj |) ≤ (1+|µj |)(1+ε).

Lastly, (c) holds as |S| ≤ k and because ‖ψS‖∞ =∏
j∈S

1+|µj |
σj

.

‖ψS − ψ̂S‖∞ ≤ |1− bS |‖ψS‖∞ +
kε

σmin
bS(1 + ε)k‖ψS‖∞.

(24)

From the assumption of the lemma and the definition of bS
we obtain that

1− (1 + ε)|S| ≤ 1− bS ≤ 1− (1− ε)|S|.

Since ε ∈ (0, 1) and |S| ≤ k, then (1− ε)|S| ≥ 1− kε. Also,
from the fact that (1 + x) ≤ ex for all x ∈ R, we obtain

1− ekε ≤ 1− bS ≤ kε ≤ ekε − 1. (25)

Lastly, combining (24) and (25) gives the following inequality

‖ψS − ψ̂S‖∞ ≤ (ekε − 1)‖ψS‖∞ +
kε

σmin
(1 + ε)2k‖ψS‖∞.

The proof is complete by noting that ‖ψS‖∞ ≤
√
ck.

APPENDIX D
GENERATING RANDOM LABELING FUNCTIONS VIA

ERLANG DISTRIBUTION

We generate randomly a labeling function which is the sign
of a polynomial of the form

p(x) =∆
∑
S
αSx

S ,

where xS =
∏
j∈S xj and the coefficients αS ∈ [0, 1] are

generated randomly according to the following process:
Let fE(x) where fE is the pdf of the Erlang random

variable with shape and rate parameters equal to 8 and 1,
respectively. Let wi = fE(i), i = 1, 2, ...,m. For each wi, we
select 10 subsets randomly from the collection of all subsets
S ⊆ [d] that have i-elements. The selected subsets for each
i are denoted as Si,j , j = 1, 2, ..., 10. Let Vi,j ∼ Unif([0,
1]), i ∈ [m] and j ∈ [10] be i.i.d. random variables. Then,
the Fourier coefficient corresponding to Si,j is determined as
αi,j = Wi × Vi,j . With that the polynomial p can be written
as p(x) =

∑
i,j αi,j

∏
`∈Si,j x`. Note that by changing the

parameters of the Erlang pdf, we get different randomized
polynomials.

APPENDIX E
IMPLEMENTATION DETAILS

In this section, we explain the details of our implementations
of UFFS and SFFS algorithms.

The following are some of the characteristics of our imple-
mentation:
• For benchmarking purposes, we use the original imple-

mentation of mRMR2, scikit-feature3 for UDFS, MCFS,

2http://home.penglab.com/proj/mRMR/
3http://featureselection.asu.edu/
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and ReliefF, and scikit-learn4 for mutual information
(MI)-based algorithm.

• Though most parts are written in Python, the code snip-
pets that require heavy computations (B and A matrix
computations in Algorithm 1 and Fourier coefficient
calculation in Algorithm 2) are converted to C++ using
Cython.

• We have also parallelized some of the computations.
• The code also contains a greedy implementation of the

SFFS algorithm which we have not discussed in the
paper, and can be employed for extremely large datasets.

UFFS with limited computational resources: To mini-
mize the computational burden further, we follow a sequential
approach for the UFFS algorithm. Let the target depth t be
3, and a1, a2,m1, and m2 be some positive integers. First we
find the set of non-redundant features outputted by the UFFS
with t = 1. Let its count be d1. If the actual number of features
d < a1, we directly run the UFFS with t = 2 on the full set
of features. Otherwise, if d1 < a1, UFFS (t = 2) is run on the
selected features from t = 1 step. In case d1 ≥ a1, we split
the d1 features from step t = 1 to multiple non-overlapping
clusters of size m1, and the UFFS (t = 2) is executed on these
clusters and combine the selected features. Let the number of
selected features from step t = 2 be d2. For step t = 3, we
pursue a similar approach as in the previous step with the
selected features from the UFFS (t = 2): a) if d < a2, run the
UFFS directly; b) else if d2 < a2, run the UFFS (t = 3) on
d2 features; c) in case d2 ≥ a2, divide d2 features into non-
overlapping clusters of size m2 and run t = 3 step on each of
them. Here a1, a2, and m1,m2 are hyperparameters that needs
to be chosen depending on the computational resources.

Our supervised algorithm (SFFS) does not require the above
approximation since it mainly depends on the computation of
the Fourier coefficients and it usually has fast execution with
our C++ implementation.

4https://scikit-learn.org
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