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Abstract—We study the minimax pointwise redundancy

of universal coding for memoryless models over large

alphabets and present two main results: We first complete

studies initiated in Orlitsky and Santhanam [15] deriving

precise asymptotics of the minimax pointwise redundancy

for all ranges of the alphabet size relative to the sequence

length. Second, we consider the pointwise minimax re-

dundancy for a family of models in which some symbol

probabilities are fixed. The latter problem leads to a

binomial sum for functions with super-polynomial growth.

Our findings can be used to approximate numerically

the minimax pointwise redundancy for various ranges of

the sequence length and the alphabet size. These results

are obtained by analytic techniques such as tree-like

generating functions and the saddle point method.

I. INTRODUCTION

The classical universal source coding problem [4] is

typically concerned with a known source alphabet whose

size is much smaller than the sequence length. In this

setting, the asymptotic analysis of universal schemes as-

sumes a regime in which the alphabet size remains fixed

as the sequence length grows. More recently, the case in

which the alphabet size is very large, often comparable to

the length of the source sequences, has been studied from

two different perspectives. In one setup (motivated by

applications such as text compression over an alphabet

composed of words), the alphabet is assumed unknown

or even infinite (see, e.g., [2], [9], [12], [16], [18]). In

another setup (see, e.g., [15]), the alphabet is still known
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and finite (as in applications such as speech and image

coding), but the asymptotic regime is such that both the

size of the alphabet and the length of the source sequence

are very large. Notice that, in this scenario, the optimality

criteria and the corresponding optimal codes do not differ

from the classical approach; rather, it is the asymptotic

analysis that is affected.

In this paper, we follow the latter scenario, target-

ing a classical figure of merit: the minimax (worst-

case) pointwise redundancy (regret) [19]. Specifically,

we derive precise asymptotic results for two memoryless

model families. To recall, the pointwise redundancy of a

code arises in a deterministic setting involving individ-

ual data sequences, where probability distributions are

mere tools for describing a choice of coding strategies.

In this framework, given an individual sequence, the

pointwise redundancy of a code is measured with respect

to a (probabilistic) model family (i.e., a collection of

probability distributions that reflects limited knowledge

about the data-generating mechanism). The pointwise

redundancy determines by how much the code length

exceeds that of the code corresponding to the best model

in the family (see, e.g., [14] and [23] for an in-depth

discussion of this framework). In the minimax pointwise

scenario, one designs the best code for the worst-case

sequence, as discussed next.

A fixed-to-variable code Cn : An → {0, 1}∗ is an

injective mapping from the set An of all sequences of

length n over the finite alphabet A of size m = |A| to the

set {0, 1}∗ of all binary sequences. We assume that Cn

satisfies the prefix condition and denote L(Cn, x
n
1 ) the

code length it assigns to a sequence xn1 = x1, . . . , xn ∈
An. A prefix code matched to a model P (given by a

probability distribution P over An) encodes xn1 with an

“ideal” code length − logP (xn1 ), where log := log2 will

denote the binary logarithm throughout the paper, and we

ignore the integer length constraint. Given a sequence
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xn1 , the pointwise redundancy of Cn with respect to

a model family S (such as the family of memoryless

models M0) is thus given by

Rn(Cn, x
n
1 ;S) = L(Cn, x

n
1 ) + sup

P∈S
log P (xn1 ).

Finally, the minimax pointwise redundancy R∗
n(S) for

the family S is given by

R∗
n(S) = min

Cn

max
xn
1

Rn(Cn, x
n
1 ;S) . (1)

This quantity was studied by Shtarkov [19], who found

that, ignoring the integer length constraint also for Cn

(cf. [5]),

R∗
n(S) = log


∑

xn
1

sup
P∈S

P (xn1 )


 (2)

and is achieved with a code that assigns to each sequence

a code length proportional to its maximum-likelihood

probability over S . In particular, for S = M0, precise

asymptotics of R∗
n(M0) have been derived in the regime

in which the alphabet size m is treated as a constant [20]

(cf. also [23]). The minimax pointwise redundancy was

also studied when both n and m are large, by Orlitsky

and Santhanam [15]. Formulating this scenario as a

sequence of problems in which m varies with n, leading

term asymptotics for m = o(n) and n = o(m), as well

as bounds for m = Θ(n), are established in [15].1 The

goal of this formulation is to estimate R∗
n(M0) for given

values of n and m, which fall in one of the above cases.

In this paper we first provide, in Theorem 1, precise

asymptotics of R∗
n(M0) for all ranges of m relative to

n. Our findings are obtained by analytic methods of

analysis of algorithms [8], [21]. Theorem 1 not only

completes the study of [15] by covering all ranges

of m (including m = Θ(n)), but also strengthens it

by providing more precise asymptotics. Indeed, it will

be shown that the error incurred by neglecting lower

order terms may actually be quite significant, to the

point that, for m = o(n), the first two terms of the

asymptotic expansion for constant m given in [20] is a

better approximation to R∗
n(M0) than the leading term

established in [15].

In addition, Theorem 1 also enables a precise analysis

of the minimax pointwise redundancy in a more general

scenario. Specifically, we consider the alphabet A ∪ B,

with |A| = m and |B| = M , and a (memoryless)

model family, denoted M̃0, in which the probabilities

1We write f(n) = O(g(n)) if and only if |f(n)| ≤ C|g(n)| for

some positive constant C and sufficiently large n. Also, f(n) =
Θ(g(n)) if and only if f(n) = O(g(n)) and g(n) = O(f(n)),
f(n) = o(g(n)) if and only if limn→∞ f(n)/g(n) = 0, and f(n) =
Ω(g(n)) if and only if g(n) = O(f(n)).

of symbols in B are fixed, while m may be large.2 Such

constrained model families, which correspond to partial

knowledge of the data generating mechanism, fill the gap

between two classical paradigms: one in which a code

is designed for a specific distribution in M0 (Shannon-

type coding), and universal coding in M0. For example,

consider a situation in which data sequences from two

different sources (over disjoint alphabets) are randomly

interleaved (e.g., by a router), as proposed in [1], and

assume that one of the sequences is (controlled) simula-

tion data, for which the generating mechanism is known.

If we further assume that the switching probabilities

are also known, this situation falls under the proposed

setting, where B corresponds to the alphabet of the

simulation data. Other constrained model families have

been studied in the literature as means to reduce the

number of free parameters in the probability model

(see [22] for an example motivated in image coding).

Given our knowledge of the distribution on B, one

would expect to “pay” a smaller price for universality

in terms of redundancy. In a probabilistic setting and

for m treated as a constant, Rissanen’s lower bound

on the (average) redundancy [17] is indeed proportional

to the number m − 1 of free parameters. Moreover,

it is easy to see that the leading term asymptotics of

the pointwise redundancy of a (sequential) code that

uses a fixed probability assignment for symbols in B,

and one based on the Krichevskii-Trofimov scheme [13]

for symbols in A, are indeed the same as those for

R∗
n(M0). However, this intuition notwithstanding, notice

that the minimax scheme for the combined alphabet does

not encode the two alphabets separately. Moreover, the

analysis is more complex for unbounded m, especially

when we are interested in more precise asymptotics.

In this paper, we formalize the above intuition by

providing precise asymptotics of the minimax pointwise

redundancy R∗
n(M̃0), again for all ranges of m (relative

to n). We first prove that

R∗
n(M̃0) = log

n∑

k=0

(
n

k

)
pk(1− p)n−k2R

∗

k
(M0) (3)

where p = 1−P (B). As it turns out, in order to estimate

this quantity asymptotically, we need a quite precise

understanding of the asymptotic behavior of R∗
k(M0)

for large k and m, as provided by Theorem 1.

The study of the minimax pointwise redundancy over

A ∪ B expressed in (3) leads to an interesting problem

2Note that the model families M0 and M̃0 are defined over

different alphabets. In addition, the family M̃0 is constrained in that

the probabilities of symbols in B take fixed values.
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for the so called binomial sums, defined in general as

Sf (n) =
∑

k

(
n

k

)
pk(1− p)n−kf(k) (4)

where 0 < p < 1 is a fixed probability and f is a given

function. In [6], [11], asymptotics of Sf (n) were derived

for the polynomially growing function f(x) = O(xa).
This result applies to our case when m is a constant, and

leads to the conclusion that the asymptotics of R∗
n(M̃0)

are the same as those of R∗
np(M0), an intuitively

appealing result since the length of the sub-sequence

over A is np with high probability. But when m also

grows, we encounter sub-exponential, exponential and

super-exponential functions f , depending on the relation

between m and n; therefore, we need more precise

information about f to extract precise asymptotics of

Sf (n). In our second main result, Theorem 2, we use

the precise asymptotics derived in Theorem 1 to deal

with the binomial sum (3) and extract asymptotics of

R∗
n(M̃0) for large n and m.

In the remainder of this paper, Section II reviews the

analytic methods of analysis of algorithms that were used

in [20] for estimating R∗
n(M0) in the constant m case,

as well as the saddle point method, whereas Section III

presents our main results. These results are proved in

Section IV.

II. BACKGROUND

In the sequel, we will denote dn,m := R∗
n(M0) to

emphasize the dependence of R∗
n(M0) on both n and

m. We will also denote dn,m := logDn,m which, by (2),

implies

Dn,m =
∑

xn
1

sup
P∈M0

P (xn1 ) . (5)

Clearly, Dn,m takes the form

Dn,m =
∑

k1+···+km=n

(
n

k1, . . . , km

)(
k1
n

)k1

· · ·
(
km
n

)km

(6)

where ki is the number of times symbol i ∈ A occurs

in a string of length n.

The asymptotics of the sequence of numbers 〈Dn,m〉,
(for m constant), are analyzed in [20] through its so-

called tree-like generating function, defined as

Dm(z) =
∞∑

n=0

nn

n!
Dn,mzn.

Here, we will follow the same methodology, which we

review next. The first step is to use (6) to define an ap-

propriate recurrence on 〈Dn,m〉 (involving both indexes,

n and m), and to employ the convolution formula for

generating functions (cf. [21]) to relate Dm(z) to the

tree-like generating function of the sequence 〈1, 1, . . .〉,
namely

B(z) =
∞∑

k=0

kk

k!
zk.

This function, in turn, can be shown to satisfy (cf. [21])

B(z) =
1

1− T (z)
(7)

for |z| < e−1, where T (z) is the well-known tree

function, which is a solution to the implicit equation

T (z) = zeT (z) (8)

with |T (z)| < 1.3 Specifically, the following relation is

proved in [20].

Lemma 1: The tree-like generating function Dm(z) of

〈Dn,m〉 satisfies, for |z| < e−1,

Dm(z) = [B(z)]m − 1

and, consequently,

Dn,m =
n!

nn
[zn] [B(z)]m (9)

where [zn]f(z) denotes the coefficient of zn in f(z).

Defining β(z) = B(z/e), |z| < 1, noticing that

[zn]β(z) = e−n[zn]B(z), and applying Stirling’s for-

mula, (9) yields

Dn,m =
√
2πn

(
1 +O(n−1)

)
[zn] [β(z)]m . (10)

Thus, it suffices to extract asymptotics of the coefficient

at zn of [β(z)]m, for which a standard tool is Cauchy’s

coefficient formula [8], [21], that is,

[zn][β(z)]m =
1

2πi

∮
βm(z)

zn+1
dz (11)

where the integration is around a closed path containing

z = 0 inside which βm(z) is analytic.

Now, the constant m case is solved in [20] by use of

the Flajolet and Odlyzko singularity analysis [8], [21],

which applies because [β(z)]m has algebraic singulari-

ties. Indeed, using (7) and (8), the singular expansion of

β(z) around its singularity z = 1 takes the form [3]

β(z) =
1√

2(1− z)
+

1

3
−

√
2

24

√
(1− z) +O(1− z).

The singularity analysis then yields [20]

dn,m =
m− 1

2
log

(
n

2

)
+ log

( √
π

Γ(m2 )

)

+
Γ(m2 )m log e

3Γ(m2 − 1
2)

·
√
2√
n
+O

(
1

n

)
(12)

3In terms of the standard Lambert-W function, we have T (z) =
−W (−z).
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for large n and constant m, where Γ is the Euler gamma

function.4

When m also grows, which is the case of interest

in this paper, the singularity analysis does not apply.

Instead, the growth of the factor βm(z) determines that

the saddle point method [8], [21], which we briefly

review next, can be applied to (11). We will restrict

our attention to a special case of the method, where

the goal is to obtain an asymptotic approximation of the

coefficient an := [zn]g(z) for some analytic function

g(z), namely

an =
1

2πi

∮
g(z)

zn+1
dz =

1

2πi

∮
eh(z)dz

where h(z) := ln g(z)− (n+1) ln z, under the assump-

tion that h′(z) has a real root z0.

The saddle point method is based on Taylor’s expan-

sion of h(z) around z0 which, recalling that h′(z0) = 0,

yields

h(z) = h(z0)+
1

2
(z−z0)

2h′′(z0)+O(h′′′(z0)(z−z0)
3).

(13)

After choosing a path of integration that goes through

z0, and under certain assumptions on the function h(z),
it can be shown (cf., e.g., [21]) that the first term

of (13) gives a factor eh(z0) in an, the second term –

after integrating a Gaussian integral – leads to a factor

1/
√
2π|h′′(z0)|, and finally the third term determines the

error term in the expansion of an. The standard saddle

point method described in [21, Table 8.4] then yields the

following lemma.

Lemma 2: Assume the conditions required in [21,

Table 8.4] hold and let z0 denote a real root of h′(z).
Then,

an =
eh(z0)√

2π|h′′(z0)|
×
(
1 +O

(
h′′′(z0)

(h′′(z0))ρ

))
(14)

for any constant ρ < 3/2, provided the error term is

o(1).5

In order to control the error term, the conditions stated

in [21, Table 8.4] include the requirement that, as n
grows, h′′(z0) → ∞. It turns out, however, that more is

known for our particular h(z): indeed, it will be further

shown that the growth of h′′(z0) is at least linear. This

additional property allows us to extend Lemma 2 to the

4As mentioned, Equation (2) ignores the integer length constraint

of a code, and therefore O(1) terms in (12) are arguably irrelevant.

This issue is addressed in [5]; here, we focus on the probability

assignment problem, which unlike coding does not entail an integer

length constraint.
5This expression for the error term in (14) is obtained with the

choice δ(n) = h′′(z0)
−ρ/3 in [21, Table 8.4], provided certain

conditions on h(z) are satisfied.

case ρ = 3/2. The modified lemma will be the main tool

in our derivation.

III. MAIN RESULTS

In this section we present and discuss our main results,

deferring their proof to Section IV.

A. Model family M0

Theorem 1: For the memoryless model family M0

over an m-ary alphabet, where m → ∞ as n grows, the

minimax pointwise redundancy dn,m behaves asymptot-

ically as follows:

(i) For m = o(n)

dn,m =
m− 1

2
log

n

m
+

m

2
log e+

m log e

3

√
m

n

−1

2
− log e

4

√
m

n
+O

(
m2

n
+

1√
m

)
.(15)

(ii) For m = αn+ ℓ(n), where α is a positive constant

and ℓ(n) = o(n),

dn,m = n logBα + ℓ(n) logCα − log
√
Aα

−ℓ(n)2 log e

2nα2Aα
+O

(
ℓ(n)3

n2
+
ℓ(n)

n
+

1√
n

)

(16)

where

Cα :=
1

2
+

1

2

√
1 +

4

α
(17)

Aα := Cα +
2

α
(18)

and

Bα := αCα+2
α e−

1

Cα . (19)

(iii) For n = o(m)

dn,m = n log
m

n
+
3

2

n(n−1)

m
log e+O

(
1√
n
+

n3

m2

)
.

(20)

Discussion of Theorem 1

Significance and related work. The formulation of

the scenario in which both n and m are large, as a

sequence of problems where m varies with n, follows

Orlitsky and Santhanam [15]. In a typical application

of Theorem 1, for a given pair of values n = n0 and

m = m0, which are deemed to fall in one of the three

itemized cases, the formulas are used to approximate

the minimax pointwise redundancy dn0,m0
. The leading

terms of the asymptotic expansions for m = o(n) and

n = o(m) (i.e., (15) and (20)) were derived in [15].
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Fig. 1. Value of the constant logBα in the Θ(n) term of dn,m in

case m = Θ(n).

The asymptotic expansion in (15) reveals that the error

incurred by neglecting lower order terms may be sig-

nificant. Consider the example in which n = 104 and

m = 40 (or, approximately, m = n0.4). Then, the leading

term in (15) is only 5.5 times larger than the second

term, and 131 times larger than the third term. The error

from neglecting these two terms is thus 15.4% (assuming

all other terms are negligible). Even for n = 108 (and

m = 1600), the error is still over 8%. It is interesting

to notice that (15) is a “direct scaling” of (12): using

Stirling’s approximation to replace Γ(x) in (12) by its

asymptotic value
√
2π/x(x/e)x, and further approxi-

mating (1 + 1/x)(x+1)/2 with
√
e (1 + 1/(4x)), indeed

yields exactly (15), up to the error terms. Thus, our

results reveal that the first two terms of the asymptotic

expansion for fixed m given by (12) are in fact a better

approximation to dn,m than the leading term of (15).

For the case m = Θ(n), the methodology of [15]

allowed only to extract the growth rate, i.e., dn,m =
Θ(n), but not the constant in front of n. The value of this

constant, logBα, where Bα is specified in (19) and (17),

is plotted against α in Figure 1. It is easy to see that,

when α → 0, logBα ≈ (α/2) log(1/α), in agreement

with (15). Similarly, when α → ∞, logBα ≈ log α, in

agreement with (20).

Finally, for the case n = o(m), our results confirm that

the leading term is a good approximation to dn,m. The

intuition behind this term is that, for large m, the value

of the minimax game is achieved when all the symbols in

xn1 are roughly different (so that the maximum-likelihood

probability of each occurring symbol tends to 1/n) and

the code assigns logm bits to each symbol, leading to a

pointwise redundancy of, roughly, n log(m/n).

Convergence. Observe that the second order term

in (15), which is Θ(m), dominates − log(n/m) when-

ever m = Ω(na) for some a, 0<a< 1. Hence, the lead-

ing term in the expansion is rather (m/2) log(n/m) than

(m − 1)/2 log(n/m). In the numerical example given

for this case, the choice of a growth rate m = o(
√
n) is

due to the fact that, otherwise, the error term O(m2/n)
may not even vanish, and it may dominate the constant,

as well as the
√
m/n terms. For any given growth rate

m = O(na), 0<a< 1, an expansion in which the error

term vanishes can be derived; however, no expansion

has this property for every possible value of a. The

reason is that, as will become apparent in the proof of

the theorem, any expansion will include an error term

of the form O(m(m/n)j/2) for some positive integer j.

The same situation can be observed in (20), where one of

the error terms becomes O(n(n/m)j) if a more accurate

expansion is used.

A similar phenomenon is observed for the error term

in (16), which is guaranteed to vanish only if ℓ(n) =
o(n2/3), and it can otherwise dominate the constant

term in the expansion. Again, for any given growth

rate ℓ(n) = O(na), an expansion in which the error

term vanishes can be derived. Notice, however, that the

case ℓ(n) 6= 0 is analyzed only for completeness since,

as mentioned, a typical application of (16) would in

general involve approximating dn0,m0
, for a given pair

of values n0,m0 which are deemed to fall in case (ii),

by using (16) with α = n0/m0 and ℓ(n) = 0.

B. Model family M̃0

In this subsection we consider the second main topic

of this paper, namely, the minimax pointwise redundancy

R∗
n(M̃0) relative to the family M̃0 of constrained (i.e.,

some parameters are fixed) memoryless models. Recall

that the model family M̃0 assumes an alphabet A ∪
B, where |A| = m and |B| = M . The probabilities

of symbols in A, denoted by p1, . . . , pm, are allowed

to vary (unknown), while the probabilities q1, . . . , qM
of the symbols in B are fixed (known). Furthermore,

q = q1 + · · · + qM and p = 1 − q. We assume that 0 <
q < 1 is fixed (independent of the sequence length n). To

simplify our notation, we also write p = (p1, . . . , pm)
and q = (q1, . . . , qM ). The output sequence is denoted

x := xn1 ∈ (A ∪ B)n.

Our goal is to derive asymptotics of R∗
n(M̃0) :=

dn,m,M for large n and m, where again we introduce

notation that emphasizes the dependence on m (the

dependence on M will be shown to be indirect, via p,

and does not affect the analysis). First, Lemma 3 below

relates dn,m,M to the minimax pointwise redundancy

dn,m relative to M0, studied in Theorem 1, and to p.

The lemma is stated in terms of Dn,m,M := 2dn,m,M and

Dn,m = 2dn,m .
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Lemma 3:

Dn,m,M =
n∑

k=0

(
n

k

)
pk(1− p)n−kDk,m .

Proof: Let P ∈ M̃0. By (2), we have

Dn,m,M =
∑

x∈(A∪B)n
sup
p

P (x) =
∑

x∈(A∪B)n
P̃n(x) (21)

where P̃n(x) = sup
p
P (x) is the maximum-likelihood

(ML) estimator of P (x) over M̃0. To simplify (21),

consider x ∈ (A ∪ B)n and assume that i symbols are

from B and the remaining n − i symbols are from A.

We denote by z ∈ Bi the sub-sequence of x consisting

of i symbols from B. Similarly, y ∈ An−i is the sub-

sequence of x over A. For any such pair (y, z), there are(n
i

)
ways of interleaving the sub-sequences, all leading

to the same ML probability P̃n(x). Now, it is easy to

see that P̃n(x) takes the form

P̃n(x) = pn−iP̂n−i(y)q
iPi(z),

where P̂n−i(y) is the ML probability of y (over the

set M0 of memoryless sources over A), and Pi(z) is

the probability of z over B with (given) probabilities

q1/q, . . . , qM/q. In summary, using (21), we obtain

Dn,m,M =
n∑

i=0

(
n

i

)
pn−iqi

∑

y∈An−i

∑

z∈Bi

P̂n−i(y)Pi(z)

=
n∑

i=0

(
n

i

)
pn−iqi

∑

y∈An−i

P̂n−i(y). (22)

The proof is complete by noticing that the inner sum-

mation in (22) is precisely Dn−i,m.

By Lemma 3, the robust asymptotic expression of

Dn,m derived in Theorem 1 will be our starting point

for estimating Dn,m,M . As mentioned, the generic form

of the sum in the lemma, given in Equation (4), is known

as the binomial sum [6], [11]. If Dk,m has a polynomial

growth, (i.e., Dk,m = 2dk,m = O(k(m−1)/2) when m is

a constant), then we can use the asymptotic expansion

derived in [6], [11] to conclude that Dn,m,M ∼ Dnp,m.

However, when m varies with n as in our study, the

above expansion does not apply. In particular, the poly-

nomial growth of Dn,m ceases to hold and we need to

compute asymptotics anew. We state and discuss our

second main result in Theorem 2 below, whose proof

is presented in Section IV. In the sequel, we will use the

notation mn wherever it is desirable to explicitly show

a dependence of m on n.

Theorem 2: Consider a family of memoryless mod-

els M̃0 over the (m + M)-ary alphabet A ∪ B, with

fixed probabilities q1, . . . , qM of the symbols in B, such

that q=q1+ . . .+qM is bounded away from 0 and 1.

Let p=1−q. Then, the minimax pointwise redundancy

dn,m,M takes the form:

(i0) If m is fixed, then

dn,m,M =
m−1

2
log

(
np

2

)
+ log

( √
π

Γ(m2 )

)
+O

(
1√
n

)
.

(23)

(i) Let mn→∞ as n grows, with mn=o(n). Assume:

(a) m(x) := mx is a continuous function, as well

as its derivatives m′(x) and m′′(x).
(b) ∆n := mn+1 − mn = O(m′(n)), m′(n) =

O(m/n), and m′′(n)=O(m/n2), where m′(n)
and m′′(n) are derivatives of m(x) at x = n.

If mn = o(
√
n/ log n), then

dn,m,M =
mnp − 1

2
log

(
np

mnp

)
+

mnp

2
log e

− 1

2
+

mnp

3
log e

√
mnp

np

+O

(
1√
mn

+
m2

n log
2 n

n

)
. (24)

Otherwise,

dn,m,M =
mnp

2
log

(
np

mnp

)
+

mnp

2
log e

+
mnp

3
log e

√
mnp

np

+O

(
log n+

m2
n

n
log2

n

mn

)
. (25)

(ii) Let mn = αn+ℓ(n), where α is a positive constant

and ℓ(n) is a monotonic function such that ℓ(n) =
o(n). Then,

dn,m,M = n log (Bαp+ 1− p)

− log
√
Aα+O

(
ℓ(n)+

1√
n

)
(26)

where Aα and Bα are defined in Theorem 1(ii).

(iii) Let n=o(mn) and assume mk/k is a nondecreasing

sequence. Then,

dn,m,M = n log

(
pmn

n

)
+O

(
n2

mn
+

1√
n

)
. (27)

Discussion of Theorem 2

Assumptions. As in Theorem 1, a natural application

of our asymptotic analysis in Theorem 2 will assume

some large size of the set A, such as mn = na for

some a, where the value of a will determine which

of the three cases is relevant. In this scenario, all the
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Fig. 2. Comparison of dnp,m = mnp/2 · log(np/mnp) (“zigzag

curve”) and dn,m,M when mn =
√
n(sin(n+0.77)+2) for p = 0.5.

assumptions on mn hold trivially since, in case (i)

(a < 1), we have ∆n ≈ m′(n) = ana−1 = O(m/n), and

m′′(n) = −a(1− a)na−2 = O(m/n2). We have chosen

to state the theorem with more generality because the

itemized assumptions actually point to the key properties

that the proof will require. For the assumption ∆n =
O(m′(n)) in part (i) of the theorem to hold, we need ap-

propriate smoothness conditions (e.g., logm′(x) should

be of bounded variation). In turn, for the assumption

m′(n) = O(m/n) to hold, it suffices to further assume

that mn/n monotonically decreases for sufficiently large

n, which is natural since mn/n = o(1) in this case.

Finally, m′′(n) = O(m/n2) requires natural convexity

assumptions.6 If, instead, these assumptions cease to

hold due to oscillations (which, as mentioned, are not

natural in our context), the claim of the theorem may not

hold. For example, for mn =
√
n(sin(n+0.77)+2), we

have m′(n) = O(
√
n(cos(n+0.77)+2)), the assumption

∆n = O(m/n) breaks, and, as shown in Figure 2,

Theorem 2(i) is invalid.

Similarly, the assumption of a monotonic increase of

mk/k in case (iii) is also natural, since n/mn = o(1) in

this case. We can replace this assumption by the weaker

version 1 ≤ mk

k ≤ Cmn

n for all k ≤ n and some C > 0,

but then we can only show that

dn,m,M = n log

(
pmn

n

)
+O(n).

As for case (ii), as discussed in connection with The-

orem 1, the case ℓ(n) 6= 0 is discussed for completeness

only. We have assumed that ℓ(n) is monotonic in order

to prevent certain types of fluctuations. The result holds

under a weaker assumption, though, namely that there

exist constants C and a such that, for every pair of

6For example, if mn/n vanishes in a convex manner and mn is

concave, then it is easy to see that m′′(n) = O(m/n2).

positive integers i, j, if i < j we have

e|ℓ(i)|+(1/
√
i) ia ≤ Ce|ℓ(j)|+(1/

√
j) ja. (28)

Clearly, this condition is satisfied if ℓ(n) is monotonic

(and therefore so is |ℓ(n)| for sufficiently large n). In

any case, if g(n) is a monotonic function such that

ℓ(n) = O(g(n)), then the theorem holds with ℓ(n)
replaced with g(n) in the error term. If ℓ(n) is a

constant, denoted ℓ, then the constant term in (26) can

be shown to be exactly log(Cℓ
α/

√
Aα ). If ℓ̃(n) :=

ℓ(n)−(log
√
Aα)/(logCα) = Ω(1), under the additional

assumption that |ℓ̃(k)|/k is nonincreasing (which is again

natural since ℓ(n) = o(n)), the error term in (26) can be

further shown to be Θ(ℓ̃(n)).

Asymptotics. As discussed in Section I, one would

expect dn,m,M to behave roughly as dnp,m (so that

the redundancy depends on B only through p). This

is indeed the case, at least for the main asymptotic

terms, in cases (i) and (iii). It is interesting to notice,

though, that in case (ii), even the main asymptotic term

differs from that of dnp,m. In passing, let us explain

intuitively the asymptotics behind Theorem 2. As shown

in Lemma 3, we deal here with the binomial sum which,

for a general function f , takes the form (4) (in our case,

f(k) = Dk,m). Observe that, when f grows polynomi-

ally, the maximum under the sum occurs around k = np,

and to find asymptotics we need to sum only within

the range ±√
n around np. This observation essentially

explains case (i). When m = Θ(n), the growth of

f(k) = Dk,m = O(Ak) is exponential, and we need all

the terms in the sum in order to extract the asymptotics.

Finally, for case (iii), the function f(k) = Dk,m grows

super-exponentially, and the asymptotics of the binomial

sum are determined by the last term, that is, k = n.

IV. PROOFS OF MAIN THEOREMS

In this section we prove Theorem 1 using analytic

tools and Theorem 2 using elementary analysis.

A. Proof of Theorem 1

The starting point is Equation (10) which, as noted,

follows from Lemma 1 and Stirling’s formula, and

Cauchy’s coefficient formula (11), which takes the form

[zn][β(z)]m =
1

2πi

∮
eh(z)dz, (29)

where

h(z) = m ln β(z) − (n+ 1) ln z. (30)

We will apply a modification of Lemma 2 in the eval-

uation of (29), for which we need to check that the
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necessary conditions are satisfied by the function h(z)
of (30).

We first find an explicit real root, z0, of the saddle

point equation h′(z) = 0, and show that it is unique in

the interval [0, 1). Differentiating (30), we have

z0
β′(z0)
β(z0)

=
n+ 1

m
. (31)

Differentiating Equation (8), and using Equation (7), it

is easy to see that

z
β′(z)
β(z)

= β(z)2 − β(z). (32)

Thus, (31) takes the form

β(z0)
2 − β(z0) =

n+ 1

m
. (33)

By (7) and the definition of T (z), the range of β(z) for

0 ≤ z < 1 is [1,+∞). Since the quadratic equation (33)

has a unique real root in this range, we have

β(z0) =
1

2
+

1

2

√

1 +
4(n+ 1)

m
:=

1

γn,m
(34)

and the uniqueness of a real root z0 in [0, 1) follows from

the fact that β(z) is increasing in this interval. Moreover,

by (7), (34) takes the form

T

(
z0
e

)
= 1− γn,m.

Therefore, by (8), we finally obtain the explicit expres-

sion

z0 = (1− γn,m)eγn,m (35)

where, since

γn,m =
m

2(n + 1)



√

1 +
4(n+ 1)

m
− 1


 (36)

we have 0 < γn,m < 1 and also 0 < z0 < 1. We then

see that, by (30), (34), and (35), h(z0) takes the form

h(z0) = −m ln γn,m−(n+1)[ln(1−γn,m)+γn,m]. (37)

In addition, differentiating (30) twice, we obtain

h′′(z0) = mA(z0) +
n+ 1

z20

where

A(z)=
d

dz

[
β′(z)
β(z)

]
=
[β(z)2−β(z)] [2β(z)2−β(z)−1]

z2
(38)

with the second equality in (38) easily seen to follow

from further differentiating (32). Thus, using (33),

h′′(z0) =
n+ 1

z20

[
2(n+ 1)

m
+ β(z0)

]

which, again by (34) and (35), can be expressed in terms

of γn,m as

h′′(z0) =
n+ 1

(1− γn,m)2e2γn,m

[
2(n + 1)

m
+

1

γn,m

]
.

(39)

Finally, taking another derivative in (38) and further

using (32) and (33), after some additional computations,

we obtain

h′′′(z0) =
n+ 1

γn,mz30

[
n+ 1

m

(
8

γn,m
− 1

)
− 5

γn,m
+ 3

]
.

(40)

With these expressions on hand, we can now check

the conditions required in Lemma 2 for the evaluation

of (29). The most intricate condition to be checked is

that of “tail eliminations” (denoted (SP3) in [21, Table

8.4, (8.105)]). This condition is actually shown in [7,

Lemma 5] to hold in more general cases than the function

h(z) of (30). Also, proceeding along the lines of the

proof of [21, Theorem 8.17]), it can be shown that

Equation (14) of Lemma 2 holds with ρ = 3/2 if h′′(z0)
grows at least linearly and if h′′′(z0) = o((h′′(z0))3/2).
Thus, (10) and the modified Lemma 2 yield

dn,m = h(z0) log e−log

√
h′′(z0)

n
+O

(
h′′′(z0)

(h′′(z0))3/2
+
1

n

)

(41)

provided the error term is o(1) and h′′(z0) grows at

least linearly. Consequently, to complete the proof of

Theorem 1, we need to evaluate the right-hand side

of (41). In view of (37) and (39), which give h(z0) and

h′′(z0) as functions of γn,m, the solution depends on the

possible growth rates of m. We analyze next all possible

cases.

CASE: m = o(n).

Letting m/n → 0 in Equation (36), it is easy to see

that

γn,m =

√
m

n

(
1− 1

2

√
m

n

)
+O

(
m3/2

n3/2

)
.

Substituting into (37) and (39), we obtain

h(z0) =
m

2
ln

n

m
+

m

2
+

m

3

√
m

n
+O

(
m2

n

)

and

ln
h′′(z0)

n
= ln

n

m
+ ln 2 +

1

2

√
m

n
+O

(
m

n

)
. (42)

From (40), and noticing that, in this case, Equation (35)

yields z0 → 1, we further obtain

h′′′(z0) = Θ

(
n3

m2

)
. (43)
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Theorem 1(i) follows from substituting these equations

into (41), observing that (42) and (43) guarantee that the

necessary conditions for the modified Lemma 2 to hold

for h(z) are satisfied.7

CASE: m = Θ(n).

Since z0 is given by (35) where, in this case, m =
αn+ℓ(n) and ℓ(n) = o(n), we can view z0 as a function

of m/(n+1), which we expand around α. The value of

this function at α is

zα = (1− C−1
α )e1/Cα = α−1C−2

α e1/Cα

where Cα is given by (17). It is is then easy to see that

z0 = zα − zαα
−1A−1

α δ(n) +O(δ(n)2),

where δ(n) := (ℓ(n)−α)/(n+1) = o(1) and Aα is given

by (18). With this value of z0 we can then compute, with

a Taylor expansion around zα,

h(z0) = n ln(Cα
αz

−1
α ) + ℓ(n) lnCα

− ln zα − nδ(n)2
1

2α2Aα
+O(nδ(n)3),

ln
h′′(z0)

n
= ln(Aαz

−2
α ) +O(δ(n)),

h′′′(z0) = O(n).

Substitution into (41) completes the proof of Theo-

rem 1(ii), after observing, again, that the necessary

conditions for the modified Lemma 2 hold.

CASE: n = o(m).

Letting n/m → 0 in Equation (36), it is easy to see

that

γn,m = 1− n+ 1

m
+

2(n + 1)2

m2
+O

(
n3

m3

)
.

Substituting into (37) and (39), we obtain

h(z0) = (n+ 1) ln
m

n+ 1
+

3

2

(n+ 1)2

m
+O

(
n3

m2

)

and

ln
h′′(z0)
n+ 1

= 2 ln
m

(n+ 1)e
+ 9

n+ 1

m
+O

(
n2

m2

)
.

From (40), and noticing that, in this case, Equation (35)

yields z0 = Θ(1− γn,m) = Θ(n/m), we further obtain

h′′′(z0) = Θ

(
m3

n2

)
.

7Taking more terms in the expansion of γn,m, an O(m(m/n)j/2)
error term for h(z0) can be obtained, where j is as large as desired.

Thus, while no value of j guarantees a vanishing error for every m,

for each given m = O(na), a choice of j exists that guarantees o(1)
error.

Putting everything together, substituting into (41), and

observing that the necessary conditions for the modified

Lemma 2 hold, we prove Theorem 1(iii).8

B. Proof of Theorem 2

By Lemma 3, in order to prove Theorem 2 we need

to evaluate the binomial sum

Sf (n) =
∑

k

(
n

k

)
pk(1− p)n−kf(k) (44)

for f(k) = Dk,mk
that, for m → ∞, grows faster than

any polynomial.

CASE: mn = o(n).

We first observe that

Sf (n) = EX [f(X)],

where EX denotes expectation with respect to a binomi-

ally distributed random variable X. Our basic evaluation

technique will rely on the concentration of X around

its mean np. The following lemma is a straightforward

consequence of this concentration.

Lemma 4: Let g(k) be a function satisfying the fol-

lowing condition: There exist constants C and a such

that, for every pair of positive integers i, j, with i< j,

we have |g(i)|ia ≤ C|g(j)|ja. Then, Sg(n) = O(g(n))
and S1/|g|(n) = Ω(1/g(n)).

Proof: By Hoeffding’s inequality [10], for any ǫ > 0 we

have

Pr{X < n(p− ǫ)} ≤ e−
1

2
nǫ2 .

Therefore,

Sg(n) ≤ e−
1

2
nǫ2 max

1≤k≤n
|g(k)|+ max

n(p−ǫ)≤k≤n
|g(k)| . (45)

By the assumed condition on g, C|g(n)|na is an upper

bound on ra|g(k)| for all k in the range [r, n]. Letting r
take the values r = 1 and r = n(p− ǫ), (45) implies

Sg(n) ≤ C|g(n)|[e− 1

2
nǫ2na + (p− ǫ)−a] ≤ C ′|g(n)|

for some constant C ′. Similarly,

S1/|g|(n) ≥ Pr{X > n(p− ǫ)} min
n(p−ǫ)≤k≤n

(1/|g(k)|)

>
(p− ǫ)a

2C

1

|g(n)| .

Lemma 4 applies, e.g., to functions that vanish poly-

nomially fast without excessive fluctuations. It holds

trivially for nondecreasing functions.

8We can take more terms in the expansion of γn,m also in this

case, leading to an O(n(n/m)j) error term for h(z0).
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One approach for taking advantage of the concentra-

tion of X consists of applying Taylor’s theorem to f(x)
(the extension of f(n) to the real line) around the mean

x = np, and estimating f ′′(n). However, notice that

Theorem 1 does not provide enough information about

f(n) to obtain such an estimate, since the behavior of

f ′′(n) could be dominated by the error term of f(n).
We circumvent this problem by appropriately defining

functions f1 and f2 such that

f(n) = f1(n)[1 +O(f2(n))]

where f2(n) is a vanishing function that satisfies the

condition of Lemma 4, and

max
0≤x≤n

|f1(x)| = O(f1(n)). (46)

It then follows from Lemma 4 and (46) that

Sf (n)− Sf1(n) = O(f1(n)f2(n)). (47)

Next, we estimate Sf1(n) by applying Taylor’s theo-

rem to f1(x) around x = np, which yields

f1(x) = f1(np) + (x− np)f ′
1(np) +

(x− np)2

2
f ′′
1 (x

′)

for some x′ that lies between x and np. Letting

ξ(n) := max
0≤x≤n

|f ′′
1 (x)|

we obtain

f1(x)−f1(np)− (x−np)f ′
1(np) =

(x− np)2

2
O(ξ(n)).

(48)

Taking expectations with respect to X in (48), and noting

that EX [X] = np and Var [X] = npq, yields

Sf1(n)− f1(np) = O(nξ(n))

which, together with (47), implies

Sf (n)− f1(np) = O(nξ(n) + f1(n)f2(n)).

By (46) we then have

Sf (n) = f1(np)

[
1 +O

(
nξ(n)

f1(n)
+ f2(n)

)]
. (49)

As we will show, this bound leads to a precise asymptotic

estimate of Sf (n) provided that nξ(n) = o(f1(n)). In

this case, (49) implies

dn,m,M = log Sf (n) = log f1(np)+O

(
nξ(n)

f1(n)
+f2(n)

)
.

(50)

In the fixed m case we have, by (12),

f(n) = Kn(m−1)/2 [1 +O
(
1/
√
n
)]

where K is a constant. Thus, we can choose f1(n) =
Kn(m−1)/2, f2(n) = 1/

√
n, and all the necessary

conditions are obviously satisfied. Hence, Theorem 2(i0)

holds. A more precise asymptotic expansion can be

found using tools from [6], [11].

Let us now consider part (i) of Theorem 2, that is,

we assume that m → ∞ and m = o(n). If we further

assume, first, that m = o(
√
n), the error term in (15)

dominates the O(
√
m/n) term, and we can then choose

f1(n) =

(
ne

m

)m

2

√
m

2n
e

m

3

√
m

n (51)

which clearly satisfies (46), and

f2(n) = O

(
m2

n
+

1√
m

)
(52)

which vanishes polynomially fast. In order to check the

applicability of (50), we need to estimate ξ(n)/f1(n),
for which we will use two of the additional assumptions

in this part of the lemma, namely that O(m′(n)) =
O(m/n) and O(m′′(n)) = O(m/n2). Now, since for

any function g we have g′′/g = [(ln g)′]2 + (ln g)′′, it is

relatively simple to compute that

nf ′′
1 (n)

f1(n)
= O

(
m2 log2 n

n

)
. (53)

Moreover, due to the continuity of m, m′, and m′′

(which implies the continuity of f ′′
1 ), and to the fact that

[f1(n)m
2 log2 n]/n2 is increasing for sufficiently large

n, it is easy to see that (53) holds also when ξ(n) replaces

f ′′
1 (n) in the right-hand side. When m = o(

√
n/ log n),

we have nξ(n)/f1(n) = o(1) and (24) follows from (50),

(51), and (52).

We need a different approach for the remaining

m = o(n) cases, since in those cases the error term

O(m2(log2 n)/n) does not vanish. Observe that we

always have

e−1/(12np(1−p))

√
2πnp(1− p)

f(np) ≤ Sf (n)

≤ nmax
k

((
n

k

)
pk(1− p)n−kf(k)

)
(54)

where we have used Stirling’s inequality to lower-bound

the term corresponding to k = ⌈np⌉ in the sum (44).9

We need to find k = k∗ that maximizes the right-hand

side of (54). Let

F (k) =

(
n

k

)
pk(1− p)n−kf(k).

9If, instead of bounding Sf (n), we use (47) and bound Sf1(n), the

fact that f ′′
1 (x) > 0 for sufficiently large x immediately implies that

Sf1(n) ≥ f1(np) (up to an exponentially decaying term that accounts

for the range of values of x for which f ′′
1 (x) < 0, if any), which

is stronger than the claimed lower bound. However, the O(log n)
term resulting from the use of Stirling’s inequality is asymptotically

inconsequential.
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Then, k∗ satisfies

F (k∗ + 1)

F (k∗)
≈ 1. (55)

We first observe that for our f(k) = Dk,mk
, using (15)

and our assumption that ∆k = O(mk/k), we obtain,

after some computations,

f(k + 1)

f(k)
= 1 +O

(
mk

k
log

k

mk

)
.

Thus, (55) takes the form

n− k

k + 1
=

1− p

p
−O

(
mk

k
· log k

mk

)

which yields

k∗ = np+O(mn log(n/mn)).

Applying Stirling’s formula it can then be shown that

log F (k∗) = log f(k∗) +O(log n) +O

(
m2

n

n
log2

n

mn

)

(56)

where the first error term is due to the 1/
√
n factor in

the formula, and the second error term is due to the

discrepancy between k∗ and np. In addition,

log f(k∗) =
mnp − 1

2
log

(
np

mnp

)
+

mnp

2
log e

+
mnp

3
log e

√
mnp

n
+O

(
m2

n

n
log2

n

mn

)

(57)

where again the error term is due to the discrepancy

between k∗ and np and is easily seen to dominate other

terms in (15). Equations (54), (56), and (57) imply (25)

of Theorem 2(i), where the growth rate of mn further

determines the dominating error terms.

CASE: mn = Θ(n).

By (16), since ℓ(n)/n = o(1),

f(k) = Dk,mk
≤ A

− 1

2

α Bk
α2

|f1(k)|

where f1(k) = O(ℓ(k) + 1/
√
k), and the inequality is

needed because ℓ(k) could be negative. Thus,

Sf (n) ≤ A
− 1

2

α (Bαp+ q)n

·
n∑

k=0

(
n

k

)(
Bαp

Bαp+q

)k ( q

Bαp+q

)n−k

2|f1(k)|.

The above sum is upper-bounded by the binomial sum

(with parameter Bαp/(Bαp + q) rather than p) for the

function 2C
′(|ℓ(k)|+1/

√
k) for some constant C ′. Since

ℓ(n) is assumed monotonic, Condition (28) is satisfied

(see discussion on Theorem 2), and therefore we can

apply Lemma 4 to this new binomial sum, to obtain

Sf (n) ≤ A
− 1

2

α (Bαp+ q)nO(2f2(n)) (58)

where f2(n) = C ′(|ℓ(n)|+1/
√
n). Since 2f2(n) ≥ 1, we

conclude that

logSf (n) ≤ n log(Bαp+q)−log
√
Aα+O(ℓ(n)+1/

√
n)

(59)

where we notice that (59) is in fact an equality whenever

ℓ(n) ≥ 0.

To obtain a matching lower bound, we have

f(k) ≥ A
− 1

2

α Bk
α2

−|f1(k)|

so that, proceeding as in the upper bound,

Sf (n) ≥ A
− 1

2

α (Bαp+ q)n

·
n∑

k=0

(
n

k

)(
Bαp

Bαp+q

)k ( q

Bαp+q

)n−k

2−f2(k).

We can now apply the second statement in Lemma 4, to

obtain

Sf (n) ≥ A
− 1

2

α (Bαp+ q)nΩ(2−f2(n))

which, after taking logarithms, yields the desired lower

bound and, hence, Equation (26) of Theorem 2(ii). A

more precise estimate is discussed in Remark 2.

When ℓ(n) is a constant, denoted ℓ, the constant term

in (16) includes an additional ℓ logCα, which is added

also in dn,mn,M , and the error term becomes O(1/
√
n).

CASE: n = o(m).

By (20),

f(k) = Dk,mk
= g1(k)(1 + g2(k))

where g2(k) = O(1/
√
k + k/mk), and

g1(k) =

(
mk

k

)k

e3k(k−1)/(2mk)

=

(
mk

k

)k
(
1 +

3(k − 1)

2mk
+O

(
k2

m2
k

))k

=

(
mk

k
+

3

2
+O

(
k

mk

)
+O

(
1

k

))k

.

We first use our assumption that 1≤ (mk/k)≤ (mn/n)
for all k≤n to obtain the upper bound

Sg1(n) =
n∑

k=1

(
n

k

)
pkqn−kg1(k)

≤
n∑

k=1

(
n

k

)(
p

(
mn

n
+
3

2
+O

(
k

mk
+
1

k

)))k

qn−k

≤
(
pmn

n
+K

)n
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for some constant K, where we have upper-bounded

the O(k/mk) and O(1/k) terms with a constant, since

k/mk = o(1). In addition, proceeding as in the deriva-

tion of (58),

n∑

k=1

(
n

k

)
pkqn−kg1(k)g2(k)

≤
(
pmn

n
+K

)n

O

(
1√
n
+

n

mn

)

where we have used again Lemma 4.10 Thus,

Sf (n) ≤
(
pmn

n
+K

)n (
1 +O

(
1√
n
+

n

mn

))

or

logSf (n) ≤ n log

(
pmn

n
+K

)
+O

(
1√
n
+

n

mn

)

= n log
pmn

n
+O

(
1√
n
+

n2

mn

)
. (60)

On the other hand, we can lower-bound the binomial

sum (44) with the term corresponding to k = n, namely

pnDn,mn
, to obtain

log Sf (n) ≥ n log p+ dn,mn
. (61)

Theorem 2(iii) then follows from (60), (61), and (20).

If (mk/k) ≤ C(mn/n), we obtain an additional term

n logC , thus the error term is O(n).

Remark 1. Notice that one of the error terms gener-

ated by the “sandwich argument” of (54), used in the

proof of (25), is O(log n), independently of the value

of m. Therefore, this method is not suitable for the

m = O(log n) cases (addressed via a Taylor expansion in

the proof of (24)) as this error term would dominate one

of the other terms. Moreover, for fixed m, the method

cannot even provide the main asymptotic term, which is

also O(log n).

Remark 2. In part (ii), under the additional assumptions

that ℓ̃(n) := ℓ(n) − (log
√
Aα)/(logCα) = Ω(1) and

|ℓ̃(k)|/k is nonincreasing, we can further prove that the

error term is Θ(ℓ̃(n)). Clearly, our assumptions imply

that ℓ̃(k) has constant sign. Assume ℓ̃(k) > 0; a similar

argument can be used for ℓ̃(k) < 0. Then,

f(k) = Bk
α2

Θ(ℓ̃(k)) = [Bα2
Θ(ℓ̃(k)/k)]k = [Bα2

Ω(ℓ̃(n)/n)]k.

Therefore, using a bounding technique similar to

part (iii), we obtain

Sf (n) = [Bαp+ q +Ω(ℓ̃(n)/n)]n

10Notice that if mn/n grows faster than any polynomial, Lemma 4

can still be applied to the O(1/
√
n) term, which will dominate the

O(n/mn) term.

and, after taking the logarithm,

dn,m,M = n log(Bαp+ q) + Ω(ℓ̃(n)).

Together with (26), we conclude that the error term is

Θ(ℓ̃(n)).
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