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Abstract

A fundamental challenge in learning is the presence of nonlinear redundancies and dependencies in the data.
To address this, we propose a Fourier-based approach to characterize feature redundancies, in unsupervised learning,
and feature-label dependencies, in the supervised variant of the problem. We first develop a novel Fourier expansion
for functions (more generally stochastic mappings) of correlated binary random variables. This is a generalization of
the standard Fourier expansion on the Boolean cube beyond product probability spaces. As an important application
of this analysis, we investigate learning with feature subset selection. In the unsupervised variant of this problem,
we characterize feature redundancies via the Shannon entropy and group the features into sufficiently informative
and redundant. Then, we make a connection to the proposed Fourier expansion and derive an upper bound on the
joint entropy. Based on that, we propose a measure to quantify feature redundancies and present an unsupervised
learning algorithm. We test our method on various real-world and synthetic datasets and demonstrate improvements
on conventional unsupervised feature selection techniques.

Then, we investigate the supervised feature subset selection and reformulate it in the Fourier domain. Bridging
the Bayesian error rate with the Fourier coefficients, we demonstrate that the Fourier expansion provides a powerful
tool to characterize nonlinear feature-label dependencies. Further, we introduce a computationally efficient measure for
selecting relevant features. Via a theoretical analysis, we show that our proposed measure finds provably asymptotically
optimal feature subsets. Lastly, we present an algorithm based on this measure and via numerical experiments
demonstrate its improvements on various supervised feature selection algorithms.

I. INTRODUCTION

A central challenge in learning with feature selection is to jointly identify nonlinear redundancies within the
features and the dependencies in the feature-label relation. Many well-known feature selection approaches (supervised
or unsupervised) are based on measures that capture only linear relations or focus on the features individually [1]–[3].
Kernel-based methods are an exception; however, are prohibitive in large datasets as the computational complexity of
computing a kernel grows super linearly with the number of the samples [4]. Alternatively, information-theoretic met-
rics are powerful candidates in quantifying nonlinear dependencies among the random variables. However, estimating
such quantities usually requires high sample complexity.

In this work, we take an alternative approach and adapt discrete Fourier analysis with information-theoretic
measures. Hence, capturing nonlinear relations with low sample complexity, while avoiding kernel computations.
The discrete Fourier expansion (on the Boolean cube) provides an essential tool to characterize different levels of
“nonlinearities” in a function. In this expansion, any real-valued function on the Boolean cube can be written
as a linear combination of monomials (parities) [5], [6]. Highly nonlinear functions have Fourier expansion with
large coefficients for high-degree parities. Thus, the Fourier expansion is potentially a powerful tool in learning
problems. However, limitations are making it impractical. First, it is developed for product probability spaces (mutually
independent input variables). Secondly, this expansion is defined only for deterministic functions. These assumptions
are too strong, as learning problems, often, involve correlated features with stochastic labeling. In this work, we make
a connection between the two approaches and aim to address these challenges.
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A. Main Contributions

We address the above challenges by developing a novel Fourier expansion for stochastic mappings of correlated
binary random variables. Using this framework, we study feature selection, where the objective is to remove as many
features as possible without significantly increasing classification loss. We demonstrate that the Fourier expansion
provides a powerful tool to characterize nonlinear redundancies in features and nonlinear dependencies in the features-
label relation. We propose two Fourier-based algorithms: one for supervised and one for the unsupervised variant
of the problem. We use the Fourier expansion to provide a theoretical analysis and derive conditions under which
our algorithms find the optimal feature subset. Further, through numerical experiments, we show that our algorithms
outperform several well-known feature selection techniques. That said, the contributions of this paper are summarized
below:
1) Fourier expansion for correlated random variables: We develop a generalized Fourier expansion for functions of
correlated binary random variables (Proposition 1). For this purpose, we adopt a Gram-Schmidt-type orthogonalization
and construct a set of orthogonal basis functions. Further, we adapt our Fourier expansion to the more general space of
stochastic mappings (e.g., mappings from one probability space to another). To the best of our knowledge, this is the
first generalization of the Fourier expansion for correlated binary random variables. Although this Fourier expansion
is defined on the Boolean cube, our algorithms apply to non-binary features too. We view the Binary Fourier as a
framework that captures a special class of nonlinearities — those characterized via the parities. Alternatively, we could
generalize our Fourier expansion to discrete features and, based on it, design feature selection algorithms. However,
such a generalization requires character theory, which is beyond the scope of this paper. We note that there are other
forms of orthogonal decomposition including the Hoeffding-Sobel decomposition [7]–[9] and its generalization [9].
However, such decompositions are basis-free. Our Fourier expansion is defined by constructing a set of orthonormal
basis functions which makes it suitable for feature selection.
2) Sufficiently informative: In the unsupervised setting, we take an information-theoretic perspective, and group the
features into redundant and sufficiently informative. All the accessible information about the data can be captured from
the latter group. More precisely, we define a subset of features as sufficiently informative when the joint entropy of
all the input features equals that of the chosen subset. The former group is statistically a function of the latter, hence
can be removed without affecting the learning’s performance. This approach extends the notion of Markov blanket
for “redundant” features to the unsupervised setting [10]–[12]. We then develop a characterization of sufficiently
informative features based on our Fourier expansion (Theorem 1). Built upon this, we design an Unsupervised Fourier
Feature Selection (UFFS) algorithm, which captures the redundant features in our new formulation. Instead of ranking
the features, the UFFS finds redundant features and declares the rest of the features as sufficiently informative. Through
comprehensive numerical experiments in Section V, we show that the UFFS outperforms conventional methods for
unsupervised feature selection.

Our unsupervised feature selection algorithm is multi-variate (evaluating the dependencies of features jointly) and
identifies non-linear dependencies. Whereas many well-known existing works are considered univariate or focus on
the linear dependencies among the features [3]. Some common approaches in unsupervised feature selection are
pseudo-label based, “column subset selection”, and spectral/manifold based. Methods in the first approach such as
[13], [14] attempt to generate pseudo-labels via certain clustering methods. However, such methods focus on linear
transformations between features and the pseudo labels and ignore the nonlinear relations. The second approach,
“column subset selection”, assumes only linear dependencies among the features and solves an optimization problem
that is similar to principal component analysis (PCA) [15], [16]. Although methods in the third approach, such as
[17], capture nonlinear relations, they ignore the interaction between the features.
3) Measure for feature subset selection: When the feature-label probability distribution is known, features are ideally
selected based on the Bayes misclassification rate as the measure. In practice, without knowledge of this distribution,
given the training set, one approach (wrapper method) is to select feature subsets that minimize the empirical error
rate of a given classifier [1]. Alternatively, to reduce the computational complexity, the common approach is to select
feature subsets based on similarity or correlation measures [2].

Unlike conventional wrapper methods whose performance criteria depend on the given classifier, our measure for
feature subset selection is independent of the classifier. For that, we first formulate the feature selection in an ideal
setting as follows: given a parameter k, the objective is to find k features such that the misclassification rate of the
Bayes classifier, restricted to k features, is minimized. We, then, reformulate this problem in the Fourier domain
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and characterize the optimal feature subset. Building upon such a formulation, we develop a measure to evaluate
feature subsets. We prove that when the features are binary, an exhaustive search based on this measure finds an
asymptotically optimal feature subset. That is a feature subset whose Bayes misclassification rate is at most O(n−γ),
γ ∈ (0, 1/2), larger than that of the optimal feature subset (Theorem 3).
4) Search algorithm for Fourier-based measure: Since the exhaustive search in the Fourier characterization is
computationally expensive, we develop a search algorithm with fixed depth – given a depth parameter t, the idea is
to evaluate only the feature subsets of size at most t. For numerical results, we usually set t ≤ 3. With this approach,
we propose the Supervised Fourier Feature Selection (SFFS) algorithm with computational complexity O(n(d+ d̃t)),
where n is the number of the samples, d is the number of the features and d̃ is the number of non-redundant features.
Based on our numerical experiments, d̃ is typically much smaller than d. Through our numerical experiments, we
show that SFFS, even with t = 1 or 2, perform consistently better on a variety of datasets unlike several well-known
feature selection algorithm (e.g., mRMR [18],, MI, RFS [19], CCM [20], and ReliefF [21]) (See Section V). We
thus overcome two well-known demerits of wrapper methods for feature selection that limits their usage in practice
– heavy dependency on the predictive performance of the learning algorithm and huge search space.

B. Related Works

Feature selection methods are usually classified into three main groups: wrappers, Filter, and embedded [1]. In
the wrapper method, the feature subsets are evaluated directly by an induction algorithm. In embedded methods,
feature selection is performed during the training process of the given learning algorithm. Such approaches are
usually computationally expensive and, hence, prohibitive in large data sets. An alternative solution is the filter
approach in which an intermediate measure, independent of the induction learning algorithm, is used to evaluate
the feature subsets. Filter methods are preferred as they are computationally more efficient and relatively robust
against overfitting. The challenge in this area, that remains open, is to design a computationally efficient measure
that is provably related to the generalization loss. Several measures have been introduced in the literature. Well-
known criteria for feature selection can be grouped into similarity-based measures (e.g., Pearson correlation, Fisher
Score), information-theoretic measures [10], [18], [22]–[24], and Kernel-based measures [20], [25], [26]. Although
correlation criteria are computationally more efficient, they usually are not able to detect nonlinear dependencies in
features-label relations. Methods based on kernels can detect nonlinear dependencies. However, the computational
complexity of computing a kernel grows super linearly, if not quadratic, with the number of the samples [4]. Mutual
Information (MI) criteria, on the other hand, can detect nonlinear dependencies with lower computational complexity
[24]. Also, mutual information can be used to bound the Bayes misclassification rate [27], [28]. However, estimating
multi-variate mutual information is known to be a difficult task with high sample complexity.
Notations: As a shorthand, in this paper, for any natural number m, the set {1, 2, · · · ,m} is denoted by [m]. Also, for
any subset J ⊆ [d] with ordered elements {j1, j2, · · · , jk}, the vectors (Xj1 , Xj2 , · · · , Xjk), and (xj1 , xj2 , · · · , xjk)
are denoted, respectively, by XJ and xJ . For any pair of functions g1, g2 denote 〈g1, g2〉 =∆ E[g1(X)g2(X)]. Further,
we write g1 ≡ g2, when g1(x) = g2(x) for all x ∈ X .

II. FOURIER EXPANSION FOR CORRELATED RANDOM VARIABLES

As an ingredient for our results, we first propose a Fourier expansion for functions of correlated binary features.
We built upon this framework and propose our results in Section III and IV for feature selection.

A. Boolean Fourier expansion on product probability spaces

We start with a brief overview of the well-known Fourier expansion on Boolean cube [5], [6] that has applications
in computational learning [29]–[34].

Let X = (X1, X2, ..., Xd) be a vector of mutually independent random variables taking values from a subset
X ⊂ Rd. Let µj and σj be the mean and standard-deviation of Xj , j ∈ [d]. Suppose that these random variables are
non-trivial, that is σj > 0 for all j ∈ [d]. The Fourier expansion is defined via a set of basis functions called parities.
The parity for a subset S ⊆ [d] is defined as

φS(x) =∆
∏
i∈S

xi − µi
σi

, for all x ∈ Rd.
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Since Xi’s are mutually independent, the parities are orthonormal, that is E[φS(X)2] = 1 for any subset S, and
E[φS(X) φT (X)] = 0 when T 6= S (that is ∃x ∈ T

⋃
S such that x /∈ T

⋂
S). Under the assumption that X = {−1,

1}d, the parities form an orthonormal basis for the space of bounded functions [5]. That is, any bounded function
f : {−1, 1}d 7→ R can be written as a linear combination of the form

f(x) =
∑
S⊆[d]

fS φS(x), for all x ∈ {−1, 1}d,

where fS ∈ R are called the Fourier coefficients of f with respect to DX, the distribution of X. Further, the Fourier
coefficients can be computed as fS = E[f(X)φS(X)], for all subsets S ⊆ [d].

B. Orthogonalization

We proceed by constructing a Fourier expansion for functions of correlated random variables. Note that, in a
general probability space with correlated features, the standard Fourier expansion is no longer well-defined. Because
the parities φS are not necessarily orthogonal. That said, we construct our Fourier expansion by adopting a Gram-
Schmidt-type procedure to make the parities orthogonal. Then, we use this basis to develop our Fourier expansion
for functions of correlated random variables. Based on that, we establish the following result.

Proposition 1 (Correlated Fourier Expansion). Let DX be any probability distribution on {−1, 1}d. Then there are
a set of orthonormal parity functions ψS ,S ⊆ [d] such that any bounded function g : {−1, 1}d 7→ R is decomposed
as

g(x) =
∑
S⊆[d]

gSψS(x),

for all for all x ∈ {−1, 1}d except a measure-zero subset. Further, the coefficients gS are unique and obtained from
gS = E[g(X)ψS(X)].

Proof: Let µj and σj be the mean and standard deviation of each input random variable Xj , j ∈ [d]. Suppose
that these random variables are non-trivial, that is σj > 0 for all j ∈ [d]. The proof is based on an orthogonalization
process that is explained in the following.
Orthogonalization process: Fix the following ordering for subsets of [d]:

∅, {1}, {2}, {1, 2}, {3}, {1, 3}, {2, 3}, {1, 2, 3}, · · · , {1, 2, ..., d}. (1)

We apply the Gram-Schmidt process on φSi with the above ordering. The first orthogonalized parity is trivially given
by ψ∅ ≡ 1. The orthogonalized parity corresponding to the ith subset is obtained from the following operation:

ψ̃Si ≡ φSi −
i−1∑
j=1

〈ψSj , φSi〉 ψSj , ψSi ≡

{
ψ̃Si
‖ψ̃Si‖2

if ‖ψ̃Si‖2 > 0,

0 otherwise.
(2)

where ‖ψ̃Si‖2 =
√
〈ψ̃Si , ψ̃Si〉. By construction, the resulted nontrivial parities ψSi’s are orthonormal, that is 〈ψSi ,

ψSj 〉 = 0 for i 6= j and 〈ψSi , ψSi〉 = 1 if ψSi is not trivial. The rest of the argument, given in Appendix A, follows
by showing that ψS’s span the space of all bounded functions.

Depending on the statistics of the features, the number of non-trivial parities ψSi ranges from 1 to 2d. On one
extreme, if the features are mutually independent, then ψSi = φSi . On the other extreme, if the features are trivial,
then ψSi = 0 for i > 1, and hence there is only one non-trivial parity. Note also that different orderings for the
subsets of [d] result in different orthogonalized parities. We show in Section III-B that this ordering is beneficial to
remove “redundant” features. Hence, unless otherwise stated, we use the ordering in (1).

Remark 1. In contrary to our Fourier expansion, which is established only for binary features, the orthogonalization
process is not restricted to such an assumption. Because, by construction, the orthogonalized parities are orthonormal
for any value domain X ⊂ Rd. If X = {−1, 1}d, then the parities span the space of all functions on X ; otherwise
they span a subspace of such functions. We clarify this in the following example.
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Example 1. Set d = 3 and let X1 and X2 be independent random variables with Gaussian distribution N(0, 1).
Suppose X3 = X1X2 with probability one. There are eight standard parities, one for each subset, as

(1, x1, x2, x1x2, x3, x1x3, x2x3, x1x2x3).

By performing the orthogonalization process, as in (2), there are only four non-trivial orthogonalized parities as
ψ∅ = 1, ψ{1} = x1, ψ{2} = x2, and ψ{1,2} = x1x2. The rest of the parities are zero, because ‖ψ̃S‖2 = 0 for any
of the subsets {3}, {1, 3}, {2, 3}, {1, 2, 3}. Now, suppose we change the relation of X3 to X3 = sign[X1X2]. In this
case, after the orthogonalization process, there are eight non-trivial parities. For instance, it is not difficult to check
that ψ̃{3} = x3 − 2

πx1x2. Hence, ‖ψ̃{3}‖2 > 0, implying that ψ{3} is not redundant.

We view our binary Fourier as a framework that captures a special class of nonlinearities — those characterized
via orthogonalized parities. Our numerical experiments confirm that such an approximation is sufficient to outperform
many unsupervised feature selection methods on several data sets (see Table II). We further note that the orthogo-
nalization process is different from the dimension reduction methods such as Kernel PCA. Because, unlike Kernel
PCA, our process does not mix the features– it is a feature selection method.

III. FEATURE SELECTION IN KNOWN STATISTICS

In this section, we analyze the optimal feature selection for binary classification with 0−1 loss function and in the
ideal setting, where the underlying statistics of the features and the label are known. We first study the unsupervised
variant of the problem in Section III-B. Then, in Section III-C, we analyze supervised feature selection in the Fourier
domain.

A. Problem Formulation

The feature selection problem is formulated as follows. There are d features X = (X1, X2, ..., Xd) with label Y
taking values from X d and {−1, 1}, respectively. Suppose that (X, Y ) are generated according to a fixed, but unknown,
probability distribution D. Available are n independent and identically distributed (i.i.d.) instances Sn =

{
(x(i), y(i)),

i = 1, 2, ..., n
}

generated from D. We describe the feature selection problem by first defining the optimum feature
subset and the minimum misclassification probability in the ideal setting, where D is known. For a feature subset
J ⊆ [d], the minimum attainable mislabeling probability is obtained from

LD(J ) = min
g∈Gk

P(X,Y )∼D
{
Y 6= g(XJ )

}
, (3)

where Gk is the collection of all functions on X k. Given k ≤ d, the optimum feature subset J ∗ and the minimum
loss are defined as

J ∗ = arg min
J⊆[d], |J |=k

LD(J ), L∗D(k) = LD(J ∗). (4)

In agnostic settings, where only a training data set is available, the above optimization is infeasible to solve. Instead,
an intermediate measure Mn is defined to evaluate feature subsets using the training instances. Then, feature selection
using the measure Mn is modeled by the following optimization

Ĵn = arg min
T ∈Tk

Mn(T ),

where Tk is a collection of feature subsets with at most k-elements. Our objective is to propose a measure Mn so
that mislabeling probability based on Ĵn be as close as possible to that using J ∗.

B. Information Sufficiensy in Unsupervised Setting

We take an information-theoretic approach to identify feature redundancies in unsupervised feature selection. The
goal is to define a measure to identify the features as “sufficiently informative” and “redundant”. Intuitively, the
former group contains all the information accessible from the features. The latter consists of the features that are a
function of the “informative” features, and hence, can be removed from the data set.

Suppose X is a finite set. Then, we call a feature subset J ⊆ [d] “sufficiently informative”, if H(X) = H(XJ ),
where H is the Shannon entropy. From the notion of Markov Blanket [23], one can show that J is a Markov blanket
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for any feature in J c. Further, J being sufficiently informative immediately leads to J c being redundant. Because,
the condition H(X) = H(XJ ) implies that there exists a mapping T , such that XJ

c

= T (XJ ), with probability
one [28]. Hence, all the features not included in J can be removed. As there are multiple such J ’s, the objective is
to find the smallest one1. Tolerating small amounts of imperfections, we formalize the above notion in the following.

Definition 1 (Sufficiently Informative). For discrete features and 0 ≤ ε ≤ 1, a feature subset J is said to be
ε-sufficiently informative, if H(X|XJ ) ≤ ε. The feature subset J is sufficiently informative, if H(X|XJ ) = 0. Such
J is called minimal, if it has the minimum cardinality among all sufficiently informative feature subsets.

We make a connection between the above definition and the orthogonalization process in (2). We employ this
process to extract a sufficiently informative feature subset.

Theorem 1. For ε ∈ [0, 1], let Jε ⊆ [d] be the set of all j ∈ [d] such that ‖ψ̃{j}‖2 > ε. Then, H(X|XJε) = dO(ε)

as ε → 0. Further, if the features take values from {−1, 1}d, then there exists a permutation of the features so that
Jε with ε = 0 is a sufficiently informative subset that is minimal.

Proof: We start by deriving an upper-bound on H(X|XJε) in terms of the orthogonalized parities in (2). Note
that H(X|XJε) = H(XJ

c
ε |XJε), where J cε is the complement of Jε. Thus, from the chain rule, this quantity equals

to
∑

i∈J cε H(Xi|XJε , Xi−1). As Xi is a discrete random variable and φ{i}(x) = (xi − µi)/σj , then

H(Xi|XJε , Xi−1) = H
(
φ{i}(X)|XJε , Xi−1

)
.

Since φ{i} is the standard parity as in Section II, then, from the orthogonalization process in (2), we can write

φ{i} = ψ̃{i} +
∑
S⊆[i−1]

αSψS ,

where αS = 〈φ{i}, ψS〉. In this decomposition, the terms in the summation depend only on Xi−1. This is due to the
particular ordering in (1). Therefore, we get the following upper-bound

H(φ{i}|XJε , Xi−1) = H(ψ̃{i}|XJε , Xi−1) ≤ H(ψ̃{i}),

where the last inequality follows by removing the conditioning in the entropy. Lastly, adapting this bound for all
i ∈ J cε , we get the following upper-bound

H(Xd|XJε) ≤
∑
i∈J cε

H(ψ̃{i}). (5)

Now for any i ∈ [d] let
ai = min{|ψ̃{i}(x)| : x ∈ X d, ψ̃{i}(x) 6= 0},

and define amin =∆ mini ai. From the assumption in the statement of the theorem, ‖ψ̃{i}‖22 ≤ ε2, for all i ∈ J cε . Then,
from Markov’s inequality, we obtain that

P{ψ̃{i}(X) 6= 0} = P{|ψ̃{i}(X)|2 ≥ a2
i } ≤

ε2

a2
i

≤ ε2

a2
min

.

Therefore, from grouping axiom for entropy [28], we have that

H(ψ̃{i}) ≤ hb(
ε2

a2
min

) +
ε2

a2
min

log2 |X |, (6)

where hb(·) is the binary entropy function. When ε ≤ amin, by combining (5) and (6), the following inequality holds:

H(Xd|XJε) ≤ (d− |Jε|)
(
hb(

ε2

a2
min

) +
ε2

a2
min

log2 |X |
)
. (7)

Note that the binary entropy satisfies the inequality hb(p) ≤ 2
√
p(1− p). Hence, for fixed d, amin and X , the

right-hand side of the above inequality is dO(ε) as ε → 0. This completes the proof for the first statement of the
theorem.

1The set of all features is a trivial example of a sufficiently informative feature subset.
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Next, we prove the second statement: “if the features take values from {−1, 1}d, then there exist a permutation
of the features so that Jε with ε = 0 is a sufficiently informative subset with minimum cardinality.” Note that, from
Definition 1, the subset J0 = Jε=0 is sufficiently informative. This is because for any j /∈ J0 the parity ψ̃{j}(X) = 0
with probability one. Therefore, from (2), the standard parity φ{j} is a function of (X1, X2, ..., Xj−1). Implying that
Xj is a function of (X1, X2, ..., Xj−1). Hence, H(Xd|XJ0) = 0. It remains to prove that J0 is minimal when the
features take values from {−1, 1}d and are permuted appropriately.

Let A ⊆ [d] be a sufficiently informative subset with minimum cardinality as in Definition 1. Consider a permutation
of the features such that the first |A| features are from A. We perform the orthogonalization process on the permuted
features. Let J0 be the subset for which ‖ψ̃{i}‖2 > 0. We show that |J0| = |A|, implying that J0 is minimal. By
contradiction, suppose |A| < |J0|. Consider the Hilbert space of bounded functions f : {−1, 1}d 7→ R with inner
product defined as 〈f, g〉 = E[f(X)g(X)]. Since A is sufficiently informative, there exists a mapping Γ such that
Xd = Γ(XA) with probability one. Therefore, any function f(Xd) can be written as f(Xd) = f(Γ(XA)). This
implies that the effective dimension of the Hilbert space is at most 2|A|. However, there are |J0| non-trivial parities
ψSi that, from Proposition 1, form an orthonormal basis for this Hilbert space. Hence, the dimension of this space
cannot be less than 2|J0|. This is a contradiction and completes the proof.

As a result of Theorem 1, ‖ψ̃{j}‖2 can be viewed as a measure of the redundancy of each feature and that the
orthogonalization procedure can remove them. We use this measure for unsupervised feature selection, where n i.i.d.
instances

{
x(i), i ∈ [n]

}
, with possible correlations across feature dimension, are available. The idea is to perform

the orthogonalization process as in (2) and find the features j for which ‖ψ̃{j}‖2 is smaller than a threshold ε. These
features are declared as redundant. Based on this idea we present our unsupervised algorithm (UFFS) in Section
IV-A.

C. Supervised Feature Selection

For the supervised version of the problem, we proceed by developing a representation of L∗D(k) in the Fourier
domain. For that, we characterize the Bayes predictor via the Fourier expansion. The Fourier expansion in the
previous section is defined for deterministic functions. The label Y in the feature selection problem is not necessarily
a function of the features, rather it is a stochastic mapping. Therefore, we need to extend the Fourier expansion to
such mappings.

Let J be a subset of the selected features. Note that the Bayes predictor of Y from the observation xJ is given
by g∗(xJ ) = sign

[
E[Y |xJ ]

]
. As a key ingredient in our characterization, we need to define the notion of projection

onto a feature subset.
Denote the elements of J , in the ascending order, as j1 < j2 < · · · < jk. Fix the following ordering of subsets of

J :

∅, {j1}, {j2}, {j1, j2}, {j3}, {j1, j3}, {j2, j3}, {j1, j2, j3}, · · · , {j1, j2, ..., jk}.

Apply the orthogonalization process with respect to this ordering and to all the parities ψS with S ⊆ J . Let ψSi ,
i = 1, 2, ..., 2k be the resulted orthogonalized parities. This process is called orthogonalization with respect to the
feature subset J .

Lemma 1. Given J ⊆ [d], the Bayes predictor of the label Y from observation xJ is given by sign[f⊆J (xJ )],
where f⊆J is a function admitting the following Fourier expansion

f⊆J (xJ ) =∆
∑
S⊆J

fSψS(xJ ), (8)

where ψS’s are the parities resulted from the orthogonalization with respect to J and fS = ED[Y ψS(X)].

Proof: Note that the MMSE estimator of Y from XJ is E[Y |xJ ]. Since, Y take values from {−1, 1}, then the
Bayes predictor is obtained from sign[E[Y |xJ ]]. Define the function e(x) = E[Y |xJ ]. Note that e can be viewed as
a real-valued function on {−1, 1}k. In addition, we can apply Proposition 1 on coordinates j ∈ J and with d = k.
As a result, e has a Fourier expansion of the form

e(x) =
∑
S⊆J

êSψS(x),
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where ψS’s are the orthogonalized parities w.r.t J , and êS = 〈e, ψS〉. Then, for each S ⊆ J , we obtain that

êS = E[e(X)ψS(X)] = E
[
E[Y |XJ ]ψS(X)

]
= E

[
E[Y ψS(X)|XJ ]

]
= E

[
Y ψS(X)

]
= fS

where the second equality holds as ψS(X) depends only on Xj , j ∈ S, and the last equality follows from the
definition of fS as in the statement of the Lemma. Therefore, e admits the same Fourier expansion as f⊆J . With
that the proof is complete.

Theorem 2. The minimum attainable misclassification probability equals to

L∗D(k) =
1

2

[
1− max

J⊆[d], |J |=k
‖f⊆J ‖1,D

]
. (9)

Further, an optimal k-variable predictor of the labels is given by the function sign[f⊆J
∗
(x)], where J ∗ is an optimal

feature subset that maximizes the 1-norm expression above.

Proof: Fix a subset J ⊆ [d] with k elements. From the definition of L∗D(k) in (4), any predictor is a function
g : {−1, 1}k 7→ {−1, 1}. Here, g represents a predictor of Y from XJ . Since Y and g(XJ ) take values from
{−1, 1}, then,

P
{
Y 6= g(XJ )

}
=

1

2
− 1

2
E[Y g(XJ )].

Note that given J , the above probability is minimized by the Bayes estimator. Further, such an estimator is given
by sign

[
E[Y |xJ ]

]
, for all xJ ∈ {−1, 1}k. Hence, it suffices to calculate the above misclassification probability for

g ≡ sign
[
E[Y |xJ ]

]
. For that, in the following, we calculate the expectation E[Y g(XJ )] for g = sign

[
E[Y |xJ ]

]
.

E[Y g(XJ )]
(a)
= E

[
E[Y g(XJ )|XJ ]

]
(b)
= E

[
E[Y |XJ ]g(XJ )

]
(c)
= E

[∣∣E[Y |XJ ]
∣∣] (d)

= E
[∣∣f⊆J (X)

∣∣]
= ‖f⊆J ‖1,

where (a) follows from the law of total probability, (b) holds because g is a function of XJ , equality (c) follows
by replacing g with sign

[
E[Y |xJ ]

]
, and lastly, (d) holds because f⊆J (X) = E[Y |XJ ]. This equality is shown in

Lemma 1. As a result, the minimum misclassification probability for a fixed subset J is equal to 1
2 −

1
2‖f

⊆J ‖1.
Hence, optimizing over all k-element subsets J gives the desired expression and completes the proof.

D. A Measure for Feature Selection

The previous section provides the characterization in the ideal setting where D is known. We leverage this
characterization to the agnostic setting, where only the training set Sn is available. For that, we derive a measure for
selecting the features.

Based on Theorem 2, we define Mn(J ) to be an empirical estimate of ‖f⊆J ‖1. Therefore, if the estimations are
accurate enough, then maximizing Mn leads to a feature subset Ĵ for which LD(Ĵ ) is close to the optimal loss
LD(J ∗) as in (4). In what follows, we describe the derivation of Mn in three steps:
Step 1: We perform an empirical orthogonalization. Let D̂n be the empirical distribution of the training set Sn, that
is D̂n(x, y) = 1

n if (x, y) ∈ Sn, and zero otherwise. We get the empirical version of our results by replacing D

with D̂n. In particular, Proposition 1, and the orthogonalization in (2). Let ψ̂S denote the parities resulted from the
orthogonalization with respect to D̂n. By construction, these functions are orthonormal with respect to D̂n.
Step 2: Next, we construct the estimate of the function f⊆J as in (8). Let

f̂S =∆ ED̂n [Y ψ̂S(X)] =
1

n

∑
i

yiψ̂S(xi).
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Once the empirical parities and the Fourier coefficients f̂S are calculated, the estimation of the projection function
f⊆J is obtained from the equation

f̂⊆J (x) =∆
∑
S⊆J

f̂S ψ̂S(x).

Step 3: The next step is to approximate ‖f̂⊆J ‖1. By definition, ‖f̂⊆J ‖1 =∆ EX[|f̂⊆J (X)|]. Hence, naturally, the
estimation of this quantity is obtained by the empirical averaging

1

n

n∑
i=1

∣∣f̂⊆J (x(i))
∣∣.

However, since we use the same training samples to obtain both f̂⊆J and its empirical 1-norm, these two quantities
are correlated. Hence, the above estimation is possibly biased. That said, we make a correction and define our measure
Mn as in the following

Mn(J ) = ‖̂f⊆J ‖1 =∆
1

n− 1

n∑
i=1

∣∣∣∣ ∑
S⊆J

f̂S ψ̂S(x(i))− 1

n
y(i)

(
ψ̂S(x(i))

)2 ∣∣∣∣. (10)

This correction is done by subtracting the quantity 1
ny(i)

(
ψ̂S(x(i))

)2 in the above.
We use Mn(J ) as an estimate of ‖f⊆J ‖1. We shown that this estimator is asymptotically unbiased, that is∣∣ E[Mn(J )

]
− ‖f⊆J ‖1

∣∣∣→ 0 as n→∞.
We conclude this section by presenting our analysis for the proposed measure. We note here that in our problem

the function f⊆J is not necessarily bounded. Hence, the standard concentration inequalities such as Rademacher
complexity do not apply. We address this issue and prove the following theorem in Appendix B.

Theorem 3. Let Ĵn be the feature subset maximizing Mn over all binary feature subsets with k elements. Let J ∗
be the optimum feature subset as in (9). Then, with probability at least (1− δ), the following bound holds

LD(Ĵn) ≤ LD(J ∗) +

√
λ(k)

n− 1
log(

d

δ
) +O(n−γ),

where γ ∈ (0, 1/2) and λ(k) = 8 k22kc2
k, with ck =∆ maxS⊆[d],|S|≤k‖ψS‖2∞.

The exhaustive search over all k-element feature subsets is computationally expensive. Hence, in the next section,
we present a few approximation methods and propose our algorithm.

IV. PROPOSED ALGORITHMS

We build upon our Fourier expansion and propose our Supervised Fourier Feature Selection (SFFS) and Unsu-
pervised Fourier Feature Selection (UFFS) algorithms. To reduce the computational complexity, we propose a few
approximations.

A. Unsupervised Feature Selection

As for the algorithm, two issues need to be addressed: 1) estimation of ‖ψ̃{j}‖2 from the training instances and
2) the orthogonalization is NP-hard, as there are 2d feature subsets.

To address the first issue, we propose a recursive formula to perform the orthogonalization. Let bj,i = 〈φSj , φSi〉,
and define aj,i = 〈ψSj , φSi〉. With this notation, (2) can be written as

ψ̃Si = φSi −
∑
j<i

aj,iψSj .

Hence, we only need to compute aj,i’s. Note that since ψSi’s are orthonormal, then we obtain that

‖ψ̃Si‖22 = bi,i −
∑
j<i

a2
j,i.

9
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Further, the coefficients aj,i can be calculated recursively as

aj,i =
1√

bj,j −
∑

r<j a
2
r,j

(
bj,i −

∑
`<j

a`,ja`,i

)
. (11)

With this formulas, we first compute an empirical estimate of bj,i’s, denoted by b̂j,i. Hence, given the training
samples, we compute

b̂j,i =
1

n

∑
`

φSj (x`)φSi(x`).

Then, we compute an estimation of aj,i’s (denoted by âj,i) by calculating (11) with bj,i and aj,i replaced by b̂j,i and
âj,i, receptively.

Note that we further approximate (2) by declaring ψ̂S as trivial, if ‖ψ̃S‖2 ≤ ε, where ε ∈ (0, 1) is a parameter. As
a result, we declare a feature j to be redundant if ‖ψ̃{j}‖2 ≤ ε.
Fixed-depth search: To address the second issue, we propose to limit the size of the subsets involved in the
orthogonalization. Given a parameter t ≤ d, the orthogonalization is performed only on feature subsets of size
at most t. For that we use the standard ordering as in (1), but restricted to subsets of size at most t. For most
practical purposes t ≤ 3. With that the search space is reduced to

(
d
t

)
. Further, this limitation is sufficient when the

dependencies across the features are bounded to at most t features.

Algorithm 1: Unsupervised Fourier Feature Selection (UFFS)

Input: n training samples xi ∈ Rd, depth parameter t ≤ d, and redundancy threshold ε ∈ (0, 1)
Output: Features’ measures norm(j), j = 1, 2, ...d

1 Procedure FourierOrth(t):
2 Compute the empirical mean µ̂j and standard deviation σ̂j of each feature.
3 Generate all subsets Si ⊆ [d] with size at most t and with the standard ordering as in (1). Compute the

matrix B̂ with elements:

b̂j,i ←
1

n

n∑
l=1

[ ∏
u∈Sj

xlu − µ̂u
σ̂u

][ ∏
v∈Si

xlv − µ̂v
σ̂v

]
.

4 Set Â← B̂

5 for row j of Â do
6 update the jth row: Âj,∗ ← Âj,∗ −

∑
`<j â`,jÂ`,∗

7 Compute norm(Sj)←
√

[b̂j,j −
∑

r<j â
2
r,j ]

+

8 if norm(Sj) ≤ ε then
9 Set the jth row of Â zero: Âj,∗ ← 0

10 else
11 Normalize the jth row: Âj,∗ ← Âj,∗

norm(Sj)

12 Declare all j ∈ [d] with norm(j) ≥ ε as non-redundant.

Remark 2. One can provide a consistency analysis on asymptotic performance of FourierOrth. More precisely,
let Ĵn be the set of features declared FourierOrth(t). Then, there exists a function λ such that Ĵn is a λ(ε, n)-
sufficiently informative and limn7→∞ limε7→0 λ(ε, n) = 0.

The main idea to show the above statement is as follows: Let D̂n denote the empirical distribution of the training
samples. That is D̂n(x) = 1

n if x is in the training set; otherwise D̂n(x) = 0. We apply Theorem 1 with D̂n as the
distribution of the random variables in the statement. As a result, Ĥn(X|XĴn) = O(ε), where Ĥn is the conditional
entropy calculated over D̂n as the distribution. The rest of the argument is a concentration analysis. In particular,
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from McDiarmid’s inequality and the continuity of entropy, we can show that Ĥn converges to the true conditional
entropy.
Feature partitioning: For large dimensional data sets, we can further reduce the complexity by partitioning the
features. We randomly partition the features into multiple groups of approximately equal size (say m features each).
Then, we perform FourierOrth on each group, and remove the redundant features within it. With this approach,
the computational complexity with depth parameter t and group size m is O(n d

mm
2t). The parameters m and t are

chosen depending on the limitations on running time. These parameters are typically chosen independent of the size
of the data set. For instance, we choose t ≤ 3 and m = 40 for our numerical results. As a result, we obtain a
complexity linear in the size of the data set. We present our experimental results in Section V.

B. Supervised Feature Selection

The measure Mn captures the joint effect of the candidate feature subsets. However, to further reduce the running
time, we adopt the fixed-depth search here. Hence, instead of searching over all k-element feature subsets, we choose
to search over all t element subsets (say t = 3). For that we calculate Mn(T ) for all t element feature subsets. Next,
we rank these subsets in the descending order base on Mn. Then, starting from the top, we take the union of T ’s
to obtain a k-element feature subset. With this approach, we present Algorithm 2. Note that with t = 1, our search
algorithm reduces to feature-ranking method.

Algorithm 2: Supervised Fourier Feature Selection (SFFS)
Input: n training samples (xi, yi), desired number of features k, and the depth parameter t ≤ k
Output: Feature subset Ĵn

1 Run FourierOrth(t) to get the non-trivial parities and non-redundant features.
2 Procedure SFFS(t, k):
3 Rank all t-variable features subsets T according to Mn as in (10).
4 If Ti are the subsets in the descending order, set Ĵn =

⋃r
i=1Ti, where r chosen such that the union has k

different elements.
5 Return Ĵn

With that, the computational complexity of our SFFS algorithm for a fixed parameter t is O(nd̃t), where d̃ is the
number of non-trivial features declared from the UFFS algorithm. Our numerical results verifies that usually d̃ is
much smaller than d, see Table II. As a result, the overall computational complexity of the algorithm O(nd+ nd̃t)
which is O(nd) for large data sets.

V. NUMERICAL EXPERIMENTS

We now compare the performance of our UFFS and SFFS algorithms (Algorithm 1 and 2) with several well-
known methods for unsupervised and supervised feature selection. Our numerical results are presented in two parts:
unsupervised and supervised setting. We tested the algorithms on several real-world data sets as given in Table I.
These data sets are benchmarks and taken from [2] and the UCI repository [35]. In addition, we generated five
synthetic data sets: S1, S2, S3 are for unsupervised feature selection, and E1, E2 are for the supervised variant of
the problem. These data sets are described below:

A. Synthetic data sets

For unsupervised feature selection, we generated three data sets, denoted by S1, S2, and S3. Each data set has 30
features: 10 informative denoted by (X1, X2, ..., X10), 10 nonlinear redundant (X11, X12, ..., X20), and 10 linearly
redundant (X21, X12, ..., X30). The informative features are generated according to three distributions, one for each
data set. The distribution for S1 is N(0, I10), for S2 is uniform distribution over [−1, 1]10, and for S3 is uniform
distribution over {−1, 1}10. Each nonlinear redundant feature is generated from Xj = 3Xi1Xi2Xi3 , where j = 11,
12, ..., 20, and i1, i2, i3 are randomly and uniformly selected from {1, 2, ..., 10}. The linearly redundant features are
generated from Xj =

∑5
l=1 aj,lXil , where il’s are selected randomly from {1, 2, ..., 10} and aj,l ∼ Unif(0, 1). We
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TABLE I: Properties of the tested data sets.

Data set S1 S2 S3 E1 E2 USPS Isolet COIL20 Covertype Australian Musk ALL AML
Features 30 30 30 20 20 256 617 1024 46 14 166 7128
Samples 1000 1000 1000 1000 1000 9298 1560 1440 581 690 467 72

TABLE II: Comparison of unsupervised algorithms and number of non-redundant features declared by UFFS (d̃).

S1 S2 S3 USPS Isolet COIL20 Covertype Australian Musk ALL AML

No FS 77.9 75.0 87.0 97.3 92.8 98.8 75.6 84.9 92.2 94.3

UFFS d̃ 11 12 11 93 309 331 34 12 35 39

UFFS 80.3 76.8 86.2 97.0 91.7 98.8 76.9 85.1 85.7 97.1
LS 55.1 61.2 71.0 95.6 88.6 98.9 72.8 85.4 84.5 97.2

MCFC 56.6 59.0 65.8 93.9 90.1 94.0 72.3 84.8 84.2 95.9
UDFS 64.0 60.6 64.3 80.8 90.2 98.0 72.0 84.9 80 86.2

use the above redundancy model for each data set. For the sake of performance comparison, we add a labeling to the
above data sets. However, the labels are not revealed to the algorithms. We generate a fixed but randomly generated
labeling function f(X) on R10. This function is the sign of the following randomly generated polynomial in R10:

f(x) = sign
[ ∏

1≤j≤3

(
b0,j +

∑
1≤i≤10

bi,jxi
)]
,

where bi,j ∼ Unif(0, 1) and mutually independent.
For supervised feature selection, we generate two data sets denoted by E1 and E2. Each data set consists of 1000

samples each having 20 features distributed according to uniform distribution over {−1, 1}20 for E1 and N(0, I20)
for E2. The label is a function of only (X1, X2, ..., X6) and is of the form f(x) = sign[p(x)], where p is a polynomial
generated randomly according to an Erlang distribution (See Appendix D for more details).

B. Numerical Results for Unsupervised Algorithms

We compare the performance of UFFS with Laplacian Score (LS) [17], MCFC [36], and UDFS [14] on the real
and the synthetic data sets. The labels are not revealed to the algorithms but are used for measuring the performances.
Features are randomly ordered so that the initial ordering would not affect the experiments’ outcomes. Contrary to
other algorithms, UFFS does not rank the feature; instead, it outputs a set of indices as the non-redundant features.
We run UFFS three times: first with t = 1,m = d, second, with t = 2,m = 50 but on the selected features from the
first run, and third, with t = 3,m = 30 but on the selected features from the second run. For each experiment, let d̃
denote the number of the selected features by UFFS at the third run. For comparing the performance to the ranking
algorithms, we select only the d̃ features with the highest rank. Once the features are selected by each unsupervised
algorithm, we reveal the samples of the selected features with the labels to a classifier and compute its prediction
accuracy. A support vector machine (SVM) classifier with radial basis function as kernel is employed for all the
studies. We perform a 5-fold cross-validation using this classifier and on the entire data set.

Table II shows the average of the resulted classification accuracies for each algorithm. The second row is the resulted
accuracy without any feature selection. The third row is d̃ which is the number of non-redundant features declared
by the UFFS. Observe that, in synthetic data sets, d̃ is very close to 10 which is the actual number of non-redundant
features. The resulted accuracy by the UFFS is very close or greater than the accuracy without feature selection
which verifies that the removed features were redundant. Further, it significantly outperforms other algorithms in
the synthetic and many real data sets. This result shows that the UFFS performs well on data sets with nonlinear
redundancies.

C. Numerical Results for Supervised Setting

In this part, we compare SFFS with ReliefF [21], mRMR [18], MI [37], RFS [19], and CCM [20]. We run SFFS
with t = 1 and t = 2 for real data sets and with t = 3 for synthetic ones. As a performance measure, we perform a
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Fig. 1: Classification accuracy (y-axis) versus number of selected features k (x-axis). Our algorithm SFFS has
consistent top performance, also leading in some ranges of k, in the above datasets. The kernel-based approach CCM
has the computational complexity cubic in n, and thus we were unable to run CCM for USPS with its author’s
original implementation. Overlaps: SFFS t = 3 with ReliefF for E1 and E2, SFFS t = 1 with SFFS t = 2 for USPS
and Musk.

5-fold cross-validation with feature selection and the SVM classifier described above in a pipeline. The parameters
of the SVM classifier are the same as in our unsupervised experiments. The the implementation details are given
in Appendix E. Figure 1 shows the average classification accuracy for various values of selected features (k). For
real-world data sets, as the figure shows, we obtain consistently good results in all the data sets and leading in some
ranges of k. The compared algorithms perform well only in some of the data sets while our algorithms have reliable
steady performance in all the cases. For instance, in the Isolet data set, we observe a dominant performance by our
SFFS for k > 40 as compared to other algorithms. In Musk, we observe a notable performance improvement for
k ∈ [25, 50]. Note that SFFS with t = 1 and t = 2 are overlapping in these data sets and for many values of k.

As explained before, in E1 and E2, there are no redundant features and there are only 6 relevant features. This
is verified in Figure 1, where the maximum accuracy (100%) is obtained at around k = 6. Further, we observe a
significant performance gap between our approach and the other algorithms except for ReliefF. The low accuracy
of these algorithms (below 60% in E2) suggests their failure to find the relevant features in these data sets. We
believe this is due to the highly nonlinear feature-label relations in such data sets which are imposed by the Erlang
distribution in our constructions. This observation calls for more sophisticated approaches in feature selection to
address highly non-linear relations.

D. Classification accuracy vs t

Next, we analyze the effect of the depth parameter (t) on the algorithm’s performance. Figure 2 presents classi-
fication accuracy of SFFS for various values of t when the number of selected features are k = 5, 10 and 20. We
present the result for three of our datasets. As shown there, low values of t are sufficient to get a good performance.
In some cases as t increases, the performance drops because the high value of t demands more number of samples.

E. Comparison of Running Times

Lastly, in Table III, we compare the running time of SFFS with other algorithms, and on the datasets we tested
For the existing algorithms, the implementations are taken from [2] and correspond to the original implementations,
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except for mRMR and CCM where we used the optimized implementations from the authors

TABLE III: Comparison of running times for 5-fold cross validation (in seconds). All the experiments were performed
on 48-CPU workstation, with Intel(R) Xeon(R) CPU E7-8857 v2 @ 3.00GHz and 256GB RAM. The kernel-based
algorithm CCM couldn’t finish for long time in the USPS dataset due to cubic sample complexity

Covertype Australian Musk ALL AML USPS Isolet COIL20

SFFS (t=1) 2.7 3.5 3.3 303 298 74.26 41
SFFS (t=2) 3.1 3.9 4 378 378 74.35 65

RFS 6 4 2 447 1010 58 62
mRMR 1.41 0.89 56 300 510 3585 4238
relifF 1.33 1.88 1.3 4.35 550 36.5 41.42
MI 0.92 0.32 3.05 280 172 77 104

CCM 48 157 159 135 – 3276 3662
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APPENDIX A
PROOF OF PROPOSITION 1

Recall from the discussion in Section II that ψSi’s are orthogonormal. We complete the proof of the Proposition
by showing that any function g can be written as a linear combination of these parities.

Let DXj , j ∈ [d], be the marginals of DX and let PXd be the product probability distribution with the same
marginals DXj . Without loss of generality, assume that Xj’s are non-trivial random variables. Then, from the Fourier
analysis on the Boolean cube [5], the function g can be written as

g(x) =
∑
S⊆[d]

gS φS(x), ∀x ∈ {−1, 1}d,

where gS = EPXd [g(Xd)φS(Xd)] and the expectation is taken with respect to PXd . By performing the reverse of
the orthogonalization process in (2), each parity φSi , i = 1, 2, .., 2d, can be written as

φSi(x) =
∑
j≤i

αi,jψSj (x), (12)

where αi,j = 〈φSj , ψSj 〉 and the above equality holds for all x ∈ {−1, 1}d except a measure-zero subset. Hence,
replacing φSi with the right-hand side of (12), we can write

g(x) =

2d∑
i=1

gSi
( ∑
j:j≤i

αi,jψSj (x)
)

=

2d∑
j=1

( ∑
i:i≥j

gSiαi,j
)
ψSj (x).

Hence, we obtain a decomposition of g as a linear combination of ψSi’s. Since, ψSi’s are orthogonal, the coefficients
in this linear combination are unique and calculated as in the statement of the proposition.

APPENDIX B
PROOF OF THEOREM 3

From the proof of Theorem 2 and the definition of f⊆J , we obtain that

LD(J ) =
1

2
− 1

2
‖f⊆J ‖1.

As a result,

LD(Ĵn)− LD(J ∗) =
1

2

(
‖f⊆J ∗‖1 − ‖f⊆Ĵn‖1

)
. (13)

By adding and subtracting Mn(Ĵn) and Mn(J ∗), we obtain that

‖f⊆J ∗‖1 − ‖f⊆Ĵn‖1 =
(
‖f⊆J ∗‖1 −Mn(J ∗)

)
+
(
Mn(J ∗)−Mn(Ĵn)

)
+
(
Mn(Ĵn)− ‖f⊆Ĵn‖1

)
≤
(
‖f⊆J ∗‖1 −Mn(J ∗)

)
+
(
Mn(Ĵn)− ‖f⊆Ĵn‖1

)
, (14)

where the last inequality follows as Mn(J ∗) ≤ Mn(Ĵn). Next, we provide upper bounds on the right-hand side of
the above inequality. Let µ̂j and σ̂j , j = 1, 2, ..., d, denote the empirical estimate of the mean and standard deviation
of the features. For any subset S with at most k elements, let φ̂S(xd) =

∏
j∈S

xj−µ̂j
σ̂j

. Now, fix a subset J with
|J | ≤ k and perform the orthogonalization process w.r.t J . We proceed with the following lemma which is proved
in Appendix C.
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Lemma 2. The measure Mn(J ) as in (10) is an asymptotically unbiased estimate of ‖f⊆J ‖1. More precisely, given
any γ ∈ (0, 1

2) and for any feature subset J with |J | ≤ k,∣∣∣ ESn∼Dn

[
Mn(J )

]
− ‖f⊆J ‖1

∣∣∣ ≤ O(n−γ),

where the expectation is taken with respect to the training samples.

Next, we apply McDiarmid inequality on Mn(J ) and show that Mn(J ) is an accurate estimate of ‖f⊆J ‖1 with
high probability. Note that Mn is a function of the random training samples (xi, yi). Suppose, for a fixed i, the training
instant (xi, yi) is replaced with an i.i.d. copy (x̃i, ỹi). Let M̃ (1)

n be the resulted measure with (x̃i, ỹi) replacing (xi, yi).
Then, we can show that for any J with |J | ≤ k, the inequality holds almost surely

|Mn(J )− M̃ (1)
n (J )| ≤ 4

n− 1
2k max
S⊆[d],|S|≤k

‖ψS‖2∞ =∆
4 2kck
n− 1

.

From McDiarmid’s inequality, for a fixed subset J ⊆ [d] with |J | = k

P
{∣∣Mn(J )− E[Mn(J )]

∣∣ ≤ ε′} ≤ 2 exp
{
− (n− 1)ε′2

8 22kc2
k

}
,

where the expectation is taken with respect to the training samples. Using the union bound, we obtain that

P
{⋃

J :|J |=k

{∣∣Mn(J )− E[Mn(J )]
∣∣ ≤ ε′}} ≤ 2

(
d

k

)
exp

{
− (n− 1)ε′2

8 22kc2
k

}
.

Thus, with probability (1− δ), the inequality

∣∣Mn(J )− E[Mn(J )]
∣∣ ≤√ λ(k)

(n− 1)
log(

d

δ
),

holds for all J ⊆ [d] with |J | = k, where λ(k) = 8 k22kc2
k. Next, from Lemma 2 and the triangle inequality, we

have, with probability at least (1− δ), that

∣∣Mn(J )− ‖f⊆J ‖1
∣∣ ≤√ λ(k)

(n− 1)
log(

d

δ
) +O(n−γ), ∀J ⊆ [d], |J | = k. (15)

The proof completes by combining (13), (14), and (15).

APPENDIX C
PROOF OF LEMMA 2

We first assume that there is no estimation error for mean and standard deviation of the features; that is µ̂j = µj
and σ̂j = σj for all j ∈ [d]. Further, b̂ij = bij for all i, j for which their corresponding feature subsets satisfy |Si| ≤ k
and |Sj | ≤ k. Let Mn be the Mn under this condition. Define, the function

f̄⊆J(i) (x) =∆
n

n− 1

∑
S⊆J

(
f̄S −

1

n
Y (i)ψS(X(i))

)
ψS(x), (16)

for all x ∈ X d, where f̄S = 1
n

∑
i Y (i)ψS(X(i)). With this definition, given any x, the quantity f̄⊆J(i) (x) is independent

of (X(i), Y (i)). Further, we can write Mn as the summation Mn(J ) = 1
n

∑
i |f̄
⊆J
(i) (X(i))|. Hence, the expectation

of Mn taken over the training samples gives

E[Mn(J )] =
1

n

n∑
i=1

EX(1),...,X(n)

[ ∣∣∣ f̄⊆J(i) (X(i))
∣∣∣ ]

= EX(1),...,X(n)

[ ∣∣∣ f̄⊆J(1) (X(1))
∣∣∣ ]

= EX(2),...,X(n)EX(1)

[ ∣∣∣ f̄⊆J(1) (X(1))
∣∣∣ ]

= EX(2),...,X(n)

[
‖f̄⊆J(1) ‖1

]
, (17)
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where the first equality is due to the symmetry with respect to the index i of the training samples. The last equality
is due to the definition of 1-norm and the property that the function f̄⊆J(1) is independent of (X(1), Y (1)). Note that

f̄⊆J(1) is as an estimation of the projection f⊆J using the (n− 1) training samples (X(i), Y (i)), i = 2, 3, ..., n. Next,

we bound the difference
∣∣∣E‖f̄⊆J(1) ‖1 − ‖f

⊆J ‖1
∣∣∣. Observe that∣∣∣E[‖f̄⊆J(1) ‖1

]
− ‖f⊆J ‖1

∣∣∣ ≤ E
[
‖f̄⊆J(1) − f

⊆J ‖1
]

≤ E
[
‖f̄⊆J(1) − f

⊆J ‖2
]

≤
√
E
[
‖f̄⊆J(1) − f⊆J ‖

2
2

]
,

where the first inequality is obtained by applying the triangle inequality twice, one for ‖f̄⊆J(1) ‖1 and once for ‖f⊆J ‖1.
The second inequality is from the identity ‖·‖1 ≤ ‖·‖2. The third inequality is due to the Jensen’s inequality. Next,
by Parseval’s identity we have

E
[
‖f⊆J − f̄⊆J(1) ‖

2
2

]
=
∑
S⊆J

E
[
|fS − f̄(1),S |2

]
=
∑
S⊆J

var
(
f̄(1),S

)
,

where f̄(1),S is the empirical average of i.i.d. random variables Y (i)ψS(X(i)) for i = 2, 3, ..., n. Thus,

var
(
f̄(1),S

)
=

1

n− 1
var
(
Y ψS(X)

)
=

1

n− 1
(E
[
Y 2ψS

2(X)
]
− fS2)

=
1

n− 1
(1− fS2).

Hence,

E
[
‖f⊆J − f̄⊆J(1) ‖

2
2

]
=

1

n− 1

∑
S⊆J

(1− fS2) =
1

n− 1
(2|J | − ‖f⊆J ‖22)

≤ 1

n− 1
2k.

Putting all together we get that∣∣∣E[Mn

]
− ‖f⊆J ‖1

∣∣∣ =
∣∣∣E[‖f̄⊆J(1) ‖1

]
− ‖f⊆J ‖1

∣∣∣ ≤ 2k/2√
n− 1

. (18)

Next, we address the effect of mean and variance estimations. For tractability of our analysis, we use a fraction
of the training samples just for the mean and variance estimations. As a measure of accuracy of the estimations, we
require the following event

(B) :
∣∣µ̂j − µj∣∣ ≤ ε0, and

∣∣1− σj
σ̂j

∣∣ ≤ 2ε0
σ2
j

, ∀j ∈ [d], (19)

to happen with probability close to one. This is a deviation from standard measures of estimations in which the
variance of the differences are required to be small. In the following lemma, we bound the estimation errors in terms
of the number of the samples.

Lemma 3. Given ε0, δ0 ∈ (0, 1), the event (B) happens with probability at least (1 − δ0), provided that atleast
n0(ε0, δ0) = 2

ε20
log 2d

δ0
samples are available.

Proof: Form McDiarmid’s inequality, for each j ∈ [d] we have

P{|µ̂j − µj | ≥ ε0} ≤ 2 exp{−nε
2
0

2
}.
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Therefore, applying the union bound gives

P
{ d⋃
j=1

{
|µ̂j − µj | ≥ ε0

}}
≤ 2d exp{−nε

2
0

2
}.

Thus, the right-hand side of the above inequality is less than δ0, if n ≥ 2
ε20

log(2d
δ0

). As a result we obtain the
inequalities for the estimation of µj’s. Next, we prove the inequalities for the estimation of σj’s. For any fixed
µ̂ ∈ (−1, 1), define the function hµ̂(x) =

√
1−x2
√

1−µ̂2 . From Taylor’s theorem, there exists ζ ∈ (−1, 1) which is between
x and µ̂ such that

hµ̂(x) = 1− ζ(x− µ̂)√
(1− ζ2)(1− µ̂2)

.

As a result,

|hµ̂(x)− 1| = |ζ||x− µ̂|√
(1− ζ2)(1− µ̂2)

≤ |x− µ̂|√
(1− (max{x, µ̂})2)(1− µ̂2)

.

Now by setting x = µj and that |µ̂j − µj | ≤ ε0, we have

|σj
σ̂j
− 1| = |hµ̂(µ)− 1| ≤ ε0

σ̂min{σ̂, σ}
.

Note that, |µ̂j | ≤ |µj |+ ε0. Therefore,

σ̂2
j ≥ 1− (|µj |+ ε0)2 ≥ σ2

j − 2ε0|µj | − ε20 ≥ σ2
j − 3ε0.

As a result,

|σj
σ̂j
− 1| ≤ ε0

σ2
j − 3ε0

≤ 2ε0
σ2
j

,

which completes the proof of the lemma.
By conditioning on (B) and from triangle inequality we obtain that∣∣∣E[Mn(J )|B

]
− ‖f⊆J ‖1

∣∣∣ ≤ ∣∣∣E[Mn(J )|B
]
− E

[
Mn(J )

]∣∣∣+
∣∣∣E[Mn(J )

]
− ‖f⊆J ‖1

∣∣∣
(a)

≤
∣∣∣E[Mn(J )|B

]
− E

[
Mn(J )

]∣∣∣+
2k/2√
n− 1

(20)

where (a) follows from (18). We proceed with the following lemma which is proved in Appendix C-A.

Lemma 4. Conditioned on B the inequalities
∣∣ Mn(J ) −Mn(J )

∣∣ ≤ λ(ε0) hold, almost surely, for all k-element
subsets J , where λ is a function satisfying λ(ε0) = O(k2kckε0) as ε→ 0.

Consequently, from (20) we have∣∣∣E[Mn(J )|B
]
− ‖f⊆J ‖1

∣∣∣ ≤ λ(ε0) +
2k/2√
n− 1

A. Proof of Lemma 4

Recall, from (16) and the argument afterward, that Mn can be written as Mn(J ) = 1
n

∑
i

∣∣∣f̄⊆J(i) (X(i))
∣∣∣, where

f̄⊆J(i) is defined in (16) and is repeated here

f̄⊆J(i) (x) =∆
n

n− 1

∑
S⊆J

(
f̄S −

1

n
Y (i)ψS(X(i))

)
ψS(x),

with f̄S = 1
n

∑
i Y (i)ψS(X(i)). Similarly, Mn can be written as

Mn(J ) =
1

n

∑
i

∣∣∣f̂⊆J(i) (X(i))
∣∣∣,
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where f̂⊆J(i) is defined as

f̂⊆J(i) (x) =∆
n

n− 1

∑
S⊆J

(
f̂S −

1

n
Y (i)

∏
j∈S

Xj(i)− µ̂j
σ̂j

)
ψ̂S(x).

Note that f̂⊆J(i) is similar to f̄⊆J(i) as in (16), but with µj , σj and ψS replaced with their estimations µ̂j , σ̂j and ψ̂S ,
respectively.

With the above definitions, from triangle inequality and the fact that ||a| − |b|| ≤ |a− b|, we obtain∣∣Mn(J )−Mn(J )
∣∣ ≤ 1

n

∑
i

∣∣f̄⊆J(i) (X(i))− f̂⊆J(i) (X(i))
∣∣ ≤ ‖f̄⊆J(1) − f̂

⊆J
(1) ‖∞,

where the last inequality follows by maximizing over all realizations of X(i) and the symmetricity with respect to
i. Define the function f̄⊆J as

f̄⊆J (x) =∆
∑
S⊆J

f̄SψS(x),

Note that, f̄⊆J(1) and f̂⊆J(1) are, respectively, equal to f̄⊆J and f̂⊆J when the first sample (X(1), Y (1)) is removed

from the training samples. Hence, to bound ‖f̄⊆J(1) − f̂
⊆J
(1) ‖∞, it suffices bound‖f̂⊆J − f̄⊆J ‖∞. That said, it remains

to showing that

‖f̂⊆J − f̄⊆J ‖∞ ≤ λ(ε0), (21)

where λ(ε0) = O(k2kckε0) as ε0 → 0. The argument is as follows.
From triangle inequality for ∞-norm and the definition of f̂⊆J and f̄⊆J we obtain

‖f̂⊆J − f̄⊆J ‖∞ ≤
∑
S⊆J
‖f̂S ψ̂S − f̄S ψS‖∞. (22)

Again by triangle inequality and by adding and subtracting f̄Sψ̂S , we obtain that

‖f̂S ψ̂S − f̄S ψS‖∞ ≤ ‖f̂S ψ̂S − f̄S ψ̂S‖∞ + ‖f̄S ψ̂S − f̄S ψS‖∞
= |f̂S − f̄S | ‖ψ̂S‖∞ + |f̄S | ‖ψ̂S − ψS‖∞.

Next, note that from triangle inequality

|f̂S − f̄S | ≤
1

n

∑
i

|ψ̂S(x(i))− ψS(x(i))| ≤ ‖ψS − ψ̂S‖∞.

Therefore,

‖f̂S ψ̂S − f̄S ψS‖∞ ≤
(
‖ψ̂S‖∞ + |f̄S |

)
‖ψ̂S − ψS‖∞. (23)

We proceed by bounding each term on the right-hand side of (23). As for the first term, we have that ‖ψ̂S‖∞ ≤
‖ψS‖∞ + ‖ψ̂S − ψS‖∞.

As for the second term,

f̄S =
1

n

∑
i

Y (i)ψS(X(i)) ≤ ‖ψS‖∞.

Lastly, the third term is bounded using the following lemma which is proved in Appendix C-B.

Lemma 5. Conditioned on (B), the inequality ‖ψS− ψ̂S‖∞ ≤ γ(ε0) holds for all k-element subsets S, almost surely,
where γ is a function satisfying γ(ε0) = O(kε0

√
ck) as ε0 → 0.

Recall that ck is defined as ck = maxS:|S|≤k‖ψS‖2∞. Therefore, combining these bounds for the terms in (23)
gives the following bound

‖f̂S ψ̂S − f̄S ψS‖∞ ≤
(
2‖ψS‖∞ + ‖ψ̂S − ψS‖∞

)
‖ψ̂S − ψS‖∞

≤
(
2
√
ck + γ(ε0)

)
γ(ε0).
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Plugging the above inequality into (22) gives the desired bound

‖f̂⊆J − f̄⊆J ‖∞ ≤ λ(ε0) =∆ 2k
(
2
√
ckγ(ε0) + γ2(ε0)

)
.

It is not difficult to check that λ(ε0) = O(k2kckε0) as ε0 → 0.

B. Proof of Lemma 5

We start with the triangle inequality for ∞-norm by adding and subtracting bSψS :

‖ψS − ψ̂S‖∞ ≤ ‖ψS − bSψS‖∞ + ‖bSψS − ψ̂S‖∞.

Note that bSψS ≡
∏
j∈S

xj−µj
σ̂i

. Now, using the triangle inequality on the second term above, we have

‖bSψS − ψ̂S‖∞ = ‖bSψS ±
(∑
l∈S

∏
j≤l

xj − µ̂j
σ̂i

∏
r>l

xr − µr
σ̂r

)
− ψ̂S‖∞

≤
∑
l∈S

|µl − µ̂l|
σ̂l

‖
∏
j<l

(xj − µ̂j)
σ̂j

∏
r>l

(xr − µr)
σ̂r

‖∞

≤ ε

σmin

∑
l∈S
‖
∏
j<l

(xj − µ̂j)
σ̂j

∏
r>l

(xr − µr)
σ̂r

‖∞

≤ ε

σmin

∑
l∈S

∏
j<l

(1 + |µ̂j |)
σ̂j

∏
r>l

(1 + |µr|)
σ̂r

(a)

≤ ε

σmin

∑
l∈S

∏
j<l

(1 + |µj |)(1 + ε)

σ̂j

∏
r>l

(1 + |µr|)
σ̂r

(b)

≤ ε

σmin
bS
∑
l∈S

∏
j∈S

(1 + |µj |)(1 + ε)

σj

(c)

≤ kε

σmin
bS(1 + ε)k‖ψS‖∞,

where (a) follows from the inequality (1+|µ̂j |) ≤ (1+|µj |)(1+ε), and (b) follows from (1+|µj |) ≤ (1+|µj |)(1+ε).
Lastly, (c) holds as |S| ≤ k and because ‖ψS‖∞ =

∏
j∈S

1+|µj |
σj

.

‖ψS − ψ̂S‖∞ ≤ |1− bS |‖ψS‖∞ +
kε

σmin
bS(1 + ε)k‖ψS‖∞. (24)

From the assumption of the lemma and the definition of bS we obtain that

1− (1 + ε)|S| ≤ 1− bS ≤ 1− (1− ε)|S|.

Since ε ∈ (0, 1) and |S| ≤ k, then (1− ε)|S| ≥ 1− kε. Also, from the fact that (1 +x) ≤ ex for all x ∈ R, we obtain

1− ekε ≤ 1− bS ≤ kε ≤ ekε − 1. (25)

Lastly, combining (24) and (25) gives the following inequality

‖ψS − ψ̂S‖∞ ≤ (ekε − 1)‖ψS‖∞ +
kε

σmin
(1 + ε)2k‖ψS‖∞.

The proof is complete by noting that ‖ψS‖∞ ≤
√
ck.
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APPENDIX D
GENERATING RANDOM LABELING FUNCTIONS VIA ERLANG DISTRIBUTION

We generate randomly a labeling function which is the sign of a polynomial of the form

p(x) =∆
∑
S
αSx

S ,

where xS =
∏
j∈S xj and the coefficients αS ∈ [0, 1] are generated randomly according to the following process:

Let fE(x) where fE is the pdf of the Erlang random variable with shape and rate parameters equal to 8 and
1, respectively. Let wi = fE(i), i = 1, 2, ...,m. For each wi, we select 10 subsets randomly from the collection of
all subsets S ⊆ [d] that have i-elements. The selected subsets for each i are denoted as Si,j , j = 1, 2, ..., 10. Let
Vi,j ∼ Unif([0, 1]), i ∈ [m] and j ∈ [10] be i.i.d. random variables. Then, the Fourier coefficient corresponding to
Si,j is determined as αi,j = Wi × Vi,j . With that the polynomial p can be written as p(x) =

∑
i,j αi,j

∏
`∈Si,j x`.

Note that by changing the parameters of the Erlang pdf, we get different randomized polynomials.

APPENDIX E
IMPLEMENTATION DETAILS

In this section, we explain the details of our implementations of UFFS and SFFS algorithms.
The following are some of the characteristics of our implementation:
• For benchmarking purposes, we use the original implementation of mRMR2, scikit-feature3 for UDFS, MCFS,

and ReliefF, and scikit-learn4 for mutual information (MI)-based algorithm.
• Though most parts are written in Python, the code snippets that require heavy computations (B and A matrix

computations in Algorithm 1 and Fourier coefficient calculation in Algorithm 2) are converted to C++ using
Cython.

• We have also parallelized some of the computations.
• The code also contains a greedy implementation of the SFFS algorithm which we have not discussed in the

paper, and can be employed for extremely large datasets.
UFFS with limited computational resources: To minimize the computational burden further, we follow a

sequential approach for the UFFS algorithm. Let the target depth t be 3, and a1, a2,m1, and m2 be some positive
integers. First we find the set of non-redundant features outputted by the UFFS with t = 1. Let its count be d1. If
the actual number of features d < a1, we directly run the UFFS with t = 2 on the full set of features. Otherwise,
if d1 < a1, UFFS (t = 2) is run on the selected features from t = 1 step. In case d1 ≥ a1, we split the d1 features
from step t = 1 to multiple non-overlapping clusters of size m1, and the UFFS (t = 2) is executed on these clusters
and combine the selected features. Let the number of selected features from step t = 2 be d2. For step t = 3, we
pursue a similar approach as in the previous step with the selected features from the UFFS (t = 2): a) if d < a2,
run the UFFS directly; b) else if d2 < a2, run the UFFS (t = 3) on d2 features; c) in case d2 ≥ a2, divide d2

features into non-overlapping clusters of size m2 and run t = 3 step on each of them. Here a1, a2, and m1,m2 are
hyperparameters that needs to be chosen depending on the computational resources.

Our supervised algorithm (SFFS) does not require the above approximation since it mainly depends on the
computation of the Fourier coefficients and it usually has fast execution with our C++ implementation.

2http://home.penglab.com/proj/mRMR/
3http://featureselection.asu.edu/
4https://scikit-learn.org
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