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Abstract

The method of types is one of the most popular techniques in information theory
and combinatorics. Two sequences of equal length have the same type if they have
identical empirical distributions. In this paper, we focus on Markov types, that is,
sequences generated by a Markov source (of order one). We note that sequences having
the same Markov type share the same so called balanced frequency matrix that counts
the number of distinct pairs of symbols. We enumerate the number of Markov types for
sequences of length n over an alphabet of size m. This turns out to be asymptotically
equivalent to estimating the number of the balanced frequency matrices, the number
of integer solutions of a system of linear Diophantine equations, and the number of
connected Eulerian multigraphs. For fixed m we prove that the number of Markov
types is asymptotically equal to

d(m)
nm2

−m

(m2 −m)!
,

where we give an integral representation for d(m). For m → ∞ we conclude that
asymptotically the number of types is equivalent to

√
2m3m/2em

2

m2m22mπm/2
nm2

−m

provided that m = o(n1/4). These findings are derived by analytical techniques ranging
from analytic combinatorics, to multidimensional generating functions, to the saddle
point method.

Index Terms: Markov types, Eulerian graphs, balance frequency matrices, linear Dio-
phantine equations, multidimensional generating functions, saddle point method.
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1 Introduction

The method of types is one of the most popular and useful techniques in information theory
and combinatorics. Two sequences of equal length are of the same type if they have identical
empirical distributions. Furthermore, sequences of the same type are assigned the same
probability by all distributions in a given class. The essence of the method of types was
known for some time in probability and statistical physics. But only in the 1970’s Csiszár
and his group developed a general method and made it a basic tool of information theory
of discrete memoryless systems [5]; see also [4, 6, 9, 14, 15, 17, 23, 24]. In passing we
observe that the number of types are often needed for minimax redundancy evaluations
[1, 2, 14, 16, 18, 22].

There are basically two equivalent ways to define types, one combinatorial [4, 6] and one
probabilistic [6, 17]. Throughout the paper we use a combinatorial approach. In general,
sequences that have the same empirical distribution belong to the same type class. More
precisely, let A = {1, 2, . . . ,m} be an m-ary alphabet. For a given sequence of length n,
xn = x1 . . . xn ∈ An, the type class is defined as

Tn(xn) = {yn : Pxn = Pyn}

for all empirical distributions Pxn in a given model class. Clearly,
⋃

xn Tn(xn) = An, and
|Tn(xn)| counts the number of sequences of the same type as xn. We denote the set of
all types as Qn(m). We aim at deriving an asymptotic expression for the number of (first
order) Markov types |Qn(m)| (defined more precisely below) for n → ∞, considering both
fixed and large m.

Here is another equivalent combinatorial characterization of types based on symbolic
calculus. We start with an example illustrating types for memoryless sources. Consider al-
phabet A = {1, 2, . . . ,m} and m “formal parameters” p1, p2, . . . , pm. From a combinatorial
(symbolic) point of view, p1, . . . , pm can be viewed as “formal indeterminate”. Then for a
given xn ∈ An define formally a “pattern”

P (xn) := pk11 · · · pkmm , k1 + k2 + · · ·+ km = n,

where ki is the number of times symbol i ∈ A occurs in xn. Here, a type is fully characterized
by the vector count k = (k1, . . . , km) such that k1+k2 · · ·+km = n. Thus, for a given xn, or
a given count k(xn) = (k1(x

n), . . . , km(xn)), the type class T (xn) = T (k) is fully described
by the “formal pattern” pk11 · · · pkmm . It consists of all sequences xn of the same count or
pattern. In particular,

|T (k)| =
(

n

k1, . . . , km

)

, |Qn(m)| =
(

n+m− 1

m− 1

)

.

Observe that if we interpret p1, . . . , pm as probabilities of individual symbols in A (i.e.,
p1 + · · · + pm = 1), then P (xn) becomes the probability of xn, and sequences of the same
type are assigned the same probability in the class of memoryless sources.

Let us now consider Markovian types using our symbolic approach. We first define a
matrix of formal indeterminate P = {pij}i,j∈A. For a given xn define formally

P (xn) :=
∏

i,j∈A

p
kij
ij , (1)
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where kij is the number of the pairs (ij) ∈ A2 in xn. For example, P (01011) = p201p10p11.
The frequency matrix k is an integer matrix satisfying two important properties:

∑

i,j∈A

kij = n− 1, (2)

and additionally for any i ∈ A [14, 24]

m∑

j=1

kij =
m∑

j=1

kji + δ(x1 = i)− δ(xn = i), ∀i ∈ A, (3)

where δ(A) = 1 when A is true and zero otherwise. The last property is called the flow
conservation property and is a consequence of the fact that the number of pairs starting
with symbols i ∈ A must be equal to the number of pairs ending with symbol i ∈ A with
the possible exception of the first and last pairs. To avoid this exception, we first consider
cyclic strings in which the first element x1 follows the last xn (cf. also [10]). Thus, we
consider integer matrices k = [kij ] satisfying the following two properties

∑

i,j∈A

kij = n, (4)

m∑

j=1

kij =
m∑

j=1

kji, ∀ i ∈ A. (5)

Such integer matrices k will be called balanced frequency matrices or simply balanced ma-
trices. We shall call (5) the “conservation law” equation or simply the balanced boundary
condition (BBC). We denote by Fn(m) the set of nonnegative integer solutions of (4) and
(5).

Now we are ready to define cyclic Markov types. Two cyclic sequences have the same
(cyclic) Markov type if they have the same formal pattern P (xn) defined in (1). We denote
by Pn(m) the set of cyclic Markov types and enumerate them by comparing them to the
cardinality of Fn(m).

Let us now briefly address a probabilistic interpretation of Markov types. If pij represent
transition probabilities and the initial condition is fixed, then P (xn) is the probability of xn.
In the cyclic setting described above, the initial condition is a cyclic one; we address non-
cyclic sequences (i.e., arbitrary initial condition) and the corresponding types in Section 2.3.
Note that two sequences xn and yn of the same Markov type (i.e., the same frequency matrix,
and the same initial condition) are assigned the same probability by all Markov sources (of
order one). Hereafter (with the exception of Section 2.3) we only deal with cyclic Markov
types Pn(m) – that we shall simply call Markov types – since they allow us for an elegant
presentation of combinatorial and analytic methodologies that relate Markov types to a
few other interesting combinatorial objects, and may possibly lead to new results in other
studies such as types of Markov fields.

A (cyclic) Markov type is characterized by its balanced frequency matrix k, but not
every k leads to a sequence having a Markov type since there may not be an underlying
legitimate sequence xn (see Example 2 below). To better see this, we present another
characterization of Markov types. Let us define a directed multigraph G = (V,E) with the
set of vertices V = A and kij edges between vertices i, j ∈ A. For A = {0, 1} such a graph
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k =

[

1 2
2 2

]

Figure 1: A frequency matrix and its corresponding Eulerian graph.

is shown in Figure 1. Then, as already observed in [3, 13, 14], the number of sequences of a
given type k, i.e., |T (k)|, is equal to the number of Eulerian cycles in G. On the other hand,
the number of types |Pn(m)| coincides with the number of Eulerian digraphs G = (V,E)
such that V ⊆ A and |E| = n (here V ⊆ A since there may be sequences composed of only
some symbols of the alphabet). In this paper, we enumerate the number of Markov types
|Pn(m)| , that is, the number of Eulerian digraphs G on V ⊆ A. In Section 2.1 we show
that the number of types, |Pn(m)| is asymptotically equivalent to the number of integer
solutions |Fn(m)| of (4) and (5).

Example 1. Let’s first consider a binary Markov source. A balanced frequency matrix is
of the following form

k =

[

k11 k12
k21 k22

]

where the nonnegative integers kij satisfy

k11 + k12 + k21 + k22 = n,

k12 = k21.

From the above we conclude that

k11 + 2k12 + k22 = n. (6)

The number of nonnegative integer solutions of (6) is obviously

|Fn(2)| =

⌊n
2
⌋

∑

k12=0

(n− 2k12 + 1)

=

(⌊
n

2

⌋

+ 1

)

(n−
⌊
n

2

⌋

+ 1) =
n2

4
+O(n) (7)

which we shall show is asymptotically the same as the number of types. We note that the
number, |T (k)|, of circular sequences of length n is equivalent to the number of Eulerian
cycles of the corresponding graph G, as shown in Figure 1 (see [14] for a detailed discussion).

Example 2. Let’s now look at the m = 3 case. The balanced frequency matrix has nine
elements {kij}i,j∈{1,2,3}, and they satisfy

k11 + k12 + k13 + k21 + k22 + k23 + k31 + k32 + k33 = n
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k12 + k13 = k21 + k31

k12 + k32 = k21 + k23

k13 + k23 = k31 + k32.

How many nonnegative integer solutions does the above system of linear equations have?
The answer is not quite obvious, but we shall show that it is asymptotically n6

12·6! . However,
we observe that not every solution of the above system of equations leads to a legitimate
sequence xn. Consider the following example with n = 5

k11 = 2, k12 = k13 = 0,

k21 = 0, k22 = 0, k23 = 1,

k31 = 0, k32 = k33 = 1

There is no sequence of length five that can satisfy the above conditions. For example,
if A = {a, b, c} such a cyclic sequence would have to consist of five elements and contain
the substrings bc, cb, cc, and two aa′s or one aaa, which is impossible. Observe that the
underlying multigraph consists of two connected components that do not communicate.
Nevertheless, in the next section we prove that the number of integer solutions of the above
system of equations coincides asymptotically with the number of types |Pn(3)|.

Our goal is to enumerate the number of Markov types, that is, to find the cardinality
of |Pn(m)| (and |Qn(m)|) by first enumerating |Fn(m)|, the number of nonnegative integer
solutions to the system of linear equations (4)-(5). Such an enumeration, for a general
class of systems of homogeneous Diophantine equations, was investigated in Chap. 4.6
of Stanley’s book [19] (cf. also [12]). Stanley developed a general theory to construct the
associated generating function. However, ultimately only the denominator of this generating
function is given in a semi-explicit form in [19], which suffices to derive the growth rate of
the number of integer solutions.

In this paper, we propose an approach based on previous work of Jacquet and Sz-
pankowski [14], where analytic techniques such as multidimensional generating functions
and the saddle point method were used. This allows us to derive precise asymptotic results.
In particular, for fixed m we establish in Theorem 1 that the number of Markov types is
asymptotically equal to

|Pn(m)| ∼ d(m)
nm

2−m

(m2 −m)!
, n→ ∞,

and we shall give an integral representation for d(m). We also show that the number of
types |Qn(m)| over non-cyclic Markov sequences (i.e., with arbitrary initial condition) is
asymptotically equivalent to |Pn(m)| but larger by the factor (m2−m+1) (see Corollary 1).
For large m → ∞ with m4 = o(n) we determine d(m) and find that asymptotically the
number of types is

|Pn(m)| ∼
√
2m3m/2em

2

m2m22mπm/2
nm

2−m.

Moreover, our techniques also allow us to derive asymptotics for m to be as large as m2 =
O(n). Finally, we point out that our technique easily generalizes to Markov types of order
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r. It can be proved (e.g., see [11]) that

|Pr
n(m)| ∼ dr(m)

nm
r(m−1)

[mr(m− 1)]!
(8)

where dr(m) is a complicated constant. For example in [11] it was shown that d2(2) = 1/12.
Markov types were studied in a series of papers; see [14, 15, 23, 24]. However, the

existing literature mostly concentrates on finding the number of strings of a given Markov
type class, that is, |T (xn)|; an exception is the work of Martin et al. [15]. In particular,
Whittle [24] already in 1955 computed |T (xn)| for Markov chains of order one. Regarding
the number of types, it was known for some time [4, 5, 6] that they grow polynomially in
n, but only in [23] Weinberger et al. mentioned (without proof) that |Pn| = Θ(nm

2−m).
This estimate was recently rigorously proved by Martin et al. in [15] for tree sources (that
include Markov sources) for fixed m. However, the constant in the asymptotic estimate was
never identified. We accomplish it here, as well as present asymptotic results for large m.

The paper is organized as follows. In Section 2 we formulate precisely our problem,
establish some asymptotic equivalences, and present our main asymptotic results for fixed
or large m. The proofs are given in Section 3.

2 Main Results

In this section we present our main results and some of their consequences. We first derive
some asymptotic equivalences. In the introduction, we defined the set Fn(m) of all solu-
tions of the balance equations (4) and (5). We also noticed that the number of (cyclic)
types |Pn(m)| is related to the number of Eulerian (connected) directed multigraphs (we
shall call them Eulerian digraphs, for short). In Lemma 1 of this section we prove that
|Fn(m)| and |Pn(m)| are asymptotically equivalent. Then we develop a method to evaluate
asymptotically |Fn(m)| which leads to our main result, presented in Theorem 1. We then
briefly discuss non-cyclic Markov types Qn(m) summarizing our findings in Corollary 1.

2.1 Some Asymptotic Equivalences

Recall that Pn(m) stands for the set of (cyclic) Markov types of length n over an alphabet
A of size m. As already observed, it is equal to the set of all connected Eulerian di-graphs
G = (V (G), E(G)) such that V (G) ⊆ A and |E(G)| = n. The point we emphasize is
that G may be defined over a subset of A, as shown in the first example in Figure 2 (i.e.,
there may be some isolated vertices). We denote by En(m) the set of connected Eulerian
digraphs on A; the middle of Figure 2 shows an example of a graph in this set. Finally,
the set Fn(m) can be viewed as the set of digraphs G with V (G) = A, |E(G)| = n and
satisfying the flow conversation property (in-degree equals out-degree). We call such graphs
conservative digraphs. Observe that a graph in Fn(m) may consist of several connected (not
communicating) Eulerian digraphs, as shown in the third example in Figure 2.

There is a simple relation between |En(m)| and |Pn(m)|. Indeed,

|Pn(m)| =
∑

k

(

m

k

)

|En(k)| (9)
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Figure 2: Examples of graphs belonging to P7(5), E11(5) and F9(5) sets.

since there are
(m
k

)

ways to choose m− k isolated vertices in Pn(m). This implies that

|Pn(m)| ≥ |En(m)|.

Indeed, it is certainly true since every Eulerian graph on A with k ≤ m (by definition it
must be strongly connected and satisfy the flow-conservation law) belongs to Pn(m). In
fact, by the same reasoning we can expand the above inequality to obtain for any n and m

|Fn(m)| ≥ |Pn(m)| ≥ |En(m)|. (10)

We now find an asymptotic relation between the number of digraphs |Pn(m)| and the
number of solutions |Fn(m)| of the flow conservation equations (4)-(5), that is, the number
of conservative digraphs. As a direct consequence of our definition, a conservative digraph
may have several connected components. Each connected component is either a connected
Eulerian digraph or an isolated node without an edge. This leads to

|Fn(m)| = |En(m)|+
m∑

i=2

∑

A=A1∪···∪Ai

∑

n1+···+ni=n

i∏

j=1

|Enj
(Aj)| (11)

where the sum is over all (unordered) set partitions A = A1∪· · ·∪Ai into i ≥ 2 (nonempty)
parts with nj edges in each di-subgraph Enj

(Aj) over Aj vertices. Observe that every set
partition A = A1 ∪ · · · ∪ Ai with |Aj | = mj > 0 is a partition of A into i distinguished
subsets of cardinality mj . Notice that there are

( m
m1...mi

)
ways of dividing m into i subsets

of size mi when permuting the subsets does not lead to a new distinct permutation. For
example, for A = {1, 2, 3, 4} and m1 = m2 = 2, we have the following partition of A:

{1, 2}, {3, 4}; {1, 3}, {2, 4}; {2, 3}, {1, 4}.

But there are three additional partitions included in the count
( 4
2,2

)
= 6, namely

{3, 4}, {1, 2}; {2, 4}, {1, 3}; {1, 4}, {2, 3}

7



that follow from the above by permuting equal subsets. In general, permuting two subsets
of equal size does not lead to a new partition, as seen above. As a consequence of this we
can write (11) as

|Fn(m)| ≤ |En(m)|+
m∑

i=2

∑

m1+···+mi=m

∑

n1+···+ni=n

(

m

m1 . . . mi

)
i∏

j=1

|Enj
(mj)|. (12)

Furthermore, since by (10) |En(m)| ≤ |Fn(m)| for all n,m ≥ 0 we finally arrive at

|Fn(m)| ≤ |En(m)|+
m∑

i=2

∑

m1+···+mi=m

∑

n1+···+ni=n

(

m

m1 . . . mi

)
i∏

j=1

|Fnj
(mj)|. (13)

Now, we are in the position to formulate our asymptotic equivalence result.

Lemma 1 The following holds for all m ≥ 2 and n→ ∞

||Fn(m)| − |Pn(m)|| = O(2mm3nm
2−3m+3). (16)

Proof. By (10) we know that |Pn(m)| ≤ |Fn(m)|, so we need only to prove that

|Fn(m)| = |Pn(m)|+O(2mm3nm
2−3m+3). (17)

Our starting point is (13) where we denote the sum on the right-hand side by A(m,n), that
is,

A(m,n) =
m∑

i=2

∑

m1+···+mi=m

∑

n1+···+ni=n

(

m

m1 . . . mi

)
i∏

j=1

|Fnj
(mj)|.

We need to prove that A(m,n) = O(2mm3nm
2−3m+3). In Theorem 1 below we shall prove

that |Fn(m)| = O(nm
2−m), thus

i∏

j=1

|Fnj
(mj)| = O(nm

2
1+···+m2

i
−m).

For mj ≥ 1 we have

i∑

j=1

m2
j = m2 −

i∑

j=1

mj(m−mj)

≤ m2 −
i∑

j=1

(m− 1) = m2 − i(m− 1) ,

and for some constant C (that may vary from line to line)

A(m,n) ≤ C
m∑

i=2

∑

m1+···+mi=m

∑

n1+···+ni=n

(

m

m1 . . . mi

)

nm
2−i(m−1)−m

= Cnm
2−m

m∑

i=2

n−i(m−1)
∑

n1+···+ni=n

∑

m1+···+mi=m

(

m

m1 . . . mi

)
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= Cnm
2−m

m∑

i=2

n−i(m−1)
∑

n1+···+ni=n

im

≤ Cnm
2−m

m∑

i=2

n−i(m−1)imni−1

≤ Cnm
2−m−1

m∑

i=2

n−i(m−2)im

≤ Cnm
2−m−1m2

m∑

i=2

(
i

ni

)m−2

≤ C2mm3nm
2−3m+3

where the last line follows from the fact that i/ni ≤ 2/n2 for i ≥ 2. This completes the
proof.

Remark. Actually, we can find the exact relation between |Fn(m)| and |En(m)|. Let

P (z, u) =
∑

m,n

|Pn(m)|u
mzn

m!
, E(z, u) =

∑

m,n

|En(m)|u
mzn

m!
.

From (9) we find that
P (z, u) = euE(z, u).

Furthermore, define the bivariate generating function

F (z, u) =
∑

m≥1,n

|Fn(m)|u
mzn

m!
.

Recall that Fn(m) consists of Eulerian digraphs while En(m) is the set of connected Eulerian
digraphs. The so called exponential formula [12] (page 118) relates F (z, u) and E(z, u),
namely

F (z, u) = exp(E(z, u)) − 1

where −1 represents the fact that the generating function of |Fn(m)| starts from m ≥ 1.
Thus

E(z, u) = log(1 + F (z, u))

which translates into

|En(m)| =
∑

i≥1

(−1)i+1

i

∑

m1+···+mi=m

(

m

m1 · · ·mi

)
∑

n1+···+ni=n

i∏

j=1

|Fnj
(mj)|.

Since

F (z, u) =
∞∑

i=1

1

i!
Ei(z, u)

we also find

|Fn(m)| = |En(m)|+
m∑

i=2

1

i!

∑

m1+···+mi=m

(

m

m1 · · ·mi

)
∑

n1+···ni=n

i∏

j=1

|Enj
(mj)|.

Clearly, we could also use these expressions to establish our Lemma 1.
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2.2 Counting Cyclic Markov Types

In Lemma 1 we proved that as n→ ∞

|Pn(m)| ∼ |Fn(m)|.

Therefore, in the sequel we concentrate on estimating |Fn(m)|.
We first make some general observations about generating functions over matrices, and

summarize some results obtained in [14]. In general, let gk be a sequence of scalars indexed
by matrices k and define the generating function

G(z) =
∑

k

gkz
k

where the summation is over all integer matrices and z = {zij}i,j∈A is an m ×m matrix
that we often denote simply as z = [zij ] (assuming the indices i and j run from 1 to m).

Here zk =
∏

i,j z
kij
ij where kij is the entry in row i column j in the matrix k. We denote by

G∗(z) =
∑

k∈F

gkz
k =

∑

n≥0

∑

k∈Fn(m)

gkz
k

the generating function of gk over matrices k ∈ Fn(m) satisfying the balance equations
(4) and (5). The following useful lemma relates G(z) and G∗(z) is proved in [14] but for
completeness we repeat it here. Let [zij

xi

xj
] be the matrix ∆−1(x)z∆(x) where ∆(x) =

diag(x1, . . . , xm) is a diagonal matrix with elements x1, . . . , xm, that is, the element zij in
z is replaced by zijxi/xj.

Lemma 2 Let G(z) =
∑

k gkz
k be the generating function of a complex matrix z. Then

G∗(z) :=
∑

n≥0

∑

k∈Fn

gkz
k =

(
1

2iπ

)m ∮ dx1
x1

· · ·
∮
dxm
xm

G([zij
xj
xi

]) (18)

=
[

x01 · · · x0m
]

g([zij
xj
xi

])

with the convention that the ij-th coefficient of [zij
xj

xi
] is zij

xj

xi
, and i =

√
−1. In other

words, [zij
xj

xi
] = ∆−1(x)z∆(x) where ∆(x) = diag(x1, . . . , xm). By the change of variables

xi = exp(iθi) we also have

G∗(z) =
1

(2π)m

∫ π

−π
dθ1 · · ·

∫ π

−π
dθmG([zij exp((θj − θi)i)]

where [zij exp(θj − θi)] = exp(−∆(θ))z exp(∆(θ)).

Proof. Observe that

G(∆−1(x)z∆(x)) = G([zij
xj
xi

]) =
∑

k

gkz
k

m∏

i=1

x

∑

j
kji−

∑

j
kij

i . (19)

Therefore, G∗(z) is the coefficient of G([zij
xj

xi
]) at x01x

0
2 · · · x0m since

∑

j kji −
∑

j kij = 0 for

matrices k ∈ F . We write it in shortly as G∗(z) =
[

x01 · · · x0m
]

g([zij
xj

xi
]). The result follows

from the Cauchy coefficient formula (cf. [21]).
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We consider the number of solutions to (4) and (5), which by Lemma 1 is asymptotically
equivalent to the number of (cyclic) Markov types |Pn(m)| over the alphabet A, and whose
generating function is

F ∗
m(z) =

∑

n≥0

|Fn(m)|zn.

Then applying the above lemma with zij = zxi/xj we conclude that

F ∗
m(z) =

1

(1− z)m
[x01x

0
2 · · · x0m]

∏

i 6=j

[

1− z
xi
xj

]−1

, (20)

since
Fm(z) =

∑

k

zk =
∏

ij

(1− zij)
−1.

Thus, by the Cauchy formula,

|Fn(m)| = [zn]F ∗
m(z) =

1

2πi

∮
F ∗
m(z)

zn+1
dz.

In the next section we evaluate asymptotically this expression to yield the following
main result of this paper. Throughout we shall use the notation f(n) ∼ g(n) to mean
limn→∞[f(n)/g(n)] = 1.

Theorem 1 (i) For fixed m and n→ ∞ the number of (cyclic) Markov types is

|Pn(m)| = d(m)
nm

2−m

(m2 −m)!
+O(nm

2−m−1) (21)

where d(m) is a constant that also can be expressed by the following integral

d(m) =
1

(2π)m−1

∫ ∞

−∞
· · ·
∫ ∞

−∞
︸ ︷︷ ︸

(m−1)−fold

m−1∏

j=1

1

1 + φ2j
·
∏

k 6=ℓ

1

1 + (φk − φℓ)2
dφ1dφ2 · · · dφm−1. (22)

(ii) When m→ ∞ we find that

|Pn(m)| ∼
√
2m3m/2em

2

m2m22mπm/2
· nm2−m (23)

provided that m4 = o(n).

Remark 1. It is easy to count the number of matrices k satisfying only equation (4), that
is,
∑

ij kij = n. Indeed, it coincides with the number of integer solution of (4), which turns
out to be the number of combinations with repetitions (the number of ways of selecting m2

objects from n), that is,

(

n+m2 − 1

n

)

=

(

n+m2 − 1

m2 − 1

)

∼ nm
2−1

(m2 − 1)!

Thus the conservation law equation (5) decreases the above by the factor Θ(nm−1).
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Table 1: Constants at nm
2−m for fixed m and large m.

m constant in (23) constant in (21)

2 1.920140832 10−1 2.500000000 10−1

3 9.315659368 10−5 1.157407407 10−5

4 1.767043356 10−11 2.174662186 10−11

5 3.577891782 10−22 4.400513659 10−22

Remark 2. The evaluation of the integral (22) is quite cumbersome (see next section), but
for small values of m we computed it to find that

|Pn(2)| ∼ 1

2

n2

2!
(24)

|Pn(3)| ∼ 1

12

n6

6!
(25)

|Pn(4)| ∼ 1

96

n12

12!
(26)

|Pn(5)| ∼ 37

34560

n20

20!
(27)

for large n. The coefficients of nm
2−m are rational numbers since F ∗(z) is a rational gener-

ating function.

Remark 3. We now compare the coefficient at nm
2−m for fixed m in (21) with its asymp-

totic counterpart in (23). They are shown in Table 1. Observe extremely small values of
these constants even for relatively small m.

2.3 Counting Markov Types

Finally, we address the issue of Markov types over cyclic strings versus non-cyclic or linear
strings. Recall that Qn(m) denotes the set of Markov types with an arbitrary initial condi-
tion or simply over non-cyclic (linear) strings. We find a simple relation between |Qn(m)|
and |Pn(m)|.

Let a ∈ A and define Pn(a,A) as the set of types over circular strings of length n that
contain at least one occurrence of symbol a. Clearly,

|Pn(a,A)| = |Pn(m)| − |Pn(m− 1)|,

and therefore |Pn(a,A)| = |Pn(m)|(1 −O(n−2m)) by Theorem 1.
In the same spirit, letQn(a) be the set of types over linear strings starting with symbol a,

and Qn(a, b) be the set of types over linear strings of length n that start with symbol a and

12



end with symbol b. Certainly, Qn(a, a) = Pn−1(a,A) and noticing that
⋃

a∈A Pn(a,A) =
Pn(m), we conclude that

Qn(m) =
⋃

(a,b)∈A2

a6=b

Qn(a, b) ∪
⋃

a∈A

Pn−1(a,A) =
⋃

(a,b)∈A2

a6=b

Qn(a, b) ∪ Pn−1(m). (28)

Observe also that Qn(a, b) are disjoint for a 6= b and for every a 6= b the set Qn(a, b) is
disjoint from Pn(a,A). Furthermore, cardinality of Qn(a, b) is the same for all a 6= b. In
summary, by (28) we conclude that

|Qn(m)| = |Pn−1(m)|+ (m2 −m)|Qn(a, b)|. (29)

We now estimate the cardinality of Qn(a, b). We shall prove the following easy inequal-
ities

|Pn−2(a,A)| ≤ |Qn(a, b)|, (30)

|Qn(a, b)| ≤ |Pn(a,A)|. (31)

Indeed, for (30) observe that if the count matrix k ∈ Pn−2(a,A), then k + eab ∈ Qn(a, b)
where eab is a matrix with all 0’s except at position (a, b) it contains a 1. This implies (30).
For (31), we notice that if k ∈ Qn(a, b), then k+ eba ∈ Pn(a,A) and the inequality follows.

Consequently, since |Pn−2(m)| ∼ |Pn−1(m)| = |Pn(m)|(1−O(n−m2
)), we have |Qn(a, b)| =

|Pn(m)|(1 −O(n−2m)) which by (29) leads to our final conclusion.

Corollary 1 Let |Pn(m)| denote the number of Markov types over cyclic strings as estab-
lished in Theorem 1. The number of Markov types |Qn(m)| with arbitrary initial conditions
then satisfies

|Qn(m)| = (m2 −m+ 1)|Pn(m)|(1 −O(n−2m))

where |Pn(m)| is given by (21).

3 Analysis and Proofs

In this section we prove Theorem 1. Our starting formula is (20) that we repeat below

F ∗
m(z) =

1

(1− z)m
[x01x

0
2 · · · x0m]

∏

i 6=j

[

1− z
xi
xj

]−1

. (32)

3.1 Finite m

We first compute this explicitly for m = 2, 3, 4, 5 as summarized in Table 1.
For m = 2, we have

F ∗
2 (z) =

1

(1− z)2
[x01x

0
2]

[
1

1− z x1/x2

1

1− z x2/x1

]

. (33)

Let us set A = x1/x2 so we need the coefficient of A0 in (1 − Az)−1(1 − z/A)−1. Using a
partial fractions expression in A, we have

13



1

1−Az

1

1− z/A
=

1

1− z2

[
1

1−Az
+

z

A− z

]

.

For definiteness, we can assume that |z| < |A| < |1/z| so that the coefficient of A0 in
(1 − Az)−1 is one and that in z(A − z)−1 is zero. Hence, F ∗

2 (z) = (1 − z)−2(1 − z2)−1 =
(1 + z)−1(1− z)−3 and

|Pn(2)| ∼ |Fn(2)| =
1

2πi

∮
1

zn+1

1

1 + z

1

(1− z)3
dz

=
n2

4
+ n+

3

4
+

1

8
[1 + (−1)n] ∼ 1

2

n2

2!
, n→ ∞. (34)

which agrees with (7) of Example 1.
For m ≥ 3 we use recursive partial fractions expansions. When m = 3 we set x1/x2 = A,

x1/x3 = B so that we wish to compute

[A0B0]

(
1

1− zA

1

1− z/A

1

1−Bz

1

1− z/B

1

1−Az/B

1

1−Bz/A

)

. (35)

First we do a partial fractions expansion in the A variable, for fixed B and z. Thus the
factor inside the parentheses in (35) becomes

1

1− zA

1

1− z2
1

1−Bz

1

1− z/B

1

1− 1/B

1

1−Bz2

+
1

1− z/A

1

1− z2
1

1−Bz

1

1− z/B

1

1− z2/B

1

1−B

+
1

1−Az/B

1

1−B

1

1− z2/B

1

1−B/z

1

1− z/B

1

1− z2

+
1

1−Bz/A

1

1−Bz2
1

1− 1/B

1

1−Bz

1

1− z/B

1

1− z2
. (36)

The coefficient of A0 in the first term in (36) is

1

1− z2
1

1−Bz

1

1− z/B

1

1− 1/B

1

1−Bz2
, (37)

and that in the third term is

1

1−B

1

1− z2/B

1

1−Bz

1

1− z/B

1

1− z2
, (38)

while the coefficients of A0 are zero in the second and fourth terms. Combining (37) and
(38) we must now compute

[B0]

(

1 + z2

1− z2
1

1−Bz

1

1− z/B

1

1−Bz2
1

1− z2/B

)

. (39)
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Now expanding (39) by a partial fractions expansion in B leads to

1 + z2

1− z2
[B0]

(
1

1−Bz

1

1− z2
1

1− z

1

1− z2
+

1

1− z/B

1

1− z2
1

1− z3
1

1− z

+
1

1− 1/z

1

1− z3
1

1−Bz2
1

1− z4
+

1

1− z3
1

1− 1/z

1

1− z4
1

1− z2/B

)

=
1 + z2

1− z2

[
1

1− z2
1

1− z

1

1− z3
+

−z
(1− z)

1

1− z3
1

1− z4

]

=
1− z + z2

(1− z)4(1 + z)2(1 + z + z2)
.

Hence,

F ∗
3 (z) =

1− z + z2

(1− z)7(1 + z)2(1 + z + z2)
.

For z → 1, F ∗
3 (z) ∼ 1

12(1− z)−7 so that

|Pn(3)| ∼
1

12

n6

6!
, n→ ∞. (40)

Using similar recursive partial fractions expansions, with the help of the symbolic com-
putation program MAPLE, we find that for m = 4 and m = 5

F ∗
4 (z) =

z8 − 2z7 + 3z6 + 2z5 − 2z4 + 2z3 + 3z2 − 2z + 1

(1− z)13(1 + z)5(1 + z2)(1 + z + z2)2
(41)

and

F ∗
5 (z) =

Q(z)

(1− z)21(1 + z)8(1 + z2)2(1 + z + z2)4(1 + z + z2 + z3 + z4)
, (42)

where

Q(z) = z20 − 3z19 + 7z18 + 3z17 + 2z16 + 17z15 + 35z14 + 29z13 + 45z12 + 50z11

+ 72z10 + 50z9 + 45z8 + 29z7 + 35z6 + 17z5 + 2z4 + 3z3 + 7z2 − 3z + 1.

These results show that it is unlikely that a simple formula can be found for F ∗
m(z) for

general m.
By expanding (41) and (42) near z = 1 we conclude that as n→ ∞

|Pn(4)| ∼
1

96

n12

12!
, |Pn(5)| ∼

37

34560

n20

20!
. (43)

It is easy to inductively show that at z = 1, F ∗
m(z) has a pole of order m2 −m+ 1 and

the other singularities are poles at the roots of unity that are of order < m2−m+1. These
poles and their orders are given in Table 2.

Thus, for n→ ∞, we have

|Pn(m)| ∼ d(m)
nm

2−m

(m2 −m)!
, (44)

where
d(m) = lim[(1− z)m

2−m+1F ∗
m(z)]
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Table 2: Poles and their orders for various m.

m\ root 1 –1 e±2πi/3 ±i e±2πi/5 e±4πi/5

2 3 1 – – – –

3 7 2 1 – – –

4 13 5 2 1 – –

5 21 8 4 2 1 1

as z → 1. However, there seems to be no simple formula for the sequence of constants d(m).
We proceed to characterize d(m) as an (m− 1) fold integral.

First consider the simple case m = 2. Setting A = eiΦ and using a Cauchy integral, we
have

[A0]
1

1− z/A

1

1−Az
=

1

2π

∫ π

−π

dΦ

1− 2z cosΦ + z2
.

Now set z = 1 − δ and expand the integral for z → 1. The major contribution will come
from where δ ≈ 0 and scaling Φ = δφ and using the Taylor expansion 1− 2(1− δ) cos(δφ)+
(1− δ)2 = δ2[1 + φ2] +O(δ3), we find that

F ∗
2 (z) ∼

1

δ2
1

2π

∫ ∞

−∞

δ

δ2[1 + φ2]
dφ =

1

2

1

δ3
, δ → 0.

When m = 3, we use (3.4) and the Cauchy integral formula with A = eiΦ and B = eiΨ

to get

1

(2π)2

∫ π

−π

∫ π

−π

1

1− 2z cos Φ + z2
· 1

1− 2z cosΨ + z2
· 1

1− 2z cos(Φ−Ψ) + z2
dΦdΨ.

Again expanding the above for z = 1 − δ → 1 and Φ = δφ = O(δ), Ψ = δψ = O(δ), we
obtain the leading order approximation

1

δ4
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞

1

1 + φ2
1

1 + ψ2

1

1 + (φ− ψ)2
dφdψ =

1

δ4
· 1

12
.

Thus as z → 1, F ∗
3 (z) ∼ 1

12δ
−7 = 1

12 (1− z)−7 which follows also from the exact generating
function.

For general m a completely analogous calculation shows that as δ = 1−z → 0, F ∗
m(z) ∼

δm−m2−1d(m) where

d(m) =
1

(2π)m−1

∫ ∞

−∞
· · ·
∫ ∞

−∞
︸ ︷︷ ︸

(m−1)−fold

m−1∏

j=1

1

1 + φ2j
·
∏

k 6=ℓ

1

1 + (φk − φℓ)2
dφ1dφ2 · · · dφm−1. (45)
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The second product in the above is over all distinct pairs (k, ℓ), so that this may also
be written as

m−2∏

ℓ=1

m−1∏

k=ℓ+1

1

1 + (φk − φℓ)2
. (46)

This completes the proof of part (i) of Theorem 1.

3.2 Large m

We now use the saddle point method ([21] (Chap. 8.4) and [12] Chap. VIII) to prove part
(ii) of Theorem 1. Since

∑

kij

(

z
zi
zj

)kij

=

(

1− z
zi
zj

)−1

and setting zi = eiθi we find that

F ∗
m(z) =

1

(2iπ)m

∮

· · ·
∮
∏

ij

(

1− z
zi
zj

)−1
dz1
z1

· · · dzm
zm

(47)

= (2π)−m
∫ π

−π
· · ·
∫ π

−π

∏

ij

(1− z exp(i(θi − θj))
−1dθ1 · · · dθm . (48)

By noticing that the expression
∏

ij(1− z exp(i(θi− θj))
−1 does not change when the θi are

all incremented by the same value, one can integrate over θ1 to obtain

F ∗
m(z) = (2π)−m+1

∫ π

−π
· · ·
∫ π

−π

∏

i

(1− z exp(iθi))
−1(1− z exp(−iθi))

−1

× 1

1− z

∏

i>1,j>1

(1− z exp(i(θi − θj))
−1dθ2 · · · dθm. (49)

Let now

L(z, θ2, . . . , θm) = log(1− z) +
∑

i

log(1− z exp(iθi))(1 − z exp(−iθi))

+
∑

i>1,j>1

log(1− z exp(i(θi − θj)).

An alternative form of the above is

L(z, θ2, . . . , θm) = log(1− z) +
m∑

i=2

log(1− 2z cos θi + z2)

+
1

2

m∑

i=2

m∑

j=2

log(1− 2z cos(θi − θj) + z2).

Notice that L(z, 0, . . . , 0) = m2 log(1− z). Hence

|Fn(m)| = 1

i(2π)m

∮ ∫ π

−π
· · ·
∫ π

−π
exp(−L(z, θ2, . . . , θm))

dz

zn+1
dθ2 · · · dθm. (50)
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In order to find the asymptotics of this integral we use the multidimensional saddle point
method. The quantity L(z, θ2, . . . , θm)+n log z attains its minimum value at (θ2, . . . , θm) =
(0, . . . , 0) and z = zn = n

m2+n . The minimum value is therefore

m2 log(1− zn) + n log zn = m2 log(m2/(m2 + n)) + n log(n/(m2 + n))

or
m2 log(m2) + n log(n)− (m2 + n) log(m2 + n).

Then
m2 log(1− zn) + n log zn = m2 logm2 −m2 log n−m2 +O(m4/n)

provided that m4 = o(n).
It turns out that at (z, θ2, . . . , θm) = (zn, 0, . . . , 0) we have:

∂2

∂z2
L(z, θ2, . . . , θm) = − m2

(1− zn)2

∀i : ∂2

∂z∂θi
L(z, θ2, . . . , θm) = 0

∀i : ∂
2

∂θ2i
L(z, θ2, . . . , θm) =

2(m− 1)zn
(1− zn)2

∀i 6= j :
∂2

∂θi∂θj
L(z, θ2, . . . , θm) = − 2zn

(1− zn)2
, m ≥ 3.

In other words, the second derivative matrixQ2 of L(z, θ2, . . . , θm)+n log z at (z, θ2, . . . , θm) =
(zn, 0, . . . , 0) is

Q2 =

(

− m2

(1− zn)2
− n

(zn)2

)

uz ⊗ uz +
2mzn

(1− zn)2
Iθ −

2zn
(1− zn)2

uθ ⊗ uθ

where uz = (1, 0, . . . , 0),

uθ =
1√
m− 1

(0, 1, . . . , 1),

and
Iθ = I− uz ⊗ uz,

i.e., the identity restricted on θ components. In the above ⊗ is the tensor product (in our
case, it is a product of two vectors resulting in a matrix). For example,

uθ ⊗ uθ =








0 0 . . . 0
0 1 . . . 1
. . . . . . . . . . . .
0 1 . . . 1







.

An application of the saddle point method yields

|Fn(m)| ∼ 1

(2π)m/2zn
√

det(Q2)
exp(−m2 log(1− zn)− n log zn)
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where det(·) denotes the determinant. Since

|det(Q2)| =
(

m2

(1− zn)2
+

n

(zn)2

)(
zn

(1− zn)2

)m−1

2m−1mm−2 ∼ n2mm−3m2m−1,

we find that for m4 = o(n)

|Fn(m)| ∼ |Pn(m)| ∼
(

m−2m2+3m/2em
2
2−mπ−m/2

√
2
)

nm
2−m,

and this completes the proof. The condition m4 = o(n) is needed since we used the approx-
imation for m2 log(1− zn) below (50).
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