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Abstract— We propose a joint source-channel coding algorithm
capable of correcting some errors in the popular Lempel-Ziv’77
scheme without introducing any measurable degradation in the
compression performance. This can be achieved because the
LZ’77 encoder does not completely eliminate the redundancy
present in the input sequence. One source of redundancy can be
observed when an LZ’77 phrase has multiple matches. In this
case, LZ’77 can issue a pointer to any of those matches, and a
particular choice carries some additional bits of information. We
call a scheme with embedded redundant information the LZS’77
algorithm. We analyze the number of longest matches in such a
scheme and prove that it follows thelogarithmic series distribution
with mean 1/h (plus some fluctuations), whereh is the source
entropy. Thus, the distribution associated with the numberof
redundant bits is well concentrated around its mean, a highly
desirable property for error correction. These analytic results
are proved by a combination of combinatorial, probabilistic
and analytic methods (e.g., Mellin transform, depoissonization,
combinatorics on words). In fact, we analyze LZS’77 by studying
the multiplicity matching parameter in a suffix tree, which in
turn is analyzed via comparison to its independent version,
called trie. Finally, we present an algorithm in which a channel
coder (e.g., Reed-Solomon coder) succinctly uses the inherent
additional redundancy left by the LZS’77 encoder to detect and
correct a limited number of errors. We call such a scheme the
LZRS’77 algorithm. LZRS’77 is perfectly backward-compatible
with LZ’77, that is, a file compressed with our error-resistant
LZRS’77 can still be decompressed by a generic LZ’77 decoder.

Index Terms— Lempel-Ziv’77 scheme, multiple matches, joint
source-channel coding, Reed-Solomon code, suffix trees, tries,
Mellin transform, depoissonization, pattern matching, autocor-
relation polynomial, combinatorics on words.

I. I NTRODUCTION

ERROR-RESILIENT adaptive lossless data compression
is a particularly challenging problem because of two

opposing “forces.”Source codingtries to decorrelate as much
as possible the input sequence (i.e., by removing redundant
information), whilechannel codingintroduces additional cor-
relation (i.e., by adding redundant information) in order to
protect against errors. The devastating effect of errors in
adaptive data compression is a long-standing open problem
[25]. In fact, in many applications, a practical drawback of
adaptive data compression algorithms is their lack of resistance
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to errors. Joint source-channel coding has emerged as a viable
solution to this problem.

The separation principleformulated by Shannon divides
a communication system into separate source coding and
channel coding subsystems that run independently; however,
in today’s communication technology this rigid separation
is very limiting. In particular, this principle ignores many
imperfections of real communication systems, such as the
fact that channel coding is incapable of correcting all errors.
Uncorrectable errors are inevitable; designing encoders while
ignoring this fact simply leads to extremely fragile source
codes, in which one single error can potentially yield catas-
trophic failures. Joint source-channel coding strikes a balance
between source bits vs. channel bits, which in turn requires
some adjustments in both the source coding and channel
coding strategies. Our approach is somewhat orthogonal to
most works in this area. We use redundancy bits left by the
source coder to protect against errorswithout degrading the
compression rate. The price we pay is that we only correct a
few errors, and we do not achieve a positive error bit rate (i.e.,
we are unable to correct a number of errors proportional to the
size of a block). We do not address here error propagation (cf.
[25]); however, by eliminating errors, our algorithm implicitly
protects against limited error propagation.

In this paper we deal with one of the best-known adaptive
data compression schemes, namely that of Ziv and Lempel
published in their 1977 seminal paper [33]. The popular LZ’77
compression scheme works on-line. It compresses phrases
by consecutively replacing the longest prefix of the non-
compressed portion of a file with apointer and the length
of the prefix. The lack of error-resistance of LZ’77 is a well-
recognized problem. A few years ago we read the following
posting on thecomp.compression newsgroup: “. . . I’m a
casualty of corrupt tar’d1 gzipped files on Solaris 8. (gzip
1.3) . . . Is there a reason why there are no compression
utilities that allow controlled amounts of redundancy for error
correction? . . . How much overhead would be needed to
correct these?”

Indeed, we asked ourselves, how much overhead is needed
in LZ’77 to correct errors? The surprising answer is that there
is no need for additional overhead in order to correct some
errors in LZ’77. This seemingly impossible goal is achieved
in practice thanks to the fact that the LZ’77 encoder is unable
to completely decorrelate the input sequence. Some implicit
redundancy, which we precisely quantify in this paper, is still
present in the compressed stream and can be exploited by the

1tar is a common archiver under the Unix operating system.
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encoder. The additional redundancy derives from the encoding
of phrases for which one has a choice amongM > 1 possible
pointers. In practice, if there areM copies of the longest
prefix, we recover⌊log2 M⌋ redundant bits by choosing one
of theM pointers (see Figure 1). We call such a scheme with
multiple pointers the LZS’77 algorithm.

In the first part of the paper we present an algorithm
for channel coding that exploits the redundant bits identified
by LZS’77. To detect and correct errors, we choose Reed-
Solomon codes computed on blocks of255 bytes of com-
pressed data. Given the maximum number of errorse that
the Reed-Solomon code can correct, the2e parity bits of the
Reed-Solomon code will be embedded in the extra redundant
bits extracted from the pointer multiplicity. We should point
out that if e is large then we may not always have enough
redundant bits to embed the parity bits. The algorithm that
incorporates the Reed-Solomon channel coding into LZS’77
is referred to throughout as the LZRS’77 scheme.

As mentioned above, our basic algorithm allows one to
correct only a few errors, thus we sete = O(1), ande is rather
small in our implementations. In fact, we prove theoretically
that asymptotically the average number of longest phrases is
O(1) leading toe = O(1). We should observe, however, that
even single errors can have devastating effects. It has been
proved recently [4] that a single error in LZ’77 may corrupt up
to O(n2/3) phrases, thus aboutO(n2/3 log n) symbols, where
n is the size the file to be compressed. Furthermore, a simple
modification of our algorithm (e.g., instead of looking for the
longest match we just consider a “long enough” match) allows
e to change adaptively with the availability of redundancy
bits in the stream (i.e.,e will slowly grow with n) and still
preserve the asymptotic optimality of the compression bit rate
(see Remark (i) after Theorem 1).

In the second part of this paper we theoretically quantify
the amount of redundancy left by the LZ’77 encoder for error
protection. Thus we resort to analyzing the number of pointers
in the LZS’77 schemes, a problem never addressed before. We
let Mn denote thenumber of pointers(longest matches) into
the database whenn bits have already been compressed. We
are primarily interested in precisely determining the asymp-
totics of the random variableMn and its concentration around
the mean. A thorough analysis of the variableMn yields
a characterization of the degree to which error correction
can be performed in the scheme discussed above. We recall
that ⌊log2 Mn⌋ bits are available for detecting and correcting
errors.

Suffix trees provide a natural way to study the variableMn.
A suffix tree [27] is a digital search tree (i.e., atrie [27])
built from all the suffixes of a single string (the database in
our case). In a suffix tree,Mn corresponds to the number
of leaves in the subtree rooted at the branching point of the
(n+1)st insertion. We refer toMn as themultiplicity matching
parameter. As it turns out, strings in suffix trees are highly
dependent on each other. This dependency complicates the
precise analysis ofMn; therefore, we also consider the anal-
ogous situation, where a trie is built over independent strings.
More specifically, we study the variableM I

n associated with
the number of leaves in the subtree rooted at the branching

point of the (n + 1)st insertion in a trie. After determining
the asymptotics ofM I

n, we prove thatMn and M I
n have

asymptotically identical distributions.

The main theoretical result consists of a precise characteri-
zation of all the moments ofMn and its limiting distribution.
In particular, we show that for memoryless sources2 the
average number of pointers is1/h, whereh is the entropy
rate. We also show that the limiting distribution ofMn follows
the logarithmic series distribution, that is, Pr(Mn = k) ≈
(pk(1 − p) + (1 − p)kp)/(kh) where p is the probability
of generating a “1”. Thus, the number of pointers is well
concentrated around the mean, which is a highly desirable
property for channel coding. Still, it is more likely to haveone
occurrence of the longest phrase in the database than many,
but the probability of seeing two longest phrases is only four
times smaller than finding a single longest phrase. In practice,
we usually find more than one match, as shown in Section II-
C.

In order to prove our main result we use a battery of analytic
tools, including analytical poissonization and depoissoniza-
tion, the Mellin transform, and complex analysis. To prove
that suffix trees and independent tries have similar multiplicity
matching parameters, we derive bivariate generating functions
for Mn and M I

n using combinatorics on words, as recently
surveyed in [17]. We compare the generating functions for
Mn andM I

n by utilizing complex asymptotics.

To the best of our knowledge, the scheme described here is
the first joint source-channel LZ’77 algorithm. In [25], Storer
and Reif address the issue oferror propagationbut not error
recovery (see [21] for an analysis of the Storer and Reif
algorithm). There are, however, joint source-channel coding
algorithms for arithmetic coding and other variable length
codes (see, e.g., [23]). Recently, we have proposed a novel
scheme to extract redundant bits from LZ’78/LZW streams
[31].

Regarding our theoretical results, the multiplicity matching
parameter was never previously studied in tries and suffix
trees. However, the methodology used here to study the
matching parameterin tries is well established within the
analytic algorithmic community [27]. The analysis ofMn in
a suffix tree is new and quite challenging. The basic idea of
comparing suffix trees to independent tries was establishedby
Jacquet and Szpankowski [11] and recently simplified by these
authors in [17]. Other aspects of suffix trees have been studied
in [5], [7], [26].

The paper is organized as follows. In Section II-A we
describe the LZS’77 encoder and present our main theoretical
results. In Section II-B we design the encoder and decoder
for the LZRS’77 scheme and in Section II-C discuss the
experiment results. The main theoretical result is proved in
Sections 3–5. In Section III we provide a streamlined analysis
and the road-map of the proof. Independent tries are discussed
in Section IV while suffix trees are analyzed in Section V.

2Our analysis can be extended to Markov sources using the techniques
developed in this paper.
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Fig. 1. The multiplicity of the next phrase is four (M = 4). Choosing one
of the four possible pointers recovers two redundant bits.

II. M AIN RESULTS

In this section we present our main algorithmic, theoretical,
and experimental results. We first describe a modified LZ’77
scheme, called LZS’77, in which we recover redundant infor-
mation by identifying multiple longest matches. In Theorem1
we quantify the redundant information by analyzing the vari-
ableMn, associated with the number of longest matches when
the database sequence is of lengthn. Finally, the recovered
redundant bits are used in a new algorithm called LZRS’77,
in which O(1) errors are corrected at each stage of the
compression. We end the section by reporting experimental
results on LZRS’77.

A. Redundant Information in LZS’77

Let X be a text of lengthn over a finite alphabetA. We
write Xi, 1 ≤ i ≤ n to indicate theith symbol in X . We
useXj

i as shorthand for the substringXiXi+1 . . . Xj where
1 ≤ i ≤ j ≤ n, with the convention thatX i

i = Xi. Substrings
of the form Xj

1 correspond to prefixes ofX , and substrings
of the formXn

i correspond to the suffixes ofX .
The LZ’77 algorithm [33] processes the dataon-line as it

is read, i.e., it parses the file sequentiallyleft to right and
looks into the sequence of past symbols (called thedatabase)
to find a match with the longest prefix of the string starting
at the current position. The longest prefix is replaced with
a pointer, which is a triple composed of(position, length,
symbol). Several variations on LZ’77 have been proposed (see,
e.g., [3] and references therein), but the basic principle remains
the same.

Let us suppose that the firsti − 1 symbols of the string
X have been already parsed intok − 1 phrases, i.e.,X i−1

1 =
y1y2 . . . yk−1, where eachy’s is a non-empty string overA. In
order to identify thek-th phrase, LZ’77 looks for thelongest
prefix of Xn

i that matches a substring ofX i−1
1 . If Xj+l−1

j

(j < i) is the substring that matches the longest prefix,
then the next phrase isyk = X i+l−1

i . The algorithm issues
the pointer(j, l, Xi+l) and updates the current positioni to
i + l + 1. The symbolXi+l is needed to be able to advance
when l = 0, which is common in the very beginning of the
encoding process. The use of a raw symbol within each pointer
is wasteful in practice, because it can often be included in the
next pointer. Later, we will assume that the LZ’77 compressed
stream is just a sequence of(position,length)pointers, as it is
implemented ingzip and other encoders.

In order to recover additional bits to be used for channel
coding, we slightly modify the LZ’77 scheme. The resulting
algorithm, called LZS’77, allows one to embed some bits of

LZS’77 ENCODER (X, K)
let i, r, n, m, P ← 0, 0, |X|, |K|, []
while i < n do

let Xi+l−1

i ← the longest prefix ofXt
i

that matches a substring inXi−1

1

let R← {(p0, l, Xi+l), . . . , (pM−1, l, Xi+l)} be
the set of feasible pointers forXi+l−1

i

if M > 1 then
let d← ⌊log2 M⌋
append (p

K
r+d
r

, l, Xi+l) to P

let r ← r + d
else

append (pM−1, l, Xi+l) to P
let i← i + l + 1

return P

LZS’77 DECODER(P )
let D, K ← empty string, empty string
for each (p, l, c) ∈ P do

let R← {p0, . . . , pM−1} be the set of
occurrences ofDp+l−1

p

let i be the index such thatpi = p
append ⌊log2 M⌋ bits of i to K
append Dp+l−1

p c to D
return (D, K)

Fig. 2. Recovering redundant bitsK in LZ’77. Here X is the text,K
represents the redundant bits,P is the compressed stream of pointers,D is
the decompressed text.

another binary stringK. We define a positioni corresponding
to the beginning of a phrase to havemultiplicity M if there
exist exactlyM matches for the longest prefix that starts
at position i in X . The positions with multiplicityM > 1
are the places where we can embed some of the bits ofK.
Specifically, the next⌊log2 M⌋ bits will drive the selection of
one particular pointer out of theM choices (see Figure 1).
These additional bits can be used for various purposes such
as authentication [2] or error correction as described next. In
passing, we should acknowledge that the idea of detecting
multiple matches of the longest LZ’77 prefix was already
considered by Fiala and Greene [6] as a strategy to improve
compression. In their scheme C2, the encoder uses a suffix
tree to detect two of more copies of the same substring in
the database, and only one copy is encoded in the compressed
representation.

Suppose again that the initial portion ofX , say X i−1
1 ,

has been already parsed. Let{(p0, l, Xi+l), (p1, l, Xi+l), . . . ,
(pM−1, l, Xi+l)}, M ≥ 1, be the set of feasible pointers for
the longest prefix ofXn

i , where l > 1, and 1 ≤ pl ≤ i
for all 0 ≤ l ≤ M − 1. If M = 1 we skip to the next
phrase, and no extra bits are embedded. WhenM > 1,
we use the nextd = ⌊log2 M⌋ bits of K to choose one
of the M pointers. Suppose that the firstr − 1 bits of K
have already been embedded in previous phrases. We emit
the pointer(pKr+d

r
, l, Xi+l), we move the current position to

i + l + 1, and we incrementr by d. The complete algorithm
is summarized in Figure 2.

One could extract more bits from the phrase multiplicity by
using a start-step-stop binary code [6] that maximizes the code
length for a givenM . For example ifM = 6 one could assign
00 to the first copy, 01 to the second, 100 for the third, 101 for
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the fourth, 110 for the fifth, and 111 for the sixth. Compared
to the original scheme of embedding⌊log2 6⌋ = 2 bits by
selecting one specific copy out of the first four (among the six
available), we would embed an additional bit with probability
2/3.

We want to stress that these changes do not affect the
internal structure of LZ’77 encoding, other than a possiblere-
shuffling of the pointers. A file compressed with LZS’77 can
still be decompressed by a standard LZ’77 algorithm. The fact
that LZS’77 is “backward-compatible” makes it possible to
deploy it gradually over the existing LZ’77 algorithm, without
disrupting service.

From the above description it is clear that the size of the
embedded textK depends on the number of longest matches
Mn when the firstn bits of the input have already been
compressed. We analyzeMn for a binary memoryless source,
and consider the stringX = X1X2X3 . . ., where theXi’s are
i.i.d. random variables on the binary alphabet withPr(Xi =
0) = p and Pr(Xi = 1) = q. Without loss of generality, we
assume throughout the discussion thatq ≤ p. Let X(i) denote
the ith suffix of X . In other words,X(i) = XiXi+1Xi+2 . . . .
Consider thelongestprefix w of X(n+1) such thatX(i) also
hasw as a prefix, for somei with 1 ≤ i ≤ n. ThenMn can
be defined as the number ofX(i)’s (with 1 ≤ i ≤ n) that
also havew as a prefix. We formally define themultiplicity
matching parameteras

Mn = #{1 ≤ i ≤ n | X(i) hasw as a prefix}. (1)

Our goal is to understand the probabilistic behavior of
the variableMn. In particular, we compute thejth factorial
momentE[M

j
n] = E[Mn(Mn − 1) · · · (Mn − j + 1)], and the

limiting distributionPr(Mn = k) for largen. We accomplish
this by finding the probability generating functionE[uMn ] and
extracting its asymptotic behavior for largen. The main result
presented next is proved in Section III with details explained
in Sections IV and V.

Theorem 1:Consider a binary memoryless source, and let
h = −p log p − q log q be its entropy rate.
(i) There existsδ > 0 depending onp such that thejth factorial
moment ofMn is

E[M
j
n] = Γ(j)

q(p/q)j + p(q/p)j

h
+ γj(log1/p n) + O(n−δ),

(2)
whereΓ is the Euler gamma function, andγj(·) is a periodic
function with mean 0 and small modulus forln p/ ln q rational,
and asymptotically zero forln p/ ln q irrational.

(ii) The probability generating functionE[uMn ] =∑
k≥0 Pr(Mn = k)uk is for someǫ > 0

E[uMn ] = −
q ln (1 − pu) + p ln (1 − qu)

h
+ γ(log1/p n, u) + O(n−ǫ), (3)

whereγ(·, u) is a periodic function with mean 0 and small
modulus forln p/ ln q rational and asymptotically zero other-

wise. More precisely,

E[uMn ] =

∞∑

j=1

(
pjq + qjp

jh
(4)

−
∑

k∈Z\{0}

e2krπi log1/p nΓ(zk)(pjq + qjp)(zk)j

j!(p−zk+1 ln p + q−zk+1 ln q)

)
uj + O(n−ǫ)

where for ln p/ ln q = r/t and somer, t ∈ Z we havezk =
2krπi
ln p . The above translates into

Pr(Mn = j) =
pjq + qjp

jh
(5)

−
∑

k 6=0

e2krπi log1/p nΓ(zk)(pjq + qjp)(zk)j

j!(p−zk+1 ln p + q−zk+1 ln q)
+ O(n−ǫ)

for someǫ > 0.
A few remarks are in order. We first comment on the

behavior of the functionγj(t). For instance, if we setp = 1/2
then

|γj(t)| ≤
1

ln 2

∑

k 6=0

∣∣∣∣Γ
(

j −
2kiπ

ln 2

)∣∣∣∣ .

The approximate values of1ln 2

∑
k 6=0

∣∣Γ
(
j − 2kiπ

ln 2

)∣∣ are given
below for the first ten values ofj.

j 1
ln 2

∑
k 6=0

∣∣Γ
(
j − 2kiπ

ln 2

)∣∣
1 1.4260×10−5

2 1.3005×10−4

3 1.2072×10−3

4 1.1527×10−2

5 1.1421×10−1

6 1.1823×100

7 1.2853×101

8 1.4721×102

9 1.7798×103

10 2.2737×104

We note that, ifln p/ ln q is irrational, thenγj(x) → 0 as
x → ∞. So γj does not exhibit fluctuation whenln p/ ln q is
irrational.

For large n we conclude that on average there are1/h
eligible pointers and thatMn follows the logarithmic series
distribution, i.e.,

Pr(Mn = j) ≈
pjq + qjp

jh

plus some small fluctuations. Observe that the probability is
maximal forj = 1, butPr(Mn = 2) is only four times smaller;
for p ≫ q we also havePr(Mn = j + 1)/Pr(Mn = j) ≈
pj/(j+1), thus the distribution is rather “flat.” This bears some
immediate consequences for the LZRS’77 scheme since the
number of corrected errors depends onlog Mn. Knowing that
Mn is highly concentrated around its mean is quite reassuring
and contributes to a good behavior of the algorithm in practice.
In fact, experimental results presented in the next sectionshow
that there are sufficiently many redundant bits to warrant the
use of the LZRS’77 error correction scheme.
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B. Error Resilient LZRS’77 Scheme

We now describe how to use the extra redundant bits to
achieve error-resilience. Recall that we are protecting the
stream of pointers, which is represented by a sequence of
bytes. We chose Reed-Solomon (RS) codes [19], which are
block-based error correcting codes widely used in digital
communications and storage.

Reed-Solomon codes belong to the family of BCH codes
(see, e.g., [18]). A Reed-Solomon code is specified as
RS(a, b), wherea is the size of the block andb is the size
of the payload. Let the datum be a symbol drawn from an
alphabet of cardinality2s. The encoder collectsb symbols
and addsa− b parity symbols to make a block of lengtha. A
Reed-Solomon decoder can correct up toe errors in a block,
wheree = (a− b)/2. One symbol error occurs if one or more
of the bits of the symbol (up tos) is wrong.

Given a symbol sizes, the maximum block lengtha for
a Reed-Solomon code isa = 2s − 1. For example, the
maximum length of a code with 8-bit symbols (s = 8) is
255 bytes. The family of Reed-Solomon codes fors = 8 is
therefore RS(255, 255 − 2e). Each block contains255 bytes,
of which 255 − 2e are data and2e are parity. Errors up to
e bytes anywhere in the block can be automatically detected
and corrected.

We can use the extra redundancy bits of LZS’77 to embed
2e extra bytes, as described in the following. The encoder,
called LZRS’77, first compressesX using the standard LZ’77.
The data is broken into blocks of size255− 2e. Then, blocks
are processedin reverseorder, beginning with the very last.
When processing blocki, the encoder computes first the Reed-
Solomon parity bits for the blocki+1 and then it embeds the
extra bits in the pointers of blocki using the method described
in Section II-A. The sequence of operations of the encoder is
illustrated in Figure 3. If one wants to protect the first block as
well, then the parity bits of the first block are not embedded,
but saved at the beginning of the compressed file. Note that
if we decide to store these extra bits at the beginning of the
file, the compressed file is not compatible anymore with the
standard LZ’77 decoder. To keep the file backward-compatible
one must forgo protecting the first block of the compressed
data.

If the user selects large values fore, it is possible that the
LZ’77 stream may not have enough redundant bits to embed
the Reed Solomon parity bits. This problem can be detected
in the encoding phase, when the blocks of size255 − 2e are
processed in reverse order. If any block does not have enough
redundancy to store the2e extra bytes, an error message is
printed, and the user has to choose a smaller value fore.

The decoder receives a sequence of pointers, preceded by
the parity bits of thefirst block. It first breaks the rest of the
input stream into blocks of size255 − 2e. Then it uses the
parity bits to correct the first block. Once blockB1 is correct,
it decompressesB1 using LZS’77. This not only reconstructs
the initial portion of the original text, but it also recovers the
bits stored in those particular choices for the pointers. These
extra bits are collected, and they become the parity bits for
the second block. The decoder can therefore detect and correct

LZRS’77 ENCODER (X, e)
let b, j, n← 1, 1, |X|
while j < n do

append LZ’77 COMPRESS(Xj) to Bb

if |Bb| = 255− 2e then let b← b + 1
for i← b, . . . , 2 do

let RSi ← REED SOLOMON ENCODER(Bi, e)
embed in the blockBi−1 the bitsRSi using LZS’77

let RS1 ← REED SOLOMON ENCODER(B1, e)
return RS1, B1, B2, . . . , Bb

LZRS’77 DECODER(RS1, B1, B2, . . . , Bb, e)
D ← empty string
if REED SOLOMON DECODER(B1 + RS1, e) = errors

then correctB1

append LZ’77 DECOMPRESS(Bi) to D
recover RS2 from the pointers used inB1 using LZS’77
for i← 2, . . . , b do

if REED SOLOMON DECODER(Bi + RSi, e) = errors
then correctBi

append LZ DECOMPRESS(Bi) to D
recover RSi+1 from the pointers inBi using LZS’77

return D

Fig. 4. Error-resilient LZ’77 algorithm. HereX is the text,e is the maximum
number of errors that can be corrected in each block of255 − 2e bytes

errors inB2. Block B2 is then decompressed, and the parity
bits for B3 are recovered. This process continues until all
blocks have been decompressed. A high-level description of
the encoder and the decoder is shown in Figure 4.

The reason the encoder needs to process the blocks in
reverse order should now be apparent. The encoder cannot
compute the RS parity bits before the pointers are finalized.We
embed the RS bits for the current block in thepreviousblock,
because the decoder needs to know the parity bits of a block
before it attempts to decompress it. This has the unfortunate
effect of making the encoder off-line, since it requires the
encoder to keep the entire set of buffers in primary memory.
The problem can be alleviated by breaking up large inputs in
chunks of a size that could be easily stored and processed in
main memory.

Even if now the decoder requires two passes, the asymptotic
worst-case time complexity for the encoder and the decoder
is unchanged. If one discounts the extra time spent by error
detection/correction algorithm, both encoder and decoderstill
run in linear time in the size of the input.

C. Experimental Results

In order to validate our theoretical studies presented in
Theorem 1 and test the correctness of our LZS’77 scheme,
we instrumented several implementations. In the first one, we
designed an implementation of LZ’77 based on suffix trees
[22], and we kept track of the multiplicityM for each phrase
of the LZ’77 parsing, when the length of the phrase is greater
than two. The average value ofM is shown in Figure 5, for
increasing lengths of the prefixes. Note that for both graphs,
the average forM appears to converge asymptotically to a
constant, as Theorem 1 suggests.

In the second, we modified the code ofgzip-1.2.4 to
evaluate the impact of our method on compression perfor-
mance. The toolgzip is an implementation of thesliding
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Fig. 5. The average value of the pointer multiplicityM for increasing prefixes
of files paper2 (LEFT), andnews (RIGHT) from the Calgary corpus

TABLE I

THE COMPRESSION OF“ GZIP -3” VERSUS“ GZIPS -3” FOR THE FILES

OF THE CALGARY CORPUS; THE LAST COLUMN SHOWS THE TOTAL

NUMBER OF AVAILABLE BYTES FOR ERROR CORRECTION

file size gzip gzipS file redundant
111,261 39,473 39,511 bib 1,721
768,771 333,776 336,256 book1 14,524
610,856 228,321 228,242 book2 10,361
102,400 69,478 71,168 geo 4,101
377,109 155,290 156,150 news 5,956
21,504 10,584 10,783 obj1 353

246,814 89,467 89,757 obj2 3,628
53,161 20,110 20,204 paper1 937
82,199 32,529 32,507 paper2 1,551
46,526 19,450 19,567 paper3 893
13,286 5,853 5,898 paper4 249
11,954 5,252 5,294 paper5 210
38,105 14,433 14,506 paper6 738

513,216 62,357 61,259 pic 3,025
39,611 14,510 14,660 progc 736
71,646 18,310 18,407 progl 1,106
49,379 12,532 12,572 progp 741
93,695 22,178 22,098 trans 1,201

window variant of LZ’77, that issues pointers in a fixed-size
window preceding the current position. Among the various
parameters available,gzip allows the user to specify the
level of compression from level-1 (worst, fastest) to level
-9 (best, slowest). This parameter mainly controls the size
of the sliding window (bigger windows correspond to higher
compression but slower programs), but also activates the “lazy
evaluation” (or “non-greedy parsing”) strategy [9]. The lazy
evaluation scheme is active from level-4 to level-9.

The modifiedgzip, called gzipS, directly implements
LZS’77 as described in Section II-A. It allows the user to
specify a second file, which contains the text to be embedded
in the pointers. The compression performance of thegzipS
with respect to the originalgzip was measured, and it is
illustrated in Table I on the Calgary corpus dataset. Since a

non-greedy parsing would introduce additional complexityin
the LZS’77 decoder to recover correctly the extra redundant
bits, we used the compression level-3 but we increased the
size of the sliding window to the one used in level-9 in order
to maximize the chances to find multiple copies.

According to the documentation, in the presence of multiple
copies of the longest prefixgzip always chooses the most re-
cent occurrence in the sliding window. Pointers are represented
as a pair(displacement,length)where the displacement is the
distance between the copy in the database and the current
position, and they are Huffman encoded. By choosing always
the most recent occurrencegzip produces frequent short
displacements that get shorter representations in the Huffman
tree. Because of this, the embedding of the message slightly
degrades the compression performance, on the order of 1%–
2% on average for the files in the Calgary corpus. A file
compressed withgzipS can be still be decompressed by the
original gzip, and therefore is backward-compatible.

Finally, in the last implementation we coded the error-
resilient LZRS’77. The prototype implementation is written
in Python, with calls to C public-domain code that imple-
ments the Reed-Solomon encoder/decoder [14]. Based on the
considerations mentioned in introduction, we initially choose
e = 1 and e = 2 which require respectively at least2 and
4 parity bytes on a block of data of size255 − 2e. We
experimented with the resilience to errors by introducing a
controlled number of errors uniformly distributed over theb
blocks of the compressed file. The graphs in Figure 6 show
the probability that the file didnot uncompress correctly for
increasing numbers of errors for different choices ofe andb.

For example, usinge = 2 over100 blocks, LZRS’77 is able
to decompress the file correctly with 20 uniformly distributed
errors, 90% of the time. In this case, the compressed file size
would be about25, 500 bytes. Assuming that LZRS’77 loses
1%–2% on average in compression performance compared to
LZ’77, we could conclude that we could save 255–510 bytes
by using the original LZ’77. The savings should be compared
to the 400 parity bytes that are embedded in the LZRS’77 file.

III. STREAMLINED ANALYSIS

In this section we guide the reader through the main ideas
of the proof of Theorem 1 with details explained in the last
two sections.

We recall the definition of the multiplicity matching pa-
rameter. The variableMn represents the number of longest
matches within the firstn symbols of the database as formally
expressed in (1). We now provide an alternative definition of
Mn via suffix trees. A suffix tree is a trie built from suffixes
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Fig. 7. A trie and its multiple matching parameterM4 after inserting string
S5.

of a single string. Atrie is a digital tree built over, sayn,
strings (the reader is referred to [15], [24], [27] for an in-depth
discussion of digital trees). A string is stored in an external
node of a trie; the path length to such a node is the shortest
prefix of the string that is not a prefix of any other strings (cf.
Figure 7). For a binary alphabet, each branching node in a trie
is a binary node. A special case of a trie structure is asuffix
trie (tree) which is a trie built over suffixes of asinglestring.

Now we can re-defineMn via suffix trees. First, build a
suffix tree from the firstn + 1 suffixes ofX . Consider the
insertion pointof the(n+1)st suffix. ThenMn is exactly equal
to thenumber of leavesin the subtree rooted at the branching
point of the(n+1)st insertion. For instance, suppose that the
(n+1)st suffix starts withwβ for someβ ∈ A := {0, 1}, and
somew ∈ A∗. Then, examining the firstn suffixes, if there
are exactlyk suffixes that begin withwα (whereα = 1 ⊕ β
where⊕ is addition modulo2), and the othern − k suffixes
do not begin withw, we conclude thatMn = k. Figure 7
illustrates this scenario.

Our goal is to studyMn in a suffix tree built from a string
X generated by a binary memoryless source. Unfortunately,
the strings in a suffix tree are highly dependent on each other;
thus, a precise analysis ofMn is quite difficult. For this reason,

we first analyze the analogous situation in a trie built over
independentstrings. Specifically, in Section IV we analyze
the distribution and moments of a random variable with
similar properties, namelyM I

n, via the analysis ofindependent
tries, using analytical poissonization and depoissonization,
the Mellin transform, and complex analysis (cf. [27]). To
define M I

n, we consider the situation described above, but
we build a trie fromn + 1 independentstrings fromA∗. So
we consider independentX(i)’s (more specifically,X(i) =
X1(i)X2(i)X3(i) . . ., where theXj(i)’s are i.i.d. random
variables). We letw denote thelongestprefix of X(n + 1)
such thatX(i) also hasw as a prefix, for somei with 1 ≤
i ≤ n. Then M I

n is defined as the number ofX(i)’s (with
1 ≤ i ≤ n) that also havew as a prefix, that is,

M I
n = #{1 ≤ i ≤ n | X(i) hasw as a prefix}. (6)

In order to analyzeM I
n, we define the alignmentCj1,...,jk

amongk stringsX(j1), ..., X(jk) as the length of the longest
common prefix of thek strings. Thekth depthDn+1(k) in
a trie built overn + 1 strings is the length of the path from
the root of the trie to the leaf containing thekth string. Note
Dn+1(n + 1) = max

1≤j≤n
Cj,n+1 + 1. Thus, in the context of

tries,

M I
n = #{j | 1 ≤ j ≤ n, Cj,n+1 + 1 = Dn+1(n + 1)}.

That is, M I
n is the size of a subtree rooted at the branching

point of a new insertion.
We analyzeM I

n through generating functions. Define the
exponential generating functions

G(z, u) =
∑

n≥0

E[uMI
n ]

zn

n!
, Fj(z) =

∑

n≥0

E[(M I
n)j ]

zn

n!

for complex u ∈ C and j ∈ N. A simple combinatorial
argument, based on our discussion above, shows that

Pr{M I
n = k} =

∑

w∈A∗

α∈A

Pr(wβ)

(
n

k

)
Pr(wα)k(1 − Pr(w))n−k .

(7)
It follows that

G(z, u) = 1

+
∑

w∈A∗

α∈A

Pr(wβ)
(
ez(1−Pr(w)+uPr(wα)) − ez(1−Pr(w))

)

Fj(z) =
∑

w∈A∗

α∈A

Pr(wβ)ez(1−Pr(wβ))(Pr(wα)z)j

We derive in Section IV asymptotics using poissonization, the
Mellin transform, and depoissonization; details are givenin the
next section.These methods allow us to establish Theorem 1
with Mn replaced byM I

n.
Once we have established the probabilistic properties of

M I
n, we can deal with the more difficult problem, namely the

multiplicity matching parameterMn in a suffix tree. We show
thatMn has a similar asymptotic distribution asM I

n. To prove
this, we compare the distribution ofMn in suffix trees versus
the distribution ofM I

n in independent tries. Specifically, we
prove the following theorem.
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Theorem 2:There existsǫ > 0 such that, for someδ > 0
and for all |u| < 1 + δ,

|Mn(u) − M I
n(u)| = O(n−ǫ). (8)

As a consequence, there existsb > 1 such that

Pr(Mn = k) − Pr(M I
n = k) = O(n−ǫb−k) (9)

for largen.
A detailed analysis ofMn is presented in Section V. Briefly,

our proof technique follows these lines. We let

M(z, u) =
∑

1≤k,n≤∞

Pr(Mn = k)ukzn

M I(z, u) =
∑

1≤k,n≤∞

Pr(M I
n = k)ukzn

denote the bivariate generating functions forMn and M I
n,

respectively. To study these generating functions, we consider
the w’s defined above. Specifically, forM(z, u), we recall
from (1) that if w denotes the longest prefix ofX(n+1) =
Xn+1Xn+2Xn+3 . . . that appears as a prefix of anyX(i) =
XiXi+1Xi+2 . . ., then Mn enumerates the number of such
occurrences ofw. This approach toM(z, u) allows us to sum
over allw ∈ A∗ instead of summing overk, n ∈ N. Similarly,
for M I(z, u), we utilize (6) to determine that ifw denotes the
longest prefix ofX(n+1) = X1(n+1)X2(n+1)X3(n+1) . . .
that appears as a prefix of anyX1(i)X2(i)X3(i) . . ., thenM I

n

is precisely the number of such occurrences ofw. Therefore,
to evaluateM I(z, u), we can sum over allw ∈ A∗ instead of
summing over the integersk andn.

We note that theX(i)’s in a suffix tree are highly dependent
on each other. In fact, ifi ≥ j, thenX(i) = XiXi+1Xi+2 . . .
is a substring ofX(j) = XjXj+1Xj+2 . . .. This dependency
makes the derivation of the bivariate generating function
M(z, u) quite difficult. We overcome this hurdle by succinctly
describing the degree to which a suffix ofX can overlap
with itself. We accomplish this by utilizing the autocorrelation
polynomialSw(z) of a wordw, which measures the amount
of overlap of a wordw with itself. The autocorrelation
polynomial is defined as (cf. [10], [17], [20])

Sw(z) =
∑

k∈P(w)

Pr(wm
k+1)z

m−k (10)

whereP(w) denotes the set of positionsk of w satisfying
w1 . . . wk = wm−k+1 . . . wm, that is, w’s prefix of length
k is equal tow’s suffix of lengthk. Via the autocorrelation
polynomial, we are able to surmount the difficulties inherent
in the overlapping suffixes. Thus, usingSw(z), we obtain
a succinct description of the bivariate generating function
M(z, u). The autocorrelation polynomial is well-understood;
we utilize several results aboutSw(z) from [17] and [20].
In particular, when comparingM(z, u) and M I(z, u), it is
extremely useful to note that the autocorrelation polynomial
Sw(z) is close to 1 with high probability (for|w| large), that
is, for a random stringw there is not much overlap.

In order to obtain information about the difference of the
above two random variables, we analyzeQ(z, u) = M(z, u)−
M I(z, u) using residue analysis. We make a comparison of

the poles ofM(z, u) and M I(z, u) using Cauchy’s theorem
(integrating with respect toz). As a result, we prove that
Qn(u) := [zn]Q(z, u) = O(n−ǫ) uniformly for |u| ≤ p−1/2

as n → ∞. Then we use another application of Cauchy’s
theorem (integrating with respect tou). Specifically, we extract
the coefficientPr(Mn = k) − Pr(M I

n = k) = [ukzn]Q(z, u).
This establishes Theorem 2.

IV. A NALYSIS OF INDEPENDENTTRIES

In this section, we prove Theorem 1 forM I
n instead ofMn.

Our first step is poissonization. Then we utilize the Mellin
transform and complex analysis; thus we obtain asymptotic
descriptions of the distribution and factorial moments ofM I

n.
Since these results are valid for thepoissonizedmodel of the
problem, we must depoissonize our results in order to find the
asymptotic distribution and factorial moments ofM I

n in the
original model.

A. Poissonization

We first utilize analytical poissonization. The idea is to
replace the fixed-size population model by a poissonized
model in which the number of strings is a Poisson random
variable with meann. We apply the Poisson transform to the
exponential generating functionsG(z, u) and Fj(z), which
yields

G̃(z, u) =
∑

n≥0

E[uMI
n ]

zn

n!
e−z, F̃j(z) =

∑

n≥0

E[(M I
n)j ]

zn

n!
e−z.

(11)
We observe that

G̃(z, u) = e−z

+
∑

w∈A∗

α∈A

Pr(wβ)
(
e−zPr(w)(1−uPr(α)) − e−zPr(w)

)

F̃j(z) =
∑

w∈A∗

α∈A

Pr(wβ)e−zPr(wβ)(Pr(wα)z)j

by applying (7) to (11).

B. Mellin Transform

If f is a complex-valued function which is continuous on
(0,∞) and is locally integrable, then the Mellin transform of
f is defined as

M[f(x); s] = f∗(s) =

∫ ∞

0

f(x)xs−1 dx

(see [8] and [27]).
We defineĜ(x, u) = G̃(x, u) − 1 (so thatĜ(x, u) = O(x)

asx → 0). If u ∈ R with u < min {1/p, 1/q} and if ℜ(s) ∈
(−1, 0), then

Ĝ∗(s, u) = Γ(s)
q(1 − pu)−s + p(1 − qu)−s − p−s+1 − q−s+1

1 − p−s+1 − q−s+1
.

If j ∈ N andℜ(s) ∈ (−j, 0), then

F̃ ∗
j (s) = Γ(s + j)

pjq−s−j+1 + qjp−s−j+1

1 − p−s+1 − q−s+1
.
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We next invert the Mellin transform, computing

F̃j(x) =
1

2πi

∫ − 1
2+i∞

− 1
2−i∞

F̃ ∗
j (s)x−s ds

Ĝ(x, u) =
1

2πi

∫ − 1
2+i∞

− 1
2−i∞

Ĝ∗(s, u)x−s ds

sincec = −1/2 is in the fundamental strip of̂G(x, u).

C. Results for the Poisson Model

We restrict our attention to the case whereln p/ ln q is
rational. Thus we can writeln p/ ln q = r/t for some relatively
primer, t ∈ Z. Then, by a theorem of Jacquet and Schachinger
(see [27]), we know that the set of poles of̃F ∗

j (s)x−s is
exactly{zk = 2krπi

ln p | k ∈ Z}. We also observe that̃F ∗
j (s)x−s

has simple poles at eachzk. Now we assume thatu 6= 1. Then
Ĝ∗(s, u)x−s has the same set of poles asF̃ ∗

j (s)x−s, each of
which is a simple pole.

Using the Cauchy residue theorem [1], ifj ∈ N andzk =
2krπi
ln p , then

F̃j(x) =
∑

k∈Z

−Res[F̃ ∗
j (s)x−s; zk] + O(x−L)

and

Ĝ(x, u) =
∑

k∈Z

−Res[Ĝ∗(s, u)x−s; zk] + O(x−L).

It follows that, for j ∈ N,

F̃j(x) = Γ(j)
q(p/q)j + p(q/p)j

h
+ δj(log1/p x) + O(x−L)

whereh = −p ln p − q ln q denotes the entropy and

γj(t) =
∑

k 6=0

−
e2krπitΓ(zk + j)

(
pjq−zk−j+1 + qjp−zk−j+1

)

p−zk+1 ln p + q−zk+1 ln q
.

Also

Ĝ(x, u) = −
q ln (1 − pu) + p ln (1 − qu)

h
− 1 +

+ γ(log1/p x, u) + O(x−L) (12)

where

γ(t, u) =
∑

k 6=0

−

(
e2krπitΓ(zk)

q(1 − pu)−zk + p(1 − qu)−zk − p−zk+1 − q−zk+1

p−zk+1 ln p + q−zk+1 ln q

)
.

As an immediate corollary of (12), we see that

G̃(x, u) = −
q ln (1 − pu) + p ln (1 − qu)

h
+ γ(log1/p x, u) + O(x−L).

We note that, ifln p/ ln q is irrational andu is fixed, then
γj(x) → 0 andγ(x, u) → 0 asx → ∞. Thusγj andγ(·, u)
do not exhibit fluctuation whenln p/ ln q is irrational.

D. Depoissonization

Recall that in the original problem statementn is a large,
fixed integer. Most of our analysis has utilized a model where
n is a Poisson random variable. Therefore, to obtain results
about the problem we originally stated, it is necessary to
depoissonize our results.

Using depoissonization results of [12] and [27], we can
depoissonize our results (cf. [28], [29]). Our conclusion is that
Theorem 1 holds if we replaceMn by M I

n.

V. A NALYSIS OF LZS’77 VIA SUFFIX TREES

In this section we establish Theorem 2, and as a conse-
quence, we immediately prove the validity of our main result
(namely, Theorem 1) forMn.

Consider a suffix tree built fromn suffixes of X =
X1X2X3 . . ., where theXi’s are i.i.d. random variables on
the alphabetA = {0, 1} with Pr(Xi = 0) = p andPr(Xi =
1) = q. As before, without loss of generality,q ≤ p. Let X(i)

denote theith suffix of X . ThenMn is defined as the number
of X(i)’s (with 1 ≤ i ≤ n) that also havew as a prefix, that
is,

Mn = #{1 ≤ i ≤ n | X(i) hasw as a prefix}.

In Section III we redefinedMn as the multiplicity matching
parameter in a suffix tree built overX (cf. Figure 7). In this
section we analyzeMn and compare its distribution to that of
M I

n. In short, we first obtain the bivariate generating functions
for Mn and M I

n, denoted asM(z, u) and M I(z, u), respec-
tively. (In particular, we re-deriveM I(z, u) in such a way that
a comparison toM(z, u) is very natural.) Next, we prove that
M(z, u) can be analytically continued from the unit disk to a
larger disk. Afterward, we determine the poles ofM(z, u) and
M I(z, u). We write Q(z, u) = M(z, u) − M I(z, u); we use
Cauchy’s theorem to prove thatQn(u) := [zn]Q(z, u) → 0
uniformly for u ≤ p−1/2 asn → ∞. Then we apply Cauchy’s
theorem again to prove thatPr(Mn = k) − Pr(M I

n = k) =
[ukzn]Q(z, u) = O(n−ǫb−k) for someǫ > 0 andb > 1.

We conclude that the distribution of the multiplicity match-
ing parameterMn is asymptotically the same in suffix trees
as in tries built over independent strings, proving Theorem2,
i.e., Mn and M I

n have asymptotically the same distribution.
Therefore,Mn also follows the logarithmic series distribution
plus some fluctuations, as claimed by Theorem 1.

A. Multiplicity Matching Parameter of Independent Tries

First we re-derive the bivariate generating function forM I
n

using a different approach (the so called “string-ruler” method)
that is well suited for suffix trees. We deal here with a trie
built over the independentstrings X(1), . . . , X(n+1), where
X(i) = X1(i)X2(i)X3(i) . . . and {Xj(i) | i, j ∈ N} is a
collection of i.i.d. random variables withPr(Xj(i) = 0) = p
andPr(Xj(i) = 1) = q = 1− p. We letw denote thelongest
prefix of both X(n+1) and at least one other stringX(i) for
some1 ≤ i ≤ n. We writeβ to denote the(|w|+1)st character
of X(n+1). WhenM I

n = k, we conclude that exactlyk strings
X(i) havewα as a prefix, and the othern− k stringsX(i) do
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not havew as a prefix at all. Thus the generating function for
M I

n is exactly

M I(z, u) =
∞∑

n=1

∞∑

k=1

Pr(M I
n = k)ukzn

=

∞∑

n=1

∞∑

k=1

∑

w∈A∗

α∈A

Pr(wβ)

(
n

k

)
Pr(wα)k(1 − Pr(w))n−kukzn.

After simplifying, it follows immediately that

M I(z, u) =
∑

w∈A∗

α∈A

uPr(β)Pr(w)

1 − z(1 − Pr(w))

zPr(w)Pr(α)

1 − z(1 + uPr(w)Pr(α) − Pr(w))
. (13)

The same line of reasoning aboutM I(z, u) can be applied in
the next section to derive the generating functionM(z, u) for
Mn, but the situation will be more complicated because the
occurrences ofw can overlap.

B. Multiplicity Matching Parameter of Suffix Trees

Now we obtain the bivariate generating function forMn,
which is the multiplicity matching parameter for a suffix tree
built over the firstn + 1 suffixesX(1), . . . , X(n+1) of a string
X (i.e., X(i) = XiXi+1Xi+2 . . .). The bivariate generating
function for the multiplicity matching parameter is much more
difficult to derive in the dependent (suffix tree) case than in
the independent (trie) case, because the suffixes ofX are
dependent on each other. We letw denote thelongest prefix
of bothX(n+1) and at least oneX(i) for some1 ≤ i ≤ n. We
write β to denote the(|w| + 1)st character ofX(n+1); when
Mn = k, we conclude that exactlyk suffixesX(i) havewα
as a prefix, and the othern − k stringsX(i) do not havew
as a prefix at all. Thus, we are interested in finding strings
with exactly k occurrences ofwα, ended on the right by an
occurrence ofwβ, with no other occurrences ofw at all. This
set of words constitutes the languageRwα(T

(α)
w α)k−1T

(α)
w β,

where

Rw ={v ∈ A∗ | v contains exactly one occurrence

of w, located at the right end}

T (α)
w ={v ∈ A∗ | wαv contains exactly two occurrences

of w, located at the left and right ends}.

Thus the generating function forMn is

M(z, u) =
∞∑

k=1

∑

w∈A∗

α∈A

∑

s∈Rw

Pr(sα)z|s|+1u

( ∑

t∈T
(α)

w

Pr(tα)

z|t|+1u

)k−1 ∑

v∈T
(α)

w

Pr(vβ)z|v|+1−|w|−1. (14)

Using combinatorics on words, as discussed in [10], [17], [20],
and as applied in [28], we derive a form ofM(z, u) that we
summarize below.

Theorem 3:Let M(z, u) :=
∑∞

n=1

∑∞
k=1 Pr(Mn =

k)ukzn denote the bivariate generating function forMn, the

multiplicity matching parameter of a suffix tree built over the
first n + 1 suffixesX(1), . . . , X(n+1) of a stringX . Then

M(z, u) =
∑

w∈A∗

α∈A

uPr(β)Pr(w)

Dw(z)

Dwα(z) − (1 − z)

Dw(z) − u(Dwα(z) − (1 − z))

(15)
for |u| < 1 and |z| < 1. Here Dw(z) = (1 − z)Sw(z) +
z|w|

Pr(w), andSw(z) denotes the autocorrelation polynomial
for w, defined in (10).
Proof. The generating functions associated withRw andT (α)

w

are, respectively,

Rw(z) :=
∑

v∈Rw

Pr(v)z|v|

and
T (α)

w (z) :=
∑

v∈T
(α)

w

Pr(v)z|v| .

From [20], we knowRw(z)/z|w| = Pr(w)/Dw(z), so we
simplify (14) to obtain

M(z, u) =
∑

w∈A∗

α∈A

uPr(β)Pr(w)

Dw(z)

Pr(α)zT
(α)
w (z)

1 − Pr(α)zuT
(α)
w (z)

. (16)

To obtain an explicit form ofT (α)
w (z), we define

Mw := {v ∈ A∗ | wv contains exactly two occurrences ofw,

located at the left and right ends}

and
H(α)

w := Mw ∩ (αA∗).

We observe thatαT (α)
w = H

(α)
w . Thus, (16) simplifies to

M(z, u) =
∑

w∈A∗

α∈A

uPr(β)Pr(w)

Dw(z)

H
(α)
w (z)

1 − uH
(α)
w (z)

. (17)

So we can complete the proof of Theorem 3 by establishing
Lemma 1 below.

Lemma 1:Let H
(α)
w denote the subset of words from

Mw that begin withα. The generating functionH(α)
w (z) =∑

v∈H
(α)
w

Pr(v)z|v| is

H(α)
w =

Dwα(z) − (1 − z)

Dw(z)

whereDw(z) = (1 − z)Sw(z) + z|w|
Pr(w).

Proof. We utilize a method relying on combinatorics of
correlation with borders, as discussed in [20].

We defineH = {wα, wβ}; also letH1 = wα and H2 =
wβ. We write

H =

[
Pr(H1) Pr(H1)
Pr(H2) Pr(H2)

]
.

We defineAH,F = {Fm
k+1 | Hm

m−k+1 = F k
1 } as a generaliza-

tion of the autocorrelation polynomial, describing the overlap
of H with F . This yields

Awα,wα(z) = Swα(z) ,

Awα,wβ(z) = (Swα(z) − 1)Pr(β)/Pr(α) ,

Awβ,wα(z) = (Swβ(z) − 1)Pr(α)/Pr(β),

Awβ,wβ(z) = Swβ(z) .
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Next we defineD(z) = (1 − z)A(z) + zm+1
H

T , whereH
T

denotes the transpose ofH, and where

A(z) :=

[
Awα,wα(z) Awα,wβ(z)
Awβ,wα(z) Awβ,wβ(z)

]
.

We also defineM(z) = (D(z) + (z − 1)I)D(z)−1, whereI

denotes the2 × 2 identity matrix. Then

M1,2(z) =
(1 − z)(Swα(z) − 1)Pr(β)/Pr(α) + zm+1

Pr(wβ)

(1 − z)Sw(z) + zmPr(w)
.

(18)
We know by [20] that the set enumerated byM1,2(z), namely
M1,2, is exactly the set of wordsv such thatwαv has exactly
one occurrence ofwα and one occurrence ofwβ, at the
left and right ends, respectively. If we writeuβ = v (for
the appropriateu ∈ A∗), this happens if and only ifwαu
has exactly two occurrences ofw, at the left and right ends.
ThereforeM1,2 = T

(α)
w · β. By also recallingH(α)

w = αT
(α)

w ,
we can easily simplify (18), thereby completing the proof of
the lemma.

Lemma 1 was the last required ingredient in the proof of
Theorem 3.

C. Analytic Continuation

In order to establish (9) of Theorem 2 we need to first note
that M(z, u) can be analytically continued.

Theorem 4:The generating functionM(z, u) can be ana-
lytically continued for|u| ≤ δ−1 and |z| < 1.

The proof requires several lemmas and observations, all
found in [28]. We merely state the main lemma underlying
this theorem.

Lemma 2: If 0 < r < 1, then there existsC > 0 (depending
on r) such that

|Dw(z) − u(Dwα(z) − (1 − z))| ≥ C

for |z| ≤ r (and, as before,|u| ≤ δ−1).

D. Singularity Analysis

We need some auxiliary results before we prove our main
result of this section, namely Theorem 2. We first determine
(for |u| ≤ δ−1) the zeroes ofDw(z) − u(Dwα(z) − (1 − z))
and in particular the zeroes ofDw(z).

For instance, we state without proof the following lemma.
(See [28] for a rigorous proof.)

Lemma 3:There exists an integerK2 ≥ 1 such that, for
u fixed (with |u| ≤ δ−1) and |w| ≥ K2, there is exactly
one root ofDw(z)− u(Dwα(z)− (1− z)) in the closed disk
{z | |z| ≤ ρ}.
Whenu = 0, this lemma implies (for|w| ≥ K2) that Dw(z)
has exactly one root in the disk{z | |z| ≤ ρ}. Let Aw denote
this root, and letBw = D′

w(Aw). Also let Cw(u) denote
the root ofDw(z) − u(Dwα(z) − (1 − z)) in the closed disk
{z | |z| ≤ ρ}. Finally, we define

Ew(u) := (∂z (Dw(z) − u(Dwα(z) − (1 − z))))|z=Cw

= D′
w(Cw) − u(D′

wα(Cw) + 1).

We have precisely determined the singularities ofM(z, u).
Next, we compareM(z, u) to M I(z, u) to show thatMn and
M I

n have asymptotically similar behaviors.

E. Comparing Suffix Trees to Tries

We shall finally prove here Theorem 2 by comparing the
generating functionsM(z, u) andM I(z, u). We define

Q(z, u) = M(z, u) − M I(z, u).

Using the notation from (13) and (15), if we write

M I
w,α(z, u) =

uPr(β)Pr(w)

1 − z(1 − Pr(w))

zPr(w)Pr(α)

1 − z(1 + uPr(w)Pr(α) − Pr(w))
,

Mw,α(z, u) =
uPr(β)Pr(w)

Dw(z)

Dwα(z) − (1 − z)

Dw(z) − u(Dwα(z) − (1 − z))
,

then we have proved that

Q(z, u) =
∑

w∈A∗

α∈A

(Mw,α(z, u)− M I
w,α(z, u)).

We also defineQn(u) = [zn]Q(z, u). We denote the contri-
bution to Qn(u) from a specificw and α as Q

(w,α)
n (u) =

[zn](Mw,α(z, u) − M I
w,α(z, u)). Then we observe that

Q(w,α)
n (u) =

1

2πi

∮
(Mw,α(z, u) − M I

w,α(z, u))
dz

zn+1

where the path of integration is a circle about the origin with
counterclockwise orientation.

We define

I(w,α)
n (ρ, u) =

1

2πi

∫

|z|=ρ

(Mw,α(z, u) − M I
w,α(z, u))

dz

zn+1
.

By Cauchy’s theorem, we observe that the contribution to
Qn(u) from a specificw andα is exactly

Q(w,α)
n (u) = I(w,α)

n (ρ, u) − Resz=Aw

Mw,α(z, u)

zn+1

− Resz=Cw(u)
Mw,α(z, u)

zn+1

+ Resz=1/(1−Pr(w))

M I
w,α(z, u)

zn+1

+ Resz=1/(1+uPr(w)Pr(α)−Pr(w))

M I
w,α(z, u)

zn+1
.

(19)

To simplify this expression, note that

Resz=Aw

Mw,α(z, u)

zn+1
= −

Pr(β)Pr(w)

Bw

1

An+1
w

,

Resz=Cw(u)
Mw,α(z, u)

zn+1
=

Pr(β)Pr(w)

Ew(u)

1

Cw(u)n+1
,

Resz=1/(1−Pr(w))

M I
w,α(z, u)

zn+1
= Pr(β)Pr(w)(1 − Pr(w))n,

Resz=1/(1+uPr(w)Pr(α)−Pr(w))

M I
w,α(z, u)

zn+1
=

= −Pr(β)Pr(w)(1 + uPr(w)Pr(α) − Pr(w))n. (20)
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It follows from (19) that

Q(w,α)
n (u) = I(w,α)

n (ρ, u) +
Pr(β)Pr(w)

Bw

1

An+1
w

(21)

−
Pr(β)Pr(w)

Ew(u)

1

Cw(u)n+1

+ Pr(β)Pr(w)(1 − Pr(w))n

− Pr(β)Pr(w)(1 + uPr(w)Pr(α) − Pr(w))n.

We next determine the contribution of thez = Aw terms of
M(z, u) and thez = 1/(1−Pr(w)) terms ofM I(z, u) to the
differenceQn(u) = [zn](M(z, u)− M I(z, u)).

Lemma 4:The “Aw terms” and the “1/(1−Pr(w)) terms”
(for |w| ≥ K2) altogether have onlyO(n−ǫ) contribution to
Qn(u), i.e.,

∑

|w|≥K2
α∈A

(
−Resz=Aw

Mw,α(z, u)

zn+1

+ Resz=1/(1−Pr(w))

M I
w,α(z, u)

zn+1

)
= O(n−ǫ),

for someǫ > 0.
Proof. We define

fw(x) =
1

Ax+1
w Bw

+ (1 − Pr(w))x

for x real. So by the set of equations in (20) it suffices to
prove that

∑

|w|≥K2
α∈A

Pr(β)Pr(w)fw(x) = O(x−ǫ).

Note that
∑

|w|≥K2
α∈A

Pr(β)Pr(w)fw(x) is absolutely convergent

for all x. Also f̄w(x) = fw(x) − fw(0)e−x is exponentially
decreasing whenx → +∞ and isO(x) whenx → 0 (notice
that we utilize thefw(0)e−x term in order to make sure that
f̄w(x) = O(x) when x → 0; this provides a fundamental
strip for the Mellin transform in the next step). Therefore,its
Mellin transform f̄∗

w(s) =
∫ ∞

0
f̄w(x)xs−1 dx is well-defined

for ℜ(s) > −1 (see [8] and [27]). We compute

f̄∗
w(s) = Γ(s)

(
(log Aw)−s − 1

AwBw
+ (− log(1 − Pr(w)))−s − 1

)

whereΓ denotes the Euler gamma function, and we note that

(log Aw)−s =

(
Pr(w)

Sw(1)

)−s

(1 + O(Pr(w))),

(− log(1 − Pr(w)))−s = Pr(w)−s(1 + O(Pr(w))).

Also

Aw = 1 +
1

Sw(1)
Pr(w) + O(Pr(w)2),

Bw = −Sw(1) +

(
−

2S′
w(1)

Sw(1)
+ m

)
Pr(w) + O(Pr(w)2).

Therefore

1

AwBw
= −

1

Sw(1)
+ O(|w|Pr(w)),

and

f̄∗
w(s) =Γ(s)

(
Pr(w)−s

(
−Sw(1)s−1 + 1 + O(|w|Pr(w))

)

+
1

Sw(1)
− 1 + O(|w|Pr(w))

)
.

We define g∗(s) =
∑

|w|≥K2
α∈A

Pr(β)Pr(w)f̄∗
w(s). Then we

compute

g∗(s) =
∑

α∈A

Pr(β)
∑

|w|≥K2

Pr(w)f̄∗
w(s)

=
∑

α∈A

Pr(β)Γ(s)

∞∑

m=K2

(
sup{q−ℜ(s), 1}δ

)m

= O(1),

where the last equality is true because1 ≥ p−ℜ(s) ≥ q−ℜ(s)

whenℜ(s) is negative, and also becauseq−ℜ(s) ≥ p−ℜ(s) ≥ 1
when ℜ(s) is positive. We always haveδ < 1. Also, there
existsc > 0 such thatq−cδ < 1. Therefore,g∗(s) is analytic
in ℜ(s) ∈ (−1, c). Working in this strip, we chooseǫ with
0 < ǫ < c. Then we have

∑

|w|≥K2
α∈A

Pr(β)Pr(w)fw(x) =
1

2πi

∫ ǫ+i∞

ǫ−i∞

g∗(s)x−s ds

+
∑

|w|≥K2
α∈A

Pr(β)Pr(w)fw(0)e−x.

Majorizing under the integral, we see that the first term is
O(x−ǫ) since g∗(s) is analytic in the stripℜ(s) ∈ (−1, c)
(and −1 < ǫ < c). Also, the second term isO(e−x). This
completes the proof of the lemma.

Now we bound the contribution toQn(u) from theCw(u)
terms ofM(z, u) and thez = 1/(1 + uPr(w)Pr(α)−Pr(w))
terms ofM I(z, u).

Lemma 5:The “Cw(u) terms” and the “1/(1 +
uPr(w)Pr(α) − Pr(w)) terms” (for |w| ≥ K2) altogether
have onlyO(n−ǫ) contribution toQn(u), for someǫ > 0.
More precisely,

∑

|w|≥K2
α∈A

(
− Resz=Cw(u)

Mw,α(z, u)

zn+1

+ Resz=1/(1+uPr(w)Pr(α)−Pr(w))

M I
w,α(z, u)

zn+1

)
= O(n−ǫ).

Proof. The proof technique is the same as the one for Lemma
4 above.

Next we note that theI(w,α)
n (ρ, u) terms in (21) have

O(n−ǫ) contribution toQn(u).
Lemma 6:The “I(w,α)

n (ρ, u) terms” (for |w| ≥ K2) alto-
gether have onlyO(n−ǫ) contribution to Qn(u), for some
ǫ > 0. More precisely,

∑

|w|≥K2
α∈A

I(w,α)
n (ρ, u) = O(n−ǫ).

Proof. We omit the proof here; see [28] for a proof.

Finally, we consider the contribution toQn(u) from small
words |w|. Basically, we observe that|w| has a normal
distribution with mean1

h log n and varianceθ log n, where
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h = −p log p− q log q denotes the entropy of the source, and
θ is a constant. Therefore,|w| ≤ K2 is extremely unlikely,
and as a result, the contribution toQn(u) from wordsw with
|w| ≤ K2 is very small.

Lemma 7:The terms
∑

|w|<K2
α∈A

(Mw,α(z, u)−M I
w,α(z, u))

altogether have onlyO(n−ǫ) contribution toQn(u).
Proof. Again, we omit the proof due to space constraints. See
[28].

All contributions to (21) have now been analyzed. We are
finally prepared to summarize our results. Combining the last
four lemmas, we see thatQn(u) = O(n−ǫ) uniformly for
|u| ≤ δ−1, whereδ−1 > 1. For ease of notation, we defineb =
δ−1. Finally, we apply Cauchy’s theorem again. We compute

Pr(Mn = k) − Pr(M I
n = k) = [ukzn]Q(z, u)

= [uk]Qn(u)

=
1

2πi

∫

|u|=b

Qn(u)

uk+1
du.

SinceQn(u) = O(n−ǫ), it follows that

|Pr(Mn = k)−Pr(M I
n = k)| ≤

2πb

|2πi|

O(n−ǫ)

bk+1
= O(n−ǫb−k).

Thus Theorem 2 holds. It follows thatMn and M I
n have

asymptotically the same distribution, and thereforeMn and
M I

n asymptotically have the same factorial moments. The main
result of [29] gives the asymptotic distribution and factorial
moments ofM I

n. As a result, Theorem 2 follows immediately.
Therefore,Mn follows the logarithmic series distribution, i.e.,
Pr(Mn = j) = pjq+qjp

jh (plus some small fluctuations if
ln p/ ln q is rational). Theorem 1 is finally proved.

VI. CONCLUDING REMARKS

From the algorithmic perspective, two immediate challenges
remain. First, we would like to make LZRS’77 on-line. The
implementation of LZRS’77 described here is off-line because
the blocks need to be processed backwards, but it is not clear
if this is absolutely necessary. Second, we would like to be
able to protect the first block while maintaining backward
compatibility. Note that we cannot embed the parity bits of
the first block in the pointers of the last, because otherwise
we would introduce a circular dependency in the process.
From an analytic perspective, it would be interesting to extend
Theorem 1 to Markov sources. While it is well-known [32]
that the expectation for Markov sources isE[Mn] = O(1)
(cf. [16]), not much is known about the distribution ofMn

under that probabilistic model. The recent work of Fayolle
and Ward [7], in which they extend the analysis of [11] to
Markov sources, is a step in that direction.

Finally, we should point out that there is a way to extend our
scheme to recover more than a constant number of redundant
bits (and potentially to strongly mixing sources along the lines
of [13]). One just has to give up the idea of always looking
for the longest match and instead agree to use “long enough”
matches. Such a scheme is still asymptotically optimal with
the (compression) bit rate1/h + O(log log n/ logn) and with
Mn growing slowly withn. For example, instead of using the

longest match we search for therth longest match. We expect
that if r grows with n in such a way that therth longest
match is of order(log n − log log n)/h, thenMn grows with
n (possiblyMn = O(log n)?); in this case, only the constant
of the asymptotic redundancyO(log log n/ logn) is affected.
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