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Abstract—The method of types is one of the most popular
techniques in information theory and combinatorics. However,
thus far the method has been mostly applied to one-dimensional
Markov processes, and it has not been thoroughly studied for
general Markov fields. Markov fields over a finite alphabet of
size m ≥ 2 can be viewed as models for multi-dimensional
systems with local interactions. The locality of these interactions
is represented by a shape S while its marking by symbols of
the underlying alphabet is called a tile. Two assignments in a
Markov field have the same type if they have the same empirical
distribution, i.e., if they have the same number of tiles of a
given type. Our goal is to study the growth of the number
of possible Markov field types in either a d-dimensional box
of lengths n1, . . . , nd or its cyclic counterpart, a d-dimensional
torus. We relate this question to the enumeration of nonnegative
integer solutions of a large system of Diophantine linear equations
called the conservation laws. We view a Markov type as a vector
in a D = m|S| dimensional space and count the number of
such vectors satisfying the conservation laws, which turns out to
be the number of integer points in a certain polytope. For the
torus this polytope is of dimension µ = D − 1 − rk(C) where
rk(C) is the number of linearly independent conservation laws
C. This provides an upper bound on the number of types. Then
we construct a matching lower bound leading to the conclusion
that the number of types in the torus Markov field is Θ(Nµ)
where N = n1 · · ·nd. These results are derived by geometric
tools including ideas of discrete and convex multidimensional
geometry.

Index Terms: Markov fields, Markov types, conservation

laws, linear Diophantine equations, enumerative combina-

torics, analytic and discrete geometry.

I. INTRODUCTION

The method of types is one of the most popular and useful

techniques in information theory and combinatorics. Two

sequences of equal length are of the same type if they have

identical empirical distributions, thus sequences of the same

type are assigned the same probability by all distributions in

a given class [6], [25]. The method of types was known for

some time in probability and statistical physics. But only in
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the 1970’s Csiszár and his group developed a general method

and made it a basic tool of information theory of discrete

memoryless sources [5], [6]; see also [4], [8], [11], [17], [25],

[31]. The method of types is used in a myriad of applications

[6], from the minimax redundancy [11] to simulation of infor-

mation sources [18]. However, thus far this method has been

studied only for one-dimensional processes, mostly Markov

[11], [12], [31] but also general stationary ergodic processes

[25]. Here we investigate types of Markov fields (Bayesian

networks, Gibbs fields and/or factor graphs) [14], [29] that

find applications ranging from sensor networks [22] to images

to information retrieval [19]. For example, they are used in

[29] to analyze finite covers of factor graphs to estimate

the behavior of sum-product algorithms for LDPC decoding,

and to approximate the matrix permanent. The focus of [29],

however, is on the usage of the methods of types, while we

are focusing on the quintessential question of characterizing

the set of possible types. We develop here a novel approach

to Markov field types based on multidimensional discrete and

analytic geometry to study this important and intricate problem

that has been left open for too long.

The Markov/Gibbs fields are governed by local interactions,

parameterized by some collections of neighboring sites. We

shall call these collections of sites plaques; they cover the

domain of the Markov fields. If the domain of the underlying

Markov field is a subset of Euclidean space (the case in

all of our applications), these plaques are in fact shifts, or

displacements of the same shape S. For example, for one-

dimensional Markov sources of order r discussed below, the

shape S is just the interval S = {0, 1, . . . , r}, and then

p = S + s where s is a displacement vector (see also [30]). A

marking of a shape with symbols of the alphabet A is called

a tile t. In other words, a tile t : S → A is an assignment of

alphabet letters to all cells of the plaque (one can think of a

tile as a labeled plaque).

In this paper, the fields take values in the finite alphabet A =
{1, 2, . . . ,m}. The domains D, where the fields are defined,

will be rectangular subsets of a d-dimensional integer lattice

Zd, subject to some boundary conditions. We consider here

either the free boundary conditions called a box and denoted

as I or periodic (in all d dimensions) boundary conditions

referred to as a torus and denoted as O. The set of all possible

configurations on the domain D (i.e., functions D → A) is

denoted as Conf(D). The realizations of a Markov field are

written as x ≡ xn ∈ Conf(D), where n = (n1, . . . , nd) is the

size of a torus or a box. Finally, the set of all tiles is denoted

as T ≡ Conf(S).

A. One-dimensional Fields

In order to gently introduce the questions we address

here for Markov fields and their types, we start with a
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one-dimensional Markov chain over a finite alphabet A =
{1, 2, . . . ,m}. Let us write xn = x1 . . . xn ∈ An for a

sequence of length n generated by a Markov source. For

Markov sources of order r = 1 we have two equivalent

representations for the probability P(xn) of xn:

P(xn) = P(x1)

n
∏

i=2

P(xi|xi−1) =

= P(x1)
∏

(i,j)∈A2

p
T(ij)
ij ,

∑

x1

P(x1) = 1,

where pij is the transition probability from i ∈ A to j ∈ A,

and the frequency count T(ij) is the number of pairs (ij) in

the sequence xn. If we denote t = (ij) and T = A2, then the

previous equation can be written as

P(xn) = P(x1)
∏

t∈T

p
T(t)
t . (1)

Similarly, for one-dimensional Markov sources of order r we

have

P(xn) = P(xr
1)

n
∏

i=r+1

P(xi|xi−1 . . . xi−r) =

= P(xr
1)

∏

t∈T

p
T(t)
t ,

∑

xr
1

P(xr
1) = 1, (2)

where t = (i1, . . . , ir+1) ∈ T := Ar+1 and T(t) counts the

appearances of t in xn. In just introduced notation, we have

in this case S = {0, 1, . . . , r}, plaque p = S + s, and |T| =
mr+1, where s is a displacement vector.

B. Gibbs Distributions

It is well known that the distribution P(x) of a Markov

field x can be rewritten as a Gibbs distribution

P(x) = Z−1
∏

p

w(x|p), (3)

where w is a weight – a (nonnegative) function (or equivalently

vector) on configurations of plaques (shape S shifted to some

position), and x|p is a restriction of x to p. The normalization

factor Z is the Gibbs partition function

Z =
∑

x

∏

p

w(x|p). (4)

Observe that (3) is an instance of the Hammersley–Clifford

Theorem [20].

In the case when all the plaques have the same shape and

the weights are translation invariant (i.e., the weight w(x|p)
depends only on the restriction t = x|p, but not on the position

of the plaque), the product in (4) can be rewritten as
∏

p

w(x|p) = wT, (5)

where w = (wx1
, . . . , wxK

) for some K is the vector of

weights, with the convention that ab =
∏

k a
bk
k for two

vectors a = (a1, . . . , aK),b = (b1, . . . , bK). Here, the vector

T = {T(t)}t∈T is the type of the configuration x, i.e., the

number of the plaques p (obtained by shifting the shape S)

for which the restriction x|p is the same as t.

Observe that the partition function (4) can be rewritten as

Z =
∑

T

M(T)wT, (6)

where the summation is over all types T, that is, the vector

of numbers {T(t)}t∈T of plaques p = s + S such that the

restriction of the configuration x to p has the labeling t, and

M(T) is the number of configurations x ∈ Conf(O) (or in

Conf(I)) having the type T. This reformulation (6) allows one

to decouple the effects of the weights w and combinatorics of

the model encoded by the shape of the domain O or I, and

the shape of the plaques S.

C. Counting the Types

The preceding discussion leads naturally to the following

two questions:

1) For a given type, i.e., for the collection of counts

{T(t)}t∈T, how many fields xn realize it (i.e., what is

M(T) for a given type T)?

2) How many distinct types are there, that is, what is the

size of the set of types T for which M(T) > 0?

In the language of Markov sources, the types {T(t)}t∈T, as

we define them, specialize to the familiar Markov types: for

a one-dimensional Markov source, the type just encodes the

number of times the transition i → j (i, j ∈ A) is observed in

a sequence. We should point out that the condition that a given

type can be observed in a Markov trajectory is equivalent to a

certain multigraph representing it to be Eulerian, as discussed

in [12]. The question, for a given Eulerian type T to determine

the number of trajectories having this type is, in our notation,

the question of finding M(T).
These two problems (i.e., number of sequences of a given

type and number of types) were studied quite extensively in

the past for one-dimensional Markov sources. The number

of sequences of a given Markov type was first addressed by

Whittle [31] and then re-established by analytic method in

[11]. A precise evaluation of the number of Markov types

was recently presented in [12] (see also [17] for tree models).

In this paper, we address a more general, and much harder

problem: the enumeration of Markov field types (i.e., the

number of distinct empirical distributions of tile counts), that

can be realized by a “trajectory” x ∈ Conf(O). Let us be

more precise. For dimension d ∈ N, let n = (n1, n2, . . . , nd)
and N := n1 · n2 · . . . · nd. Define the box In = In1

×
In2

× . . .× Ind
⊂ Zd with In := {0, 1, . . . , n− 1} on which

the underlying Markov field is defined. We mostly work here

with the rectangular torus, i.e., the fields on Zd subject to

n-periodic boundary conditions (see Figure 1). Our results

remain valid for the general case, where the periodicity lattice

is not necessarily rectangular. In the 1-dimensional (1D) case

analyzed in [12] these periodic conditions translate into the

cyclic sequences of symbols in A, that is, sequences xn in

which xk+n = xk.

Now, the tile count, or type of the field x is a function

T : T → N counting how often each tile occurs in the field
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Figure 1. Illustration of cyclic fields: here x is defined on the torus O4,3

that is constructed from the box on the left by gluing the left and the right
as well as the top and the bottom edges.

x, that is,

T(t) = |{s ∈ D : S + s ⊂ D, and x|S+s = t}| (7)

where f |B denotes the restriction of a function f to a smaller

domain B, and s is a displacement vector.

While tilings and their asymptotic counting are discussed in

many references [1], [13], [15], [21], our problem is distinctly

different: these references are concerned with (asymptotic)

evaluation of what we call M(T). Here we address the issue

of the support of the function M , especially of its size:

Pn = Pn(A,S) =

{T ∈ ZT : exists x ∈ Conf(D), such that x is of type T}.
(8)

The cardinality of Pn, i.e., the number of realizable types,

is our main concern in this paper. While the question of

understanding the structure of the set of types for multi-

dimensional fields (lattice) is very natural and important one,

we could not find any relevant literature (however, see [29]),

beyond the 1D lattice situation.

D. Overview of the Results

We shall view the types {T(t)}t∈T as a vector of dimension

D := |T| = m|S| equal to the number of possible tiles t ∈ T.

Clearly, T(t) ≥ 0 for all t ∈ T. However, this vector satisfies

a number of equality constraints that have a major impact on

the cardinality of Pn. First of all, one has the normalization

condition
∑

t

T(t) = I(D), (9)

where I(D) is the number of different plaques p = s + S in

D. It is quite obvious for the torus that I = N = n1 · . . . · nd.

Further, in order to tile a torus the number of tiles “ending”

with a subtile t′ : S ′ → A for some subshape S ′ ⊂ S must be

equal to the number of tiles that “begin” with t′ (see Figure 1).

This leads, as in the 1D case, to what we call the conservation

laws (discussed in depth in Section II):
∑

t:t|
S′
1

=t′

T(t) =
∑

t:t|
S′
2

=t′

T(t) (10)

for all pairs of subshapes S ′
1,S

′
2 ⊂ S such that S ′

2 = S ′
1 + s

for some s, and t′ : S ′ → A.

The system of equations (9)–(10) constitutes a linear system

of Diophantine equations in ZD. We denote by Fn :=

Figure 2. Geometry of type vectors for (a) torus {T(t)} and (b) box

{T̃(t)}. Here the gray area denotes the cone C of non-negative type vectors
satisfying the conservation laws while the intersection with either the simplex

{
∑

t T(t) = N} or the simplex {
∑

t T(t) = Ñ} representing a polyhedron
is displayed in bold.

Fn(A,S) the set of nonnegative integer solutions to (9)–

(10). Clearly, |Pn| ≤ |Fn| since all types in Pn satisfy the

conservation laws, and thus lie in Fn. However, we will see

that unlike the 1D situation, these sets are very different.

As we discussed, little is known about the set of realizable

types in higher dimensions. Let us briefly survey the available

1D results where we set N = n1 := n. In [12] an analytic

approach was used to enumerate precisely Fn for d = 1.

Another analytic approach is suggested in Stanley [27], how-

ever, it allows only to find the order of growth. We remark

here that extending analytic techniques of [12] to estimate

asymptotically |Fn| is in general quite complicated, however,

in Section II we discuss it in some details. Furthermore,

for the d = 1 case |Pn| ∼ |Fn| as n → ∞ (meaning:

limn→∞ |Pn|/|Fn| = 1). This seems not to hold any longer

for the multidimensional case where the set of types Pn is

asymptotically smaller: limn→∞ |Pn|/|Fn| < 1. Thus we can

only establish an upper bound on the size of the set of types

through Fn, and we propose another approach to find a lower

bound.

To analyze the cardinality of Fn and, ultimately, Pn we

need to understand the geometry of D-dimensional count vec-

tor {T(t)}t∈T. In particular, we must estimate the dimension

of the affine subspace spanned by Fn. To accomplish it we

shall write the conservation law (10) as C · T = 000 where

C is a matrix describing a system of conservation laws (10),

or, perhaps, its submatrix of the same rank. This allows us

to define the cone C (recall that a set C is a cone if T ∈ C
implies λT ∈ C for all λ ≥ 0):

C ≡ C(A,S) = {T ∈ RD
≥0 : C ·T = 000},

and the corresponding commutative monoid (a “lattice ana-

logue of a cone”)

CZ := C ∩ ZD.

Then

Fn ≡ Fn(A,S) = {T ∈ CZ :
∑

t

T(t) = N}. (11)

The dimensionality (of the affine span of) Fn depends on D
and the set of constraints represented by the matrix C. We

shall show that Fn lies in an affine subspace of dimension

µ = D − 1 − rk(C) where rk(C) is the rank of C. This is

illustrated in Figure 2(a). In our first main result Theorem 3

we present a precise characterization of rk(C).
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Our ultimate goal, however, is to estimate the cardinality

of the number of types Pn, that is, the number of realizable

tiling types, or the number of distinct count vectors T. We

shall see that the Hausdorff distance between the normalized

set P̂n := Pn/N is close to F̂n := Fn/N leading to our main

Theorem 7 in which we establish that |Pn| = Θ(Nµ) where

µ = D−1− rk(C). However, unlike d = 1, where we proved

|Pn| ∼ |Fn|, in the multidimensional case |Fn| seems not to

be asymptotically equivalent to |Pn| even if the growth of both

is the same. Finally, we briefly discuss the non-cyclic Markov

field types and provide an upper bound on the number of

types in a box. In this case lack of cyclic boundary conditions

introduces some imbalance in the conservation laws replacing

C · T = 000 by C · T = b for some vector b as illustrated in

Figure 2(b). This leads to an upper bound O(ND−1/(n)rk(C))
on the number of types in the box In. However, whether this

is the right growth for the number of types in the box case,

remains an open question.

In summary, we prove that |Pn| = Θ(Nµ) for a torus. But

this is only a starting point to study other interesting questions;

for example, regarding the redundancy of a (universal) code [7]

for Markov fields. To solve the redundancy problem, we first

would require to generalize Rissanen’s lower bound [23] to

Markov fields, a quest that has been wanting for some time.

Second, we would need to construct a code achieving this

lower bound. By answering the second question first, we hope

to actually formulate precisely a Rissanen-like lower bound

for Markov fields. To accomplish it we need a conjecture

regarding the number of fields of a given type (that is, about

the size of a typical M(T)). In Conjecture 1 of Section II we

propose that the number of “typical” fields of a given type is

asymptotically AN−µ/22NH where H is the entropy and A
is a constant. Then, the results of this paper would imply that

the average redundancy is

RN =
µ

2
logN + o(logN)

where µ is the dimension of the underlying affine space

defined above. Thus the number of free parameters is exactly

the dimension µ computed in this paper, which seems to be

unknown till now.

Regarding methodology used to establish our results. As

mentioned before, in [12] for d = 1 we applied an analytic

approach through multidimensional Cauchy’s integral. We

still can use this approach for some simple shapes in the

multidimensional case, as discussed in Section II. However,

in the general case we have to switch to tools of discrete,

convex, and analytic multidimensional geometry that some-

what resembles the method discussed in [27]. In particular,

we need to understand how to count the number of lattice

points in a polytope [2], [9]. This will allow us to find the

number of nonnegative integer solutions of a linear system of

Diophantine equations (i.e., conservation laws) that leads to

the enumeration of the Markov field types.

The paper is organized as follows. In the next section we

present our main results and some consequences. Most of the

proofs are delayed till the last section, i.e., Section III.

II. MAIN RESULTS

In this main section of the paper, we formulate the conser-

vation laws and present our main results regarding the enu-

meration of types for Markov fields and tilings. We sprinkle

this section with many examples to illustrate our definitions

and results.

A. Basic Definitions and Examples

We start with some examples illustrating our definitions

discussed in the introduction.

Example 1: 1D Markov chain.

The first example we consider is the 1D case. For d = 1
the torus becomes a length N = n1 cycle, fields are length N
sequences with cyclic boundary condition: xN+i = xi. We are

usually interested in the distribution of pairs, so the shape is

S = {0, 1}; for r-order Markov the shape is S = {0, . . . , r}.

For example, when m = 2 and O10 = {0, . . . , 9}, let

us consider a 1D (cyclic) sequence x = (1122111212).
Clearly, T(21) = 3 because pattern ”21” (i.e., t(0) =
2, t(1) = 1) appears in x for 3 different shifts: s ∈ {3, 7, 9}.

Similarly, T(11) = 3, T(12) = 3, T(22) = 1. Also,
∑

(ij)∈{1,2} T (ij) = 10. Note that we can view T as a

D = m2 = 4 dimensional vector.

Example 2: 2D Markov Field with the L Shape.

Let d = 2. The torus is an n1 × n2 rectangle with cyclic

boundary conditions: x(i, j) = x(i + n1, j) = x(i, j + n2).
Let us take the 4×3 torus O4,3 = {0, 1, 2, 3}×{0, 1, 2}. Fields

assign an element from the alphabet A = {1, 2} to each point

of this torus. For example, for the field

x =





1121
1121
2221





we have x(0, 0) = 2, x(0, 1) = 1, x(1, 0) = 2, but also

x(4, 0) = x(0, 3) = x(4, 3) = x(0, 0), where we use north-

east coordinates with x(0, 0) in the lower left corner. The first

shape we consider here is the simplest nontrivial L-shape:

S = {(0, 0), (0, 1), (1, 0)}. We find

T

(

1
12

)

= 2

because this pattern appears in s ∈ {(3, 0), (1, 1)} positions.

Example 3: 2D Markov Field with the Square � Shape.

The second 2D shape we consider is a 2 × 2 square shape

S = {0, 1}× {0, 1}. For the same torus O4,3 and field xn as

in the previous example, we find

T

(

11
11

)

= 2

because this pattern appears in s ∈ {(0, 1), (3, 1)} positions.

�
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B. Conservation Laws

Conservation laws are associated with the different ways we

can embed a smaller shape S ′ into a larger shape S. Recall

that shapes are subsets of Zd, and thus our embeddings are just

displacements by a vector in Zd. For example, the subshape

S ′ = {0, 1} × {0} has six embeddings into S = {0, 1, 2} ×
{0, 1, 2}, that can be identified with s ∈ {0, 1} × {0, 1, 2}
shifts: S ′ + s ⊂ S.

Let εεε : S ′ → S be an embedding. A tile on S is a mapping

t : S → A, and composing it with εεε we obtain a (sub)tile t′

on the smaller shape: restriction of t to εεε(S ′) we denote as

t′ = εεε∗(t) : S ′ → A. Further, recall that a type T : AS → N is

a vector with components indexed by tiles on S. The mapping

t 7→ εεε∗(t) defines a mapping ε̂εε : TS → TS′ , where TS is set of

types for shape S, taking a type T (on shape S) into a type

T′ = ε̂εεT defined on S ′. Clearly,

(ε̂εεT)(t′) = T′(t′) :=
∑

t: εεε∗(t)=t′

T(t) (12)

is just the sum of the counts T(t) over all tiles t such that

their restriction to εεε(S ′) coincides with t′. Now, if there are

two different embeddings εεε1, εεε2 : S ′ → S, one obtains two

types on S ′, namely ε̂εε1T and ε̂εε2T having the same subtile t′.

The next lemma introduces a conservation law.

Lemma 1. If the type T is the count vector for a configuration

x on a torus On, then

(ε̂εε1T)(t′)− (ε̂εε2T)(t′) = 0 (13)

where ε̂εε1 and ε̂εε2 are mappings with the same corresponding

subtile t′ (i.e., εεε∗1(t) = εεε∗2(t) = t′) satisfying (12).

This obvious lemma again generalizes the Eulerian con-

dition (that every vertex has the same number of incoming

and outgoing edges) in a multigraph describing types in the

1D situation, and is the starting point of our study. It is also

equivalent to (10) discussed in the introduction.

Example 4: Continuation of Example 1.

Returning to the 1D case of Example 1, we have S = {0, 1},

S ′ = {0}, with εεε1 placing the node (subshape) 0 at 0, and εεε2
at 1. In this case,

(ε̂εε1T)(1) = T(11) +T(12) =: T(1∗)

(ε̂εε1T)(2) = T(21) +T(22) =: T(2∗)

and

(ε̂εε2T)(1) = T(11) +T(21) =: T(∗1)

(ε̂εε2T)(2) = T(12) +T(22) =: T(∗2).

(We use the mnemonic T(a∗) and like to denote the sum-

mation over the don’t-care variable.) Observe also that the

conservation law (ε̂εε1T)(1) = (ε̂εε2T)(1) simply means that the

number of edges (in the corresponding multigraph description)

entering 1 is the same as the number of edges leaving 1, that

is, the Euler condition. Furthermore, using the vector count

(T(11),T(12),T(21),T(22)) in the space of types R4, we

can re-write this conservation law as

0 = (ε̂εε1T)(1) − (ε̂εε2T)(1) = T(12)−T(21)

= (0, 1,−1, 0) · (T(11),T(12),T(21),T(22))t,

where in the last line we use the matrix C = (0, 1,−1, 0), and

the superscript t means transposed. In fact, this suggests that

we can re-phrase our discussion in terms of linear functionals

and dual spaces as discussed in details below. In particular,

in this example, we can use the following linear function

(functional):

vvv(S′,t′=”1”,εεε1,εεε2)(T) = (0, 1,−1, 0) ·T,

which is formally a covector in the dual space (space of all

covectors). �

We now re-formulate our conservation laws in the language

of linear functionals and dual spaces [16]. This formalism

allows us to rigorously prove our statements.

Definition 2. Consider the vector space of types, V := RD.

Let S ′ be a shape, εεεi : S ′ → S, i ∈ {1, 2}, be different

embeddings of S ′ into S, and t′ be a tile on S ′. The linear

function (covector) vvv(S′,t′,εεε1,εεε2) ∈ V ∗ defined by

vvv(S′,t′,εεε1,εεε2)T 7→ (ε̂εε1T)(t′)− (ε̂εε2T)(t′)

is called the conservation law corresponding to the tuple

(S ′, t′, εεε1, εεε2).

In the standard basis of V , the mapping ε̂εε is a linear

combination of T coordinates with 0 or 1 coefficients, vvv is

the difference of two of them, so all nonzero coefficients

of vvv(S′,t′,εεε1,εεε2) are ±1. In fact, all conservation laws for all

possible S ′, εεε, t′ form a (huge) matrix C with coefficients

in {−1, 0, 1}. In Example 4, t′ = ”1” leads to (0, 1,−1, 0)
vector, forming the matrix

C =

(

0 1 −1 0
0 −1 1 0

)

with linearly dependent rows (redundant conservation laws).

Generally the number of independent rows (i.e., rank of C)

is much smaller than the number of all possible conditions

obtained this way.

We aim at finding a matrix Cm with independent rows.

There are several sources of such dependencies among the

rows of C:

1) The normalization equation
∑

t′∈Conf(S′)(ε̂εεT)(t′) =
T(∗) = N implies that

∑

t′∈Conf(S′)

vvv(S′,t′,εεε1,εεε2) = 0

for any two embeddings εεεi : S
′ → S. This eliminates for

every pair of embeddings εεε1, εεε2 : S ′ → S one equation

(reducing the number of rows from m|S′| to m|S′| −
1 equations), since summing over all t′ we obtain the

trivial equation N = N .

2) Clearly, the functional vvv(S′,t′,εεε2,εεε3) can be represented

as

vvv(S′,t′,εεε2,εεε3) = vvv(S′,t′,εεε1,εεε3) − vvv(S′,t′,εεε1,εεε2).

5



Hence, for any S ′ (admitting at least two different

embeddings into S), we can fix one of the embeddings

εεεS′ : S ′ → S

as the canonical one, and restrict our attention only to

the conservation laws

vvv(S′,t′,εεεS′ ,εεε),

where εεε runs over all embeddings εεε : S ′ → S different

from εεεS′ : there are (|{εεε : S ′ → S}| − 1) such

choices. (We will discuss a way to produce such a choice

consistently later on.) We remark that the number of

conservation laws after these first two restrictions are:

(m|S′| − 1)(|{εεε : S ′ → S}| − 1).

3) These two reductions are sufficient for small shapes S.

However, for larger shapes such as the 2 × 2 squares,

there are further relations. Specifically, let us choose one

symbol m ∈ A. Observe that counts using this symbol

can be expressed without it, for example T (m1) =
T (∗1) −

∑m−1
i=1 T (i1). In this case, we can express

conservation laws over the whole alphabet A without

using one symbol, say the m-th one. It is sufficient to

focus on laws for the reduced alphabet A′ = A \ {m}:

there are (m− 1)|S
′| of them for a given embedding.

We are now in the position to formulate our first result

regarding the rank of the matrix C. We shall do it in the

formalism we have just established. In particular, we use the

notion of the kernel or null space of the underlying linear

functionals defined in our case as {T : C ·T = 000}. To pick

up further information on linear algebra and linear functionals

the reader is referred to [16]. In Section III we establish the

following result.

Theorem 3. (i) The submatrix Cm of C formed by the rows

corresponding to the functionals

vvv(S′,t′,εεεS′ ,εεε) (14)

with t′ over A′ = A\{m} has the same rank as the full matrix

C, and therefore defines the same kernel (i.e., {T : Cm ·T =
000} = {T : C · T = 000}). Here εεεS′ is a canonical embedding

of a shape S ′ embeddable into S.

(ii) The matrix C has the corank (the dimension of its kernel:

{T : C ·T = 000}) equal to the number of tilings of the reduced

alphabet A′ = A − {m} of all subshapes S ′ (including the

empty one) embeddable into S, i.e.,

µ+ 1 =
∑

S′:|{εεε:S′→S}|≥1

(m− 1)|S
′|. (15)

The rank of the matrix C is given by

rk(C) = D − µ− 1 =

=
∑

S′:|{εεε:S′→S}|≥1

(|{εεε : S ′ → S}| − 1)(m− 1)|S
′|, (16)

where the summation is again over all shapes S ′ embeddable

into S.

For the box shapes, formula (16) (requiring an enumeration

of all subshapes fitting into S) can be significantly simplified:

Corollary 4. If S = Il1 × Il2 × . . . × Ild (recall that Il =
{0, 1, . . . , l − 1}), one has

µ = D − 1− rk(C) =
∑

s∈{0,1}d

m
∏

i
(li−si) · (−1)

∑
i
si (17)

where l = (l1, . . . , ld) ∈ Nd.

C. More Examples

We now discuss a few examples illustrating the dimension-

ality reductions associated with the conservation laws and

Theorem 3. We already observed in Example 4 that there

is a single independent conservation law corresponding to

(0, 1,−1, 0) ·T = 0 in the D = 4 dimensional space of types

leading to µ = 4− 1− 1 = 2.

Example 5: 2D Markov Field with the L-Shape – Continua-

tion.

For the L-shape S = {(0, 0), (0, 1), (1, 0)} in 2D and m = 2,

the frequency vector T has D = m3 = 8 coordinates
((

1
11

)

,

(

1
21

)

,

(

1
12

)

,

(

1
22

)

,

(

2
11

)

,

(

2
21

)

,

(

2
12

)

,

(

2
22

))

;

however, only five of them are independent. The subshape

of a single point S ′ = {(0, 0)}, which can be embedded

in all three positions: εεε1((0, 0)) = (0, 0), εεε2((0, 0)) =
(1, 0), εεε3((0, 0)) = (0, 1) leading to the following conser-

vation laws:

0 = T

(

∗
1∗

)

−T

(

∗
∗1

)

=

= T

(

1
12

)

+T

(

2
12

)

−T

(

1
21

)

−T

(

2
21

)

,

0 = T

(

∗
1∗

)

−T

(

1
∗∗

)

=

= T

(

2
11

)

+T

(

2
12

)

−T

(

1
21

)

−T

(

1
22

)

,

0 = T

(

∗
∗1

)

−T

(

1
∗∗

)

=

= T

(

2
11

)

+T

(

2
21

)

−T

(

1
12

)

−T

(

1
22

)

.

These equations define the functionals vvv(S′,t′,εεε1,εεε2),

vvv(S′,t′,εεε1,εεε3) and vvv(S′,t′,εεε2,εεε3) with t′ = 1. Obviously

one of these equations is redundant – choosing the lower left

position as the canonical embedding εεεS′ := εεε1, there remain

only the first two of the above equations. In the basis above,

they can be written as:

CT =

(

0 −1 1 0 0 −1 1 0
0 −1 0 −1 1 0 1 0

)

·T = 0.
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These two independent conservation laws restrict the space of

T to a µ + 1 =6–dimensional cone, and the normalization

equation further restricts it to a µ = 5 dimensional polytope.

Example 6: 2D Markov Field with Square Shape � – Con-

tinuation.

For the 2×2 square shape and m = 2 the frequency vector T is

in D = m4 = 16–dimensional space. As A′ = A\{m} = {1},

the ultimate set of independent conservation laws (16) are

T

(

∗∗
1∗

)

= T

(

1∗
∗∗

)

= T

(

∗1
∗∗

)

= T

(

∗∗
∗1

)

,

T

(

∗∗
11

)

= T

(

11
∗∗

)

, T

(

1∗
1∗

)

= T

(

∗1
∗1

)

.

The first line contains three equations for a single point shape.

The second line contains the remaining two single conditions

for S ′ = {(0, 0), (1, 0)} and S ′ = {(0, 0), (0, 1)}, respectively,

and both their embeddings. By combining these five equations

we can obtain the remaining ones. For example,

T

(

1∗
∗∗

)

= T

(

1∗
1∗

)

+T

(

1∗
2∗

)

implies

T

(

1∗
2∗

)

= T

(

1∗
∗∗

)

−T

(

1∗
1∗

)

=

= T

(

∗1
∗∗

)

−T

(

∗1
∗1

)

= T

(

∗1
∗2

)

.

Thus, T in D = m4 = 16-dimensional space has µ+ 1 = 11
components by the above five independent conservation laws.

The normalization restricts it further to µ = 10–dimensional

polytope. In Figure 3 we show all 21 vertices of this polytope

and the corresponding tiling. Observe that some vertices

(vectors) are not realizable by a Markov field. �

Finally, we illustrate (17) of Corollary 4 for the box shape.

Example 7. The Box Shape.

Let us now consider a general box shape Il1 × . . . × Ild .

Observe that:

• For the d = 1 dimensional shape S = {(0), (1)} we

have µ = m2 − m, as known already from [12]. For

S = {(0), (1), (2)} we find µ = m3 − m2, while for

S = {(0), (1), (2), (3)} we have µ = m4 −m3.

• For d = 2 the 2× 2 square shape (l1 = l2 = 2) leads to

µ = m4 − 2m2 +m, the 3 × 2 rectangular shape gives

µ = m6 −m4 −m3 +m2 and the 3× 3 square ends up

with µ = m9 − 2m6 +m4.

• For d = 3 the 2× 2× 2 cube leads to µ = m8 − 3m4 +
3m2 − m, while the 2 × 3 × 4 box gives µ = m24 −
m18 −m16 −m12 +m12 +m9 +m8 −m6.

• For d = 4 we have µ = m16 − 4m8 + 6m4 − 4m2 +m
for the 2× 2× 2× 2 cube.

• Finally, in d = 5 space the 2× 2× 2× 2× 2 cube leads

to µ = m32 − 5m16 + 10m8 − 10m4 + 5m2 −m.

D. Geometry and Enumeration

We explore now the geometry of the vector counts T =
{T(t)}t∈T in the D-dimensional space. As discussed, the

conservation laws (which we write as a linear system CT = 0)

together with T ≥ 0 restrict the vectors T to a D− rk(C) =
µ + 1 dimensional cone C and the normalization equation
∑

t T(t) = N (for torus) further restricts T to the polytope

Fn. Formally, let us define

C = {T ∈ RD
≥0 : C ·T = 0}, (18)

Fn = FN ≡ Fn(A,S) =

= {T ∈ C ∩ND :
∑

t

T(t) = N}. (19)

We also define the normalized polytope F̂ of frequency vectors

T̂ as

F̂ ≡ F̂(A,S) = {T̂ ∈ RD
≥0 : C · T̂ = 000;

∑

t

T(t) = 1}

(20)

and let

FN = N F̂ ∩ ND. (21)

Finally, the normalized (rescaled) set of realizable count

vectors (types) is

P̂ ≡ P̂(A,S) =
⋃

n

Pn(A,S)/N(n). (22)

Where N(n) =
∏

i ni is the size of the torus. Obviously,

P̂ ⊂ F̂ .

Observe that F̂ is a compact polyhedron, hence (from basic

convex analysis [24]) a polytope, i.e., the convex hull of its

extremal points. These extremal points are the intersections

of the linear subspace {T : CT = 000,
∑

t T(t) = 1} with

some µ of D conditions of type T (t) = 0. The number of the

extremal points obtained this way is finite and at most
(

D
µ

)

.

Example 8. Polytopes in the 2D Case.

For the L-shape in the 2D case with m = 2, we have a µ = 5
dimensional polytope in D = 8 dimensional space. Among
(

8
5

)

= 56 possible ways to choose zero coordinates, it turns out

that there are only 7 vertices with all nonnegative coordinates.

These seven vertices have the following coordinates:

{(0, 0, 0, 0, 0, 0, 0, 1), (0, 0, 0,
1

3
, 0,

1

3
,
1

3
, 0),

(0, 0, 0,
1

2
,
1

2
, 0, 0, 0), (0, 0,

1

2
, 0, 0,

1

2
, 0, 0),

(0,
1

2
, 0, 0, 0, 0,

1

2
, 0), (0,

1

3
,
1

3
, 0,

1

3
, 0, 0, 0),

(1, 0, 0, 0, 0, 0, 0, 0)}.

All of these points correspond to periodic tilings (the same

periodic tilings as for cases 1 to 7 in Figure 3). On the

other hand, for the 2 × 2 square shape and m = 2, we have

21 vertices of a µ = 10 dimensional polytope in D = 16
dimensional space as shown in Figure 3. Surprisingly, now

some of the vertices do not correspond to periodic tilings, so

in general not all points in F̂ lead to a realizable tiling and

therefore a point in P̂ (see Figure 4). �

7



Figure 3. For m = 2 and the 2× 2 square shape �, we show all 21 vertices (only nonzero coordinates are displayed) of the µ = 10 dimensional polytope
in a D = 16 dimensional space. On the right-hand side, we also show the corresponding realizable tilings: Four of them (14-17) cannot be realized. Periodic
tilings 1-7 correspond to all 7 vertices for the L like shape.

Interestingly enough, we can prove that the topological

closure of P̂ is still a convex subset of F̂ . This is illustrated

in Figure 4 and proved below.

Lemma 5. The closure cl(P̂) of P̂ in a torus is a convex

subset of F̂ .

Proof: To prove convexity of a closed set, it is enough to

show that for any two points in this set, the point in the center

between them is also in the underlying set. For every point

T̂ ∈ cl(P̂) one can find a sequence of periodic tilings, whose

(rescaled) frequency vectors converge to this points.

Consider two sequences of fields: x′
i and x′′

i such that their

frequency vectors converge to T̂′
i → T̂′ and T̂′′

i → T̂′′ as

i → ∞. We need to construct a sequence of fields xi with

frequency vectors T̂i → T̂ = (T̂′ + T̂′′)/2. For this purpose,

having x′
i and x′′

i with correspondingly T̂′
i and T̂′′

i frequency

vectors, we shall construct xi field with T̂i frequency vector

in at most ǫi > 0 distance from (T̂′
i+T̂′′

i )/2, where ǫi → 0 is

some arbitrary sequence. To accomplish it we cover one half

of a large torus with x′
i tiling and the second with x′′

i . If the

size of such a torus grows to infinity, the obtained frequency

tends to (T̂′
i + T̂′′

i )/2, as desired.

The set FN consists of all integer points inside the polytope:

N F̂ ∩ ND. The volume of N F̂ is proportional to Nµ, and

8



Figure 4. An illustration of the polytope F̂ : T̂ vectors realized by periodic
tilings create some irregular subset of the lattice and while N → ∞ they

densely cover some convex subset of F̂ .

we expect the number of integer points inside also grows

asymptotically as Nµ. This is indeed the case by Ehrhart’s

theorem [9]:

Theorem 6 (Ehrhart, 1967). If F̂N is the rational polytope1

given by

Cv = Nb, b ∈ QD, C ∈ QD ×QD,

v ≥ 0, v ∈ RD,

then there exist a period p ∈ N and real coefficients ci,j such

that cµ,j 6= 0 for some j and

|FN | = aµ,jN
µ + aµ−1,jN

µ−1 + . . .+ a0,j

if N ≡ j (mod p)

where FN is a set of integers points inside F̂N , and µ is the

dimension of F̂ , i.e., D − rk(C).

Indeed, by the construction the vertices of F̂N are solutions

of a system of linear equations with integer coefficients

(actually, ±1), making it a rational polytope. Since Fn upper

bounds Pn (as a set), the volume Nµ of Fn provides an upper

bound for the number of types. We need now a matching lower

bound to prove that |Pn(A,S)| = Θ(Nµ). In Section III we

construct such a bound, leading to the main result of this paper.

Theorem 7. Consider the torus On. There exist constants

0 < c− ≤ c+ such that for ni large enough we have

c−Nµ ≤ |Pn(A,S)| ≤ c+Nµ (23)

where, we recall, N = n1 · · ·nd.

We should point out that in [12] for d = 1 it was

proved that |FN | is asymptotically equivalent to |PN |, that

is, |FN |/|PN | → 1 as N → ∞: the set of realizable types

in dimension 1 is essentially given by the conservation laws.

Remarkably, this seems not to be true in general in higher

dimensions. However, in some special cases we can say more

about |FN | but not necessary about |PN |. This is discussed in

the next subsection.

We end this section with a conjecture related to the average

redundancy of a code for a Markov field source. Consider a

two-stage code for Markov fields:

(type of xn, position within the type).

If we denote by S(xn) the number of fields of the same type

as xn, then the code length L(xn) is L(xn) = log(|Pn|) +

1A polytope with vertices in QD is called a rational polytope.

log(S(xn)). We proved in Theorem 7 that log(|Pn|) ∼
µ logN , so to calculate the code length we need to estimate the

size of typical types, that is, the number of fields of a typical

type. But this is hard (see [11] for d = 1 case). Nevertheless,

we shall put forward the following conjecture.

Conjecture 1. For a typical xn the number of fields of the

same type is

S(xn) ∼
A

Nµ/2
2NH

where H is the entropy of the underlying Markov field and A
is a constant.

Provided the conjecture is true, the average redundancy

becomes

RN = E[L(xn)]−NH

= logO(Nµ) + log

(

A

Nµ/2
2NH

)

−NH

=
µ

2
logN + o(logN). (24)

Proving (24) may be very challenging. But we have already

made the first step by providing a precise formula for the

number of free parameters µ (the coefficient at logN ), that

is, actually formulating precisely a Rissanen-like lower bound

for Markov fields.

E. Analytic Approach

In [12] an analytic approach was used to enumerate FN

(here N = n1, the length of the underlying sequence) for d =
1. We first recall some results from [12] and then extend them

to any dimension and shapes. We should point out, however,

that through this approach we will only get better asymptotics

for |FN | but not for |PN |. This is actually of interest on its

own since it allows us to enumerate precisely the number of

nonnegative solutions of a multidimensional system of linear

Diophantine equations; not an easy task, as argued in [27].

Let us recall some facts from [12]. We first assume d = 1
and enumerate FN . We accomplished it by finding the follow-

ing generating function

F ∗
m(z) =

∑

N≥0

|FN (m)|zN

and then taking the coefficient at zN which is written as

[zN ]F ∗
m(z) = |FN (m,S)|.

Let z = {zt}t∈T, where in our case t = (α, β) ∈ A2 is a

pair of symbols or in other words the shape is S = {0, 1}. We

also write zT =
∏

αβ z
T(αβ)
αβ . We introduce a multidimen-

sional generating function
∑

T
zT that we estimate in two

different ways for zαβ = z yα

yβ
for some (yα)α∈A vector:

∑

T

zT =
∏

αβ





∑

T(αβ)

(

z
yα
yβ

)T(αβ)


 =

=
∏

αβ

(

1− z
yα
yβ

)−1

,
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∑

T

zT =
∑

T

z
∑

α,β T(αβ)
∏

α

y
∑

β
T(αβ)−

∑
β
T(βα)

α .

Now if T ∈ FN , that is,
∑

α,β

T(α, β) = N,
∑

β

T(αβ) −
∑

β

T(βα) = 0,

then

F ∗
m(z) =

∑

N≥0

|FN(m,S)|zN =

= [y01y
0
2 . . . y

0
m]

m
∏

α,β=1

(

1− z
yα
yβ

)−1

(25)

where [y0]F (y) := [y01y
0
2 . . . y

0
m]F (y) denotes the zeroth

power coefficient of F (y).
There is a simple interpretation of formula (25): Its right

hand side can be seen as a product of m2 geometric series,

while α, β terms correspond to ”αβ” pattern (pair) in our

sequence. The auxiliary y variables are used to restrict T to

those satisfying the conservation laws: each symbol should

appear the same number of times on the left and on the right

position of S. Thanks to the yα/yβ term, the power of yα
increases by 1 every time α appears in left position of ”αβ”,

and decreases by 1 when it appears in the right position.

However, in addition we have the normalization equation

which allows us to eliminate one of the variables, for example

by setting ym = 1.

Let us now move to the multidimensional case d > 1.

Each auxiliary variable corresponds to a single equation of

the conservation laws. We can reduce the set of equations

by considering only independent variables, as discussed in

Theorem 3.

Let us start with some examples. For the L shape as in

Example 2 we have S = {(0, 0), (0, 1), (1, 0)}, and

F ∗
m(z) =

= [x0
1x

0
2 . . . x

0
my01y

0
2 . . . y

0
m]

∏

α,β,γ

(

1− z
xα

xβ

yα
yγ

)−1

,

where the auxiliary variables x now guard the conservation

law in one direction, y in the other direction. In other words,

the L shape tile t is marked as follows
(

γ
αβ

)

and then the conservation laws are

∑

βγ

T

(

γ
αβ

)

=
∑

βγ

T

(

γ
βα

)

,

∑

βγ

T

(

γ
αβ

)

=
∑

βγ

T

(

α
γβ

)

.

We can choose xm = ym = 1. Interestingly enough, in this

case cl(P̂) = F̂ since both are spanned on 7 vertices in D = 8
dimensional space, as shown in Figure 2. This, however, does

not imply that |FN | ∼ |PN |.

For the analogous 3D L shape S =
{(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0)}, we find

F ∗
m = [x0

1x
0
2 . . . x

0
my01y

0
2 . . . y

0
mu0

1u
0
2 . . . u

0
m]

∏

α,β,γ,δ

(

1− z
xα

xβ

yα
yγ

uα

uδ

)−1

and we can set xm = ym = um = 1. Using partial fraction

expansions, as in [12], we can obtain asymptotic expressions

for |FN |, as illustrated below.

Example 8. For m = 2 in the 2D case and the L shape, we

have

F ∗
2 (z) =

1− z + z2

(z − 1)6(z + 1)2(z2 + z + 1)
.

Using the partial fraction expression we find after some

algebra

|FN(2, L)| =
N5

12 · 5!
+O(N4).

For the analogous 3D L shape when m = 2 we arrive at

F ∗
2 (z) =

Q(z)

D(z)

where D(z) = (z − 1)13(z + 1)5(z2 + 1)(z2 + z + 1)3(z4 +
z3 + z2 + z +1) and Q(z) = 1+ 2z+22z2 +50z3 +94z4+
138z5 + 175z6 + 184z7 + 163z8 + 120z9 + 76z10 + 38z11 +
16z12 + 2z13 + z14. Using the partial fraction decomposition

and Cauchy’s integral formula we find

|FN(2, L)| =
541

4320

N12

12!
+O(N11)

for large N . �

Let us now look at a situation with a more subtle depen-

dence between the conservation laws, for example for the 2×2
square shape in 2D discussed in Example 3. The first approach

could be:

F ∗
m(z) = [x0

11x
0
12 . . . x

0
mmy011y

0
12 . . . y

0
mm]

∏

α,β,γ,δ

(

1− z
xαβ

xγδ

yαγ
yβδ

)−1

where we can initially set xmm = ymm = 1. This for-

mula corresponds to S ′ and s being selected as S ′ =
{(0, 0), (1, 0)}, s = (0, 1) and S ′ = {(0, 0), (0, 1)}, s = (1, 0)
or the following marking of the square tile

(

γ δ
α β

)

.

It leads to a complete set of conservation laws, but with

some linear dependencies, as the conservation law for S ′ =
{(0, 0)}, s = (1, 1) can be induced in two ways. To ensure

using only independent variables/conservation laws, we use

Theorem 3 to deduce the set of independent conservation laws.

This leads to

F ∗
m = [u0

1..u
0
mv01 ..v

0
mw0

1 ..w
0
mx0

11..x
0
mmy011..y

0
mm]

∏

α,β,γ,δ

(

1− z
uα

uβ

vα
vγ

wα

wδ

xαβ

xγδ

yαγ
yβδ

)−1
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where um = vm = wm = 1 and xim = xmi = yim = ymi =
1 for any i ∈ A.

Example 9. Consider m = 2. Then both approaches lead to

F ∗
2 (z) =

Q1(z)

(z − 1)11(z + 1)7(z2 + 1)3(z2 − z + 1)(z2 + z + 1)3

where Q1(z) = 1 + 2z3 + 5z4 + 2z6 + 6z7 + 8z8 + 6z9 +
2z10 + 5z12 + 2z13 + z16, from which we find

|FSize(2,�)| =
5

3456

N10

10!
+O(N9)

for large N . �

For a general shape we consider the conservation laws (14),

attach a variable y to each of them, and choose a fraction of

some of these variables in the product of m|S| geometric series

to enforce the conservation laws by zeroing the power of these

variables. This allows us to find a general expression for the

underlying generating function, that is,

F ∗
m(z) =

= [y0]
∏

t:S→A



1− z
∏

S′ embeddable in S, εεε6=εεε
S′

yεεε∗(t)
yεεε∗

S′(t)





−1

(26)

where εεεS′ is the canonical embedding, [y0] denotes taking

zeroth power of all used yi.

F. Number of Types in a Box – An Upper Bound

Finally, we comment on the number of types P̃n(m,S) in

the box In = In1
× In2

× . . . × Ind
⊂ Zd. We only discuss

an upper bound, leaving establishing the proper growth to a

forthcoming paper. Let x = xn be a configuration in the box

In. Its type in the box is now defined by shifts (embeddings)

that fit into the box, that is,

T̃(t) = |{s ∈ Ĩn : x|S+s = t}|

where Ĩn = {s : S + s ⊂ In}.

We assume that 000 ∈ S and Ĩn ⊂ In. We know that T in the

torus satisfies the conservation laws C · T = 000. For the box,

however, we must re-define the type T̃ by taking into account

the boundary effect on T, that is,

T̃(t) = T(t)− |{s ∈ I ′
n : x|S+s = t}|

where I ′
n = In \ Ĩn, (27)

that is, we need to eliminate that shifts that drive S outside

the box. Multiplying (27) by C and using C ·T = 000 we find

the following conservation laws for the box:

CT̃ = b

for b = C · b′, b′ = (−|{s ∈ I ′
n
: x|S+s = t}|)t∈T .

Notice that the norm of the b′ vector is bounded by the size

of the boundary, that is,
∑

t |b
′(t)| ≤ |I ′

n|, which is of order

Θ(N/mini ni). Furthermore, the matrix C does not depend

on the size of the boundary (only on S and m), therefore the

number of b is bounded by Θ(N/mini ni). Finally, by the

normalization
∑

t

T̃(t) = |Ĩn| =: Ñ ,

types T̃ in the box are in a D − 1 dimensional linear

subspace. For every b, the conservation laws CT̃ = b

have O(Nµ) nonnegative solutions inside a polygon. The

freedom of choosing b ∈ Nrk(C) allows us to shift this

polygon in the remaining rk(C) = D − 1 − µ dimensions

by at most Θ(N/mini ni), so that b is inside the ball of

O((N/mini ni)
D−1−µ) integer points. This leads to the upper

bound O(ND−1/(mini ni)
rk(C)) on the number of types.

However, whether it is the right order of growth in this case

remains an open question.

III. ANALYSIS

In this section we provide the proofs of Theorems 3 and 7.

A. Proof of Theorem 3

In Theorem 3 we present a complete set of independent

conservation laws. Specifically, we take every subshape S ′

embeddable in S and select one of them as the canonical one.

Then we consider all t′ : S ′ → A′ where A′ = A \ {m} and

the corresponding conservation laws (ε̂εεS′T)(t′)−(ε̂εεT)(t′) = 0
for all other ε̂εε embeddings of this subshape. Observe that the

dropped symbol m ∈ A is automatically included since the

following holds:

T′′(t′ ∪ om) = T′(t′)−
∑

i∈A′

T′′(t′ ∪ oi)

where oi is a single point/position outside t′ that takes value

i ∈ A there. Clearly, T′ = ε̂εε′(T) and T′′ = ε̂εε′′(T), where

εεε′, εεε′′ are embeddings corresponding to t′ and t′ ∪ oi.
To prove independence of the conservation laws, we have

to define some order among them and show that C becomes

triangular. We order the conservation laws by the size of

S ′ (referred as height). We illustrate it in Figure 5, where

the ordering of the columns is shown in gray leading to a

triangular form of C.

To make this more formal, let us introduce a certain basis

in the space RD of functions on the configurations on S. Fix

the standard basis {e(t), t ∈ T(A,S)}. For each tiling t, we

can split out the inessential part, the cells b ∈ S where

t(b) = m, and the support of t, i.e., the collection of boxes

where t(b) 6= m. Alternatively we can enumerate the tilings t

of S by the shape S ′ of their support, by the embedding εεε of

this support into S, and by the tiling of S ′ over the reduced

alphabet A \ {m} =: A′. Such a basis vector we will denote

as

e(S ′, εεε, t).

We will call the height of a basis vector e(S ′, εεε, t) the size of

its support, that is

H (e(S ′, εεε, t)) = |S ′|.

Further, we assign to each basis vector its weight, defined

as follows. We first denote by #(b) the number of cells b .
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Figure 5. The nonzero coordinates for all 5 conservation laws discussed in Theorem 3 for a 2× 2 box shape and m = 2: the upper row shows all D = 16
squares corresponding to all tiles t. S′ denotes the canonical embedding and s denotes shift for the second embedding in the (ε̂εεS′T)(t′) − (ε̂εεT)(t′) = 0
conservation law. Reduced alphabet is A′ = {1}, so we need to consider only constant t′ = 1.

Then we number all the cells of S and we assign the weight

of b to be ǫ#(b) for some small ǫ > 0. The weight of a basis

vector e(S ′, εεε, t) is the sum
∑

b∈εεε(S′)

ǫ#(b).

There is nothing very specific about this choice of the weights;

the only property we will use is that for small enough ǫ,
the weights corresponding to different embeddings of the

same subshape S ′ are all different (which is easy to verify).

In particular, for any embeddable S ′, there exists a unique

embedding εεεS′ of S ′ having maximal weight among all such

embeddings εεε : S ′ → S. We will be calling this basis vector

the anchor of the embeddable shape S ′ and its embedding as

canonical.

We group the basis vectors e(S ′, εεε, t) according to their

height (increasing left to right), and within each height by

the support shape S ′ and within each group corresponding

to a support shape S ′ by the tiling t of S ′ over the reduced

alphabet A′. Finally, within each such group (corresponding to

a given subshape S ′ and its tiling t), we order the basis vectors

e(S ′, εεε, t) by the weight of the embeddings εεε. In particular,

the anchor within each group is the rightmost element. This

defines a complete ordering on the basis vectors.

Now we are ready to prove Theorem 3. We will be using

the basis consisting of the standard vectors e(S ′, εεε, t) ordered

as described above, left to right. The rows of the (sub)matrix

Cm (defined in Theorem 3) correspond to the covectors

vvv(S′,t,εεεS′ ,εεε).

Each such covector has exactly two components,

e(S ′, εεεS′ , t)− e(S ′, εεε, t)

in the group of height H (e(S ′, εεεS′ , t)) = H (e(S ′, εεε, t)); all

other components have higher height.

It follows that, if one augments Cm by the rows with basis

vectors e(S ′, εεεS′ , t), running over all embeddable subshapes

S ′, and their tilings t, then the leftmost vectors in the rows

will be all different. Finally, sorting the rows according to these

leftmost elements will result in the upper-triangular matrix.

This, in turn, implies that the basis elements

e(S ′, εεεS′ , t)

span a complement to the kernel of Cm, and therefore the

kernel of C has dimension at most the number of tilings by

symbols of A′ of embeddable shapes S ′.

Denote the subspace of V ∼= RD spanned by the basis

vectors as

LS := e(S ′, εεεS′ , t), t ∈ (A′)S
′

,S ′embeddable into S.

To prove that KerC = KerCm, we will produce for any

torus On of sufficiently large n, a collection of tilings, of size

dim(LS), such that their frequency vectors, paired with the

basis vectors spanning LS , result in a triangular matrix with

± on the diagonal. This implies that KerC = KerCm.

Let n(S) be the smallest vector n such that the box In
contains S + S = {a + b : a, b ∈ S} (understood as

the Minkowski sum). We will be always assuming that S is

embedded into this interval (denoted as IS) in a fixed way.

Let t ∈ T(A,S) be a tiling of the shape S, and S ′ its

support (i.e., the set of cells b where t(b) 6= m), and t′ the

corresponding tiling of S ′ by symbols of the reduced alphabet

A′. For any large enough torus On, place a single copy of t,

in an arbitrary way in the torus, extending it to the rest of the

torus by the symbol m. Denote the corresponding frequency

vector TS′,t′ .

Lemma 8. Consider the matrix of scalar products TS′,t′

and e(S ′′, εεεS′′ , t′′) where both S ′, t′ and S ′′, t′′ run over

all embeddable subshapes and their tilings by the reduced

alphabet. Then, if the subshapes are ordered by their heights,

the matrix is upper triangular, with 1/N on the diagonal.

Proof. The proof is straightforward: the type vector TS′,t′

is produced by scanning through the torus by the shifts

of S. There is a unique position where the support lands

on the anchor of S ′, and all other positions are either not

anchored (thus yielding zero products with the basis vectors

e(S ′′, εεεS′′ , t′′)), or have lower height.

We remark that one can modify the tiling of the torus: in

lieu of a single copy of the interval containing a copy of S, one

could tile On with Θ(N) copies of the shape S ′, supporting

t′. In this case, the rescaled frequency vector T/N would

converge, as n increases, to some vector TS′,t′ ∈ P̂ .
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Figure 6. Example of a 6-cell shape S′ in its lowest position.

B. Proof of Corollary 4

By Theorem 3, we need to sum (m− 1)|S
′| over all shapes

embeddable into S as in (16). Among all possible embeddings,

there is a unique one that is (lexicographically) minimal. One

can think about a gravity force pointing along the vector

(−1, . . . ,−1) and forcing S ′ to slide inside the box S to its

lowest position. Clearly, this lowest position is characterized

by the condition that S ′ has non-empty intersection with the

lowest k-th coordinate layer

Lk = Il1 × . . .× {1} × . . .× Ild

(here {1} stands in k-th place in the product), for each k ∈
{1, . . . , d}; see Figure 6.

Alternatively, the sum we need to evaluate is the total

number of all tilings of the box shape S with each of the

layers Lk, k = 1, . . . , d, containing at least one cell marked

with a symbol of the reduced alphabet A′.

The set of tilings with at least one cell in Lk marked by

an element of A′ is, clearly, the complement of the set of all

tilings with the tilings having all cells in Lk marked with m.

Denote the latter set of such tilings by Mk. The size of the

set of tilings we are interested in is therefore,

|T(S)| −
∑

k

|Mk|.

By inclusion-exclusion, this is equal to
∑

J⊂{1,...,d}

(−1)|J|| ∩j∈J Mj |,

where the summation is over all subsets of {1, . . . , d} (for the

empty subset, we take the summand to be |T(S)|).
The cardinality of the set ∩j∈JMj is, clearly, the number

of all tilings which have cells in ∪j∈JLj equal to m, which

is, obviously, the number of all tilings of S − ∪j∈JLj . Put

together, these formulae imply the corollary.

C. Proof of Theorem 7

Since Pn ⊂ Fn and F̂ is a convex polytope, we conclude

the upper bound on |Pn| from the Ehrhart’s Theorem 6

applied to Fn. Therefore, we can now focus on establishing a

lower bound. We will accomplish it by constructing a family

of tilings with a set of frequency vectors growing as Nµ.

Specifically, we will first construct building blocks: µ + 1
small linearly independent tilings. Then we will construct large

tilings by concatenating these small ones, obtaining a regular

lattice of frequency vectors in the µ dimensional simplex on

these µ+ 1 vertices.

Figure 7. An illustration to the construction in Lemma 9: We place a tile with
m|S| possible patterns in the torus with all remaining positions filled with
symbol m. The number of such fields is equal to D−rk(C) = 26−19 = 45,
as desired.

Let us first observe that if the torus is not large enough, there

are some additional constraints due to the cyclical boundary

condition. For example, in 1D case for S = {0, 1, 2} and

torus/cycle O = {0, 1, 2, 3}, the tile ”111” automatically

enforces the tile having ”1*1”, where ”*” is any letter on the

remaining position. These additional constraints can reduce

the dimension of realizable frequency vectors. For example for

3× 2 rectangular shape and m = 2, there are only 21 linearly

independent possible tilings of a 3× 3 torus. For 4× 3 torus

this number grows to 42, and finally saturates at the promised

value µ+ 1 = 45 for a 5× 3 torus.

In the next lemma we construct µ+1 linearly independent

frequency vectors. To formulate it, we need to define the width

of the shape S as the smallest (w1, . . . , wd) ∈ Nd such that

for some shift S ⊂ Iw1
× . . .× Iwd

.

Lemma 9. If ni ≥ 2wi − 1 for all i = 1, . . . , d, then there

exist µ+ 1 tilings of On with linearly independent frequency

vectors.

Proof: We will construct these tilings as

Conf
0(D) :=

= {x : On → A : x(a) = m for all a ∈ On \ S},

that is, the torus is filled with m ∈ A outside the S shape.

The remaining |S| values x|S can be selected in m|S| = D
ways, which is more than µ+ 1 = D − rk(C). However, this

set contains tilings differing only by a shift and hence having

identical frequency vectors. For a given field x ∈ Conf
0(D),

let S ′ ⊂ S be a subset on which the corresponding tiling t′

has values different than m, that is,

S ′ = {a : x(a) ∈ {1, . . . ,m− 1}} ⊂ S. (28)

Observe that if S ′ + s ⊂ S for some s ∈ Zd, then there

exists an element of Conf0(D) differing from x only by the

shift s. There are |{s : S ′ + s ⊂ S}| − 1 such elements

of Conf0(D) having identical frequency vector. For given S ′

there are (m−1)|S
′| such situations (x|S′), thus from the initial

|Conf0(D)| = m|S| tilings we need to subtract
∑

S′⊂S

(m− 1)|S
′| (|{s : S ′ + s ⊂ S}| − 1)

redundant shifted copies. This gives exactly rk(C) as in (16).

Finally, if we count only once all elements of Conf
0(D)
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Figure 8. Illustration to Lemma 10.

differing by a shift, then their number is exactly m|S| −
rk(C) = µ + 1 as desired. This is illustrated in Figure 7

for m = 2.

It remains to show that this set of µ+ 1 frequency vectors

is linearly independent. This is in essence already shown in

the proof of the Theorem 3: we exhibited a collection of µ+
1 covectors such that the pairing matrix of these covectors

with the type vectors we constructed is upper triangular, in the

ordering constructed there. The result follows immediately.

To continue our construction, we now concatenate the just

constructed tilings of size 2w − 1 designing a set of tilings

of size growing as desired Nµ. Generally, such concatenation

can lead to some new tiles near the boundary, but this problem

disappears if concatenated tilings are identical on the envelope

defined as

E = (In1
× . . .× Ind

) \ (In1−w1+1 × . . .× Ind−wd+1)

which we assume to hold. To complete the proof, we need

another simple lemma.

Lemma 10. If x1, x2 tilings of size n and frequency vectors

T̂1, T̂2 are identical on the envelope E, that is, x1|E = x2|E ,

then the frequency vector of a tiling constructed by concate-

nating them is T̂12 = (T̂1 + T̂2)/2.

Proof: Observe that the resulting tile appears in all positions

from both original tilings. But the size of the torus is twice

as big leading to the average frequency vector T̂12 = (T̂1 +
T̂2)/2. This is illustrated in Figure 8.

We are now in the position to complete the proof of

Theorem 7. For ni ≥ 2wi − 1, we construct a family of

periodic tilings for which the set of frequency vectors grows

like Nµ. We take µ + 1 tilings with linearly independent

size 2w − 1 frequency vectors T̂1, . . . , T̂µ+1 as discussed

in Lemma 9. We can concatenate them into larger tori and

then the resulting frequency vector corresponds to a convex

combination. Thus the resulting frequency vectors are
{

a1T̂
1 + . . .+ aµ+1T̂

µ+1

a1 + · · ·+ aµ+1
: ∀i ai ∈ N,

∑

i

ai =
N

N ′

}

where N ′ =
∏

i(2wi−1) and ai is the number of tiles with the

frequency vector T̂i. Observe now that the size of this discrete

simplex is determined by the number of integer solutions of

∑

i

ai =
N

N ′

which is
(

N/N ′ + µ− 1

µ

)

= O(Nµ).

This implies the existence of a lower bound when ni are

integer multiplies of 2wi−1. In the general case we can fill the

remaining positions with m. This completes the construction

of a lower bound, and the proof of Theorem 7.
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