Error Resilient LZ'77 Data Compression:
Algorithms, Analysis, and Experiments

Stefano LonardMember, IEEE Wojciech SzpankowsHKrellow, IEEE Mark Daniel WardMember, IEEE

Abstract— We propose a joint source-channel coding algorithm
capable of correcting some errors in the popular Lempel-ZiN77
scheme without introducing any measurable degradation in he

compression performance. This can be achieved because the
LZ'77 encoder does not completely eliminate the redundancy

to errors. Joint source-channel coding has emerged as k& viab
solution to this problem.

The separation principleformulated by Shannon divides

a communication system into separate source coding and

present in the input sequence. One source of redundancy careb channel coding subsystems that run independently; however

observed when an LZ'77 phrase has multiple matches. In this

in today’s communication technology this rigid separation

case, LZ'77 can issue a pointer to any of those matches, and ajg very limiting. In particular, this principle ignores man

particular choice carries some additional bits of informaton. We
call a scheme with embedded redundant information the LZS'7

algorithm. We analyze the number of longest matches in such a

scheme and prove that it follows thdogarithmic series distribution
with mean 1/h (plus some fluctuations), whereh is the source
entropy. Thus, the distribution associated with the number of
redundant bits is well concentrated around its mean, a hight
desirable property for error correction. These analytic results
are proved by a combination of combinatorial, probabilistic
and analytic methods (e.g., Mellin transform, depoissonation,
combinatorics on words). In fact, we analyze LZS'77 by studing
the multiplicity matching parameter in a suffix tree, which in
turn is analyzed via comparison to its independent version,
called trie. Finally, we present an algorithm in which a channel
coder (e.g., Reed-Solomon coder) succinctly uses the inbat
additional redundancy left by the LZS'77 encoder to detect ad
correct a limited number of errors. We call such a scheme the
LZRS'77 algorithm. LZRS'77 is perfectly backward-compatible
with LZ'77, that is, a file compressed with our error-resistant
LZRS'77 can still be decompressed by a generic LZ'77 decoder

Index Terms— Lempel-Ziv'77 scheme, multiple matches, joint
source-channel coding, Reed-Solomon code, suffix trees,ies,
Mellin transform, depoissonization, pattern matching, autocor-
relation polynomial, combinatorics on words.

I. INTRODUCTION

RROR-RESILIENT adaptive lossless data compressi

is a particularly challenging problem because of tw
opposing “forces.'Source codingdries to decorrelate as much
as possible the input sequence (i.e., by removing redundan
information), whilechannel codingntroduces additional cor-
relation (i.e., by adding redundant information) in order t
protect against errors. The devastating effect of errors in
adaptive data compression is a long-standing open proble
[25]. In fact, in many applications, a practical drawback a

adaptive data compression algorithms is their lack of taste

S. Lonardi is with the Department of Computer Science andirierging,
University of California, Riverside, CA 92521. W. Szpanlgkivis with the
Department of Computer Sciences, Purdue University, Wedaylette, IN
47907. M. D. Ward is with the Department of Mathematics, @rsity of
Pennsylvania, Philadelphia, PA 19104. Preliminary versiof portions of
this paper were presented RCC'03, Snowbird, UT andSIT'04, Chicago,
2004.

imperfections of real communication systems, such as the
fact that channel coding is incapable of correcting all exro
Uncorrectable errors are inevitable; designing encodditew
ignoring this fact simply leads to extremely fragile source
codes, in which one single error can potentially yield catas
trophic failures. Joint source-channel coding strikes larixze
between source bits vs. channel bits, which in turn requires
some adjustments in both the source coding and channel
coding strategies. Our approach is somewhat orthogonal to
most works in this area. We use redundancy bits left by the
source coder to protect against erravghout degrading the
compression rateThe price we pay is that we only correct a
few errors, and we do not achieve a positive error bit rage, (i.
we are unable to correct a number of errors proportionalgo th
size of a block). We do not address here error propagation (cf
[25]); however, by eliminating errors, our algorithm ingtly
protects against limited error propagation.

In this paper we deal with one of the best-known adaptive
data compression schemes, namely that of Ziv and Lempel
published in their 1977 seminal paper [33]. The popular [ZZ'7
compression scheme works on-line. It compresses phrases
by consecutively replacing the longest prefix of the non-
compressed portion of a file with pointer and thelength
of the prefix. The lack of error-resistance of LZ'77 is a well-
recognized problem. A few years ago we read the following

on

8osting on theconp. conpr essi on newsgroup: “...I'm a
casualty of corrupt tartigzipped files on Solaris 8g¢i p

1.3) ... Is there a reason why there are no compression
ities that allow controlled amounts of redundancy fome
correction? ... How much overhead would be needed to
correct these?”

Indeed, we asked ourselves, how much overhead is needed
in'L2'77 to correct errors? The surprising answer is thatehe

IS no need for additional overhead in order to correct some
errors in LZ'77. This seemingly impossible goal is achieved
in practice thanks to the fact that the LZ'77 encoder is uaabl

to completely decorrelate the input sequence. Some implici
redundancy, which we precisely quantify in this paper, il st
present in the compressed stream and can be exploited by the

1t ar is a common archiver under the Unix operating system.

encoder. The additional redundancy derives from the engodpoint of the (n + 1)st insertion in a trie. After determining
of phrases for which one has a choice amaiig> 1 possible the asymptotics of\/!, we prove that)M,, and M! have
pointers. In practice, if there ard@/ copies of the longest asymptotically identical distributions.

prefix, we recoverlog, M | redundant bits by choosing one The main theoretical result consists of a precise chaiacter
of the M pointers (see Figure 1). We call such a scheme witltion of all the moments afZ,, and its limiting distribution.
multiple pointers the LZS'77 algorithm. In particular, we show that for memoryless soufcélse

In the first part of the paper we present an algorithrg]\,erage number of pointers is'h, whereh is the entropy
for channel coding that exploits the redundant bits idesifi 516 \We also show that the limiting distribution &f, follows

by LZS'77. To detect and correct errors, we choose Reegx logarithmic series distributionthat is, Pr(M, = k) ~
Solomon codes computed on blocks 25 bytes of com- k(1 — p) + (1 — p)*p)/(kh) where p is the probability

pressed data. Given the maximum number of eriomhat of generating a 1”. Thus, the number of pointers is well

the Reed-Solomon code can correct, Zaeparity bits of the concentrated around the mean, which is a highly desirable
Reed-Solomon code will be embedded in the extra redund@pbperty for channel coding. Still, it is more likely to havee

bits extracted from the pointer multiplicity. We should pbi gccurrence of the longest phrase in the database than many,
out that if e is large then we may not always have enoughyt the probability of seeing two longest phrases is only fou
redundant bits to embed the parity bits. The algorithm thagtes smaller than finding a single longest phrase. In magti

incorporates the Reed-Solomon channel coding into LZS™{fe ysually find more than one match, as shown in Section II-
is referred to throughout as the LZRS'77 scheme.

C.
As mentioned above, our basic algorithm allows one to

correct only a few errors, thus we set O(1), ande is rather . , . . o .
tools, including analytical poissonization and depoissan

small in our implementations. In fact, we prove theoretjcal tion, the Mellin transform, and complex analysis. To prove

that asymptotically the average number of longest phrases,| . ; i e)
O(1) leading toe — O(1). We should observe, however, tha hat suffix trees and independent tries have similar midityl

; . matching parameters, we derive bivariate generating iomst
even single errors can have devastating effects. It has b?grnM and M! using combinatorics on words, as recently
proved recently [4] that a single error in LZ'77 may corrupt u " " '

10 O(n?/3) phrases, thus abo@(n2/3 log n) symbols, where surveyed in [17]. We compare the generating functions for

T e \
n is the size the file to be compressed. Furthermore, a simévl[él and M;, by utilizing complex asymptotics. . .
modification of our algorithm (e.g., instead of looking ftet 10 the best of our knowledge, the scheme described here is

longest match we just consider a “long enough” match) allovi@e first joint source-channel LZ'77 algorithm. In [25], &0

e to change adaptively with the availability of redundancgnd Reif address the issue @fror propagationbut not error
bits in the stream (i.e¢ will slowly grow with) and still "écovery (see [21] for an analysis of the Storer and Reif
preserve the asymptotic optimality of the compressionatit r @lgorithm). There are, however, joint source-channel mgdi
(see Remark (i) after Theorem 1). algorithms for arithmetic coding and other variable length

In the second part of this paper we theoretically quanti§edes (see, e.g., [23]). Recently, we have proposed a novel
the amount of redundancy left by the LZ'77 encoder for err§cheme to extract redundant bits from LZ'78/LZW streams
protection. Thus we resort to analyzing the number of pm;nteI31]-
in the LZS'77 schemes, a problem never addressed before. WRegarding our theoretical results, the multiplicity mamch
let M,, denote thenumber of pointerglongest matches) into parameter was never previously studied in tries and suffix
the database whem bits have already been compressed. Wieees. However, the methodology used here to study the
are primarily interested in precisely determining the agymmatching parametein tries is well established within the
totics of the random variabl&/,, and its concentration aroundanalytic algorithmic community [27]. The analysis 8f,, in
the mean. A thorough analysis of the variall¢, yields a suffix tree is new and quite challenging. The basic idea of
a characterization of the degree to which error correctimomparing suffix trees to independent tries was establiblged
can be performed in the scheme discussed above. We redattquet and Szpankowski [11] and recently simplified byehes
that |log, M,, | bits are available for detecting and correctinguthors in [17]. Other aspects of suffix trees have beenexudi
errors. in [5], [7], [26].

Suffix trees provide a natural way to study the variablg. The paper is organized as follows. In Section II-A we
A suffix tree [27] is a digital search tree (i.e.,tae [27]) describe the LZS'77 encoder and present our main theoretica
built from all the suffixes of a single string (the database isylts. In Section 1I-B we design the encoder and decoder
our case). In a suffix tree),, corresponds to the numberor the |LZRS'77 scheme and in Section II-C discuss the
of leaves in the subtree rooted at the branching point of ta@periment results. The main theoretical result is proved i
(n+1)stinsertion. We refer ta/,, as themultiplicity matching - sections 3-5. In Section Il we provide a streamlined arislys
parameter As it turns out, strings in suffix trees are highlyand the road-map of the proof. Independent tries are disduss

dependent on each other. This dependency complicates jh&ection IV while suffix trees are analyzed in Section V.
precise analysis oM, ; therefore, we also consider the anal-

ogous situation, where a trie is built over independenbgti

- ; 7 . .
More specifically, we S_tUdy the variable/; associated with _ 20ur analysis can be extended to Markov sources using thenitees
the number of leaves in the subtree rooted at the branchifgeloped in this paper.

In order to prove our main result we use a battery of analytic

database

current position

[[omx | [oemx [Tomx |

10
11

Fig. 1. The multiplicity of the next phrase is foulM{ = 4). Choosing one
of the four possible pointers recovers two redundant bits.

II. MAIN RESULTS

In this section we present our main algorithmic, theorética
and experimental results. We first describe a modified LZ'77
scheme, called LZS'77, in which we recover redundant infor-
mation by identifying multiple longest matches. In Theorém
we quantify the redundant information by analyzing the vari
able M,,, associated with the number of longest matches when
the database sequence is of lengthFinally, the recovered
redundant bits are used in a new algorithm called LZRS'77,
in which O(1) errors are corrected at each stage of the

LZS’77_ENCODER (X, K)
Iet 7:7 7‘7 n? m7 P — 07 07 |X|7 |K|7 |:|
while i < n do
let X/ T'~! « the longest prefix ofX}
that matches a substring i ~*
let R « {(po7 [, Xi+l), ey (p]ufh l,XZ:H)} be
the set of feasible pointers fox/™'~!
if M > 1 then
let d «— |log, M |
append (pK:M, l,Xit1) tO P
letr —r+d
else
append (par—1,1, Xi4+:1) to P
leti«—i+1+1
return P

LZS'77_DECODER(P)

let D, K «— empty string, empty string

for each (p,l,c) € P do
let R — {po,...,pm—1} be the set of

occurrences oD2 !

let 7 be the index such that; = p
append |log, M| bits of i to K
append D™~ 'c to D

compression. We end the section by reporting experimental "€t (D, K)

results on LZRS'77. Fig. 2. Recovering redundant bit& in LZ'77. Here X is the text, K
represents the redundant bif3,is the compressed stream of pointefs,is
the decompressed text.

A. Redundant Information in LZS'77

Let X be a text of lengthn over a finite alphabe#d. We
write X;, 1 < ¢ < n to indicate theith symbol in X. We another binary strind<. We define a position corresponding
use X7 as shorthand for the substring; X, ... X; where to the beginning of a phrase to haweultiplicity M if there
1 <i < j <n, with the convention thak? = X;. Substrings €Xist exactly M matches for the longest prefix that starts
of the form X] correspond to prefixes ok, and substrings at positioni in X. The positions with multiplicityA/ > 1
of the form X* correspond to the suffixes of. are the places where we can embed some of the bit& .of
The LZ'77 algorithm [33] processes the daia-line as it Specifically, the nextlog, M| bits will drive the selection of
is read, i.e., it parses the file sequentidifft to right and one particular pointer out of tha/ choices (see Figure 1).
looks into the sequence of past symbols (calleddambasg These additional bits can be used for various purposes such
to find a match with the longest prefix of the string startings authentication [2] or error correction as described.rext
at the current position. The longest prefix is replaced wifpassing, we should acknowledge that the idea of detecting
a pointer, which is a triple composed ofposition, length, multiple matches of the longest LZ'77 prefix was already
symbol) Several variations on LZ’77 have been proposed (sé@nsidered by Fiala and Greene [6] as a strategy to improve
e.g., [3] and references therein), but the basic princigneains compression. In their scheme C2, the encoder uses a suffix
the same. tree to detect two of more copies of the same substring in
Let us suppose that the first— 1 symbols of the string the database, and only one copy is encoded in the compressed
X have been already parsed irto- 1 phrases, i.e.X{"' = representation. _
1Yz - - - Yrk—1, Where eachy’s is a non-empty string oved. In Suppose again that the initial portion of, say X' ',
order to identify thek-th phrase, LZ'77 looks for théongest has been already parsed. Yeépo, [, Xit1), (p1,l, Xit1), - -,
prefix of X that matches a substring of{~*. If XJ?“*1 (prr—1,1, Xiy1)}, M > 1, be the set of feasible pointers for
(j < i) is the substring that matches the longest prefifie longest prefix ofX*, wherel > 1, and1 < p; < ¢
then the next phrase ig, = X/ ™' ~*. The algorithm issues for all 0 < I < M — 1. If M = 1 we skip to the next
the pointer(j,7, X;1;) and updates the current positierto phrase, and no extra bits are embedded. Whén> 1,
i+ 1+ 1. The symbolX;,; is needed to be able to advancave use the nextl = |log, M| bits of K to choose one
when! = 0, which is common in the very beginning of theof the M pointers. Suppose that the first— 1 bits of K
encoding process. The use of a raw symbol within each point&ive already been embedded in previous phrases. We emit
is wasteful in practice, because it can often be includetién tthe pointer(pK;;M, 1, X,+1), we move the current position to
next pointer. Later, we will assume that the LZ'77 comprdsse + [+ 1, and we increment by d. The complete algorithm
stream is just a sequence (@osition,length)ointers, as it is is summarized in Figure 2.
implemented ingzi p and other encoders. One could extract more bits from the phrase multiplicity by
In order to recover additional bits to be used for channaking a start-step-stop binary code [6] that maximizes tiikec
coding, we slightly modify the LZ'77 scheme. The resultingength for a given\/. For example ifM = 6 one could assign
algorithm, called LZS’77, allows one to embed some bits &0 to the first copy, 01 to the second, 100 for the third, 101 for

the fourth, 110 for the fifth, and 111 for the sixth. Comparedise. More precisely,
to the original scheme of embeddindpg, 6] = 2 bits by

selecting one specific copy out of the first four (among the siy uMn] = i <qu +q¢’p 4)
available), we would embed an additional bit with probaypili = Jh
2/3.

OB T (24) (pT g + ¢7p) (2)7
jlp==*ttInp + g =*11ng)

We want to stress that these changes do not affect the
internal structure of LZ'77 encoding, other than a possible rez\ {0}
shuffling of the pointers. A file compressed with LZS'77 can
still be decompressed by a standard LZ'77 algorithm. The falggﬁge forlnp/Ing = r/t and somer, ¢ € Z we havez;, =
that LZS'77 is “backward-compatible” makes it possible tolnp - 1 N€ above translates into

deploy it gradually over the existing LZ'77 algorithm, witht

)M+Om*)

J J
disrupting service. Pr(M, = j) = 2 q;q p (5)
From the above description it is clear that the size of the M]m ow ‘ . ~
embedded texs’ depends on the number of longest matches _ e g/ " (2g)(p? g + ¢’ p) (21) + O

M, when the firstn bits of the input have already been jl(p=+'Inp+g=**1lngq)
compressed. We analyZd,, for a binary memoryless source,

and consider the strind = X; X5 X5. .., where theX;'s are for somee > 0.

i.i.d. random variables on the binary alphabet with(X; = A few remarks are in order. We first comment on the
0) = p andPr(X; = 1) = ¢. Without loss of generality, we behavior of the function; (¢). For instance, if we set = 1/2
assume throughout the discussion that p. Let X () denote then .

the ith suffix of X. In other words X = X, X, .1 X;12.... I (8)] < N 3 ‘F <j B 2/‘?”)‘

Consider thdongestprefix w of X (**+1) such thatX(®) also 7T In2 s n2 /|

hasw as a prefix, for some with 1 < ¢ < n. Then M, can

be defined as the number &f(V’s (with 1 < i < n) that The approximate values ¢85 > iso [T (J — 355)| are given
also havew as a prefix. We formally define theultiplicity below for the first ten values of.

k0

matching parameteas . . im
9P J | w32k O‘F(]_iglfﬂ)‘

M, =#{1<i<n|X® hasw as a prefiy. (1) ; 123322874
. I . 3 1.2072x1073
Our goal is to understand the probabilistic behavior of 4 1 1527§18_2
the variableM,,. In particular, we compute thgth factorial 5 1.1421><10—1
momentE[Mz] = E[M, (M, —1)--- (M, —j+1)], and the 6 1.1823%10°
limiting distribution Pr(M,, = k) for largen. We accomplish 7 1.2853% 10!
this by finding the probability generating functidju/»] and 8 1.4721 %102
extracting its asymptotic behavior for large The main result 9 1.7798x 103
presented next is proved in Section Il with details expain 10 2 2737 % 10%

in Sections IV and V.

Theorem 1:Consider a binary memoryless source, and let\ye note that, iflnp/In ¢ is irrational, themy; (z) — 0 as

h = —plogp — qlog q be its entropy rate. r — oo. S0+, does not exhibit fluctuation whelm p/ In g is
(i) There exist® > 0 depending o such that theth factorial jrrational.

moment ofM,, is For largen we conclude that on average there aré:
eligible pointers and thad/,, follows the logarithmic series

. J J
E[M;] = F(j)q(p/q) —;p(q/p) +1;(logy /, n) + O(n~%), distribution i.e.,
(2) Pa+a'p
whereT is the Euler gamma function, ang(-) is a periodic PriMn, =j) » ———
function with mean 0 and small modulus forp/ In ¢ rational, J
and asymptotically zero fdn p/ In ¢ irrational. plus some small fluctuations. Observe that the probabiity i
maximal forj = 1, butPr(M,, = 2) is only four times smaller;
(i) The probability generating functionE[u"] = for p > ¢ we also havePr(M, = j + 1)/Pr(M, = j) ~
S kso Pr(M, = k)uF is for somee > 0 pj/(j+1), thus the distribution is rather “flat.” This bears some
- immediate consequences for the LZRS'77 scheme since the
EluM] = — gln (1 —pu) +pln (1 — qu) number of corrected errors dependslog M,,. Knowing that
h M, is highly concentrated around its mean is quite reassuring
+ v(logl/p n,u) +0(n~°), (3) and contributes to a good behavior of the algorithm in pcacti

In fact, experimental results presented in the next sestanv
where~(-,u) is a periodic function with mean 0 and smalthat there are sufficiently many redundant bits to warraat th
modulus forln p/ In ¢ rational and asymptotically zero other-use of the LZRS'77 error correction scheme.

LZRS’'77_.ENCODER (X, e)
let b, j,n — 1,1,|X|

We now describe how to use the extra redundant bits to While j <n do
append LZ'77_COMPRESSX;) to By

B. Error Resilient LZRS'77 Scheme

achieve error_-resmence_. R_ecall that we are protecting th if | By| = 255 — 2¢ then let b — b+ 1

stream of pointers, which is represented by a sequence of for ; 1 ... 2 do

bytes. We chose Reed-Solomon (RS) codes [19], which are let RS; +— REED_SOLOMON_ENCODER(B;, €)
block-based error correcting codes widely used in digital embedin the block B;_; the bits RS; using LZS'77

let RS; « REED_SOLOMON_ENCODER(B4y, ¢€)

communications and storage.
9 return RSy, B1,B2,..., By

Reed-Solomon codes belong to the family of BCH codes
(see, e.g., [18]). A Reed-Solomon code is specified as LZRS'77.DEcCODER(RS:, B1, Ba, ..., By, ¢)
RS(a,b), wherea is the size of the block andl is the size D «— empty string
of the payload. Let the datum be a symbol drawn from an if REED-SOLOMON.DECODERB: + RS1,e) = errors

T then correct By
alphabet of cardinality2®*. The encoder collecté symbols append LZ'77 DECOMPRESSE:) to D

and adds: — b parity symbols to make a block Of length A recover RS, from the pointers used i, using LZS'77
Reed-Solomon decoder can correct up:terrors in a block, for i «—2,...,bdo
wheree = (a — b)/2. One symbol error occurs if one or more if REED_SOLOMON_DECODERB; + RS;, e) = errors
of the bits of the symbol (up te) is wrong. then correct B3;
Gi bol sizes, the maximum block lengtta for appendLZ-DECOMPRES$E:) t0 D
iven a sym ' g recover RS, from the pointers inB; using LZS'77
a Reed-Solomon code i = 2° — 1. For example, the return D

maximum Iength Of, a code with 8-bit Symb0|s (: 8) !S Fig. 4. Error-resilient LZ'77 algorithm. Her& is the text,e is the maximum
255 bytes. The family of Reed-Solomon codes for= 8 is number of errors that can be corrected in each block3af — 2 bytes

therefore R®255, 255 — 2¢). Each block containg55 bytes,
of which 255 — 2e are data anQe are parity. Errors up to
e bytes anywhere in the block can be automatically detectetfors in B,. Block B; is then decompressed, and the parity
and corrected. bits for B; are recovered. This process continues until all
We can use the extra redundancy bits of LZS'77 to emb&pcks have been decompressed. A high-level description of
2¢ extra bytes, as described in the following. The encodéhe encoder and the decoder is shown in Figure 4.
called LZRS'77, first compresséé using the standard Lz'77. The reason the encoder needs to process the blocks in
The data is broken into blocks of si2&5 — 2¢. Then, blocks reverse order should now be apparent. The encoder cannot
are processeih reverseorder, beginning with the very last. compute the RS parity bits before the pointers are finalié.
When processing block the encoder computes first the ReeceMbed the RS bits for the current block in greeviousblock,
Solomon parity bits for the block+ 1 and then it embeds the Pecause the decoder needs to know the parity bits of a block
extra bits in the pointers of blockusing the method describedbeforeit attempts to decompress it. This has the unfortunate
in Section II-A. The sequence of operations of the encoderg§ect of making the encoder off-line, since it requires the
illustrated in Figure 3. If one wants to protect the first tidlas €ncoder to keep the entire set of buffers in primary memory.
well, then the parity bits of the first block are not embeddedhe problem can be alleviated by breaking up large inputs in
but saved at the beginning of the compressed file. Note ttg&unks of a size that could be easily stored and processed in
if we decide to store these extra bits at the beginning of tHain memory.
file, the compressed file is not compatible anymore with the Even if now the decoder requires two passes, the asymptotic
standard LZ'77 decoder. To keep the file backward-compati¥orst-case time complexity for the encoder and the decoder
one must forgo protecting the first block of the compressd¥ Unchanged. If one discounts the extra time spent by error
data. detection/correction algorithm, both encoder and decetiier
If the user selects large values ferit is possible that the "Un in linear time in the size of the input.
LZ'77 stream may not have enough redundant bits to embed
the Reed Solomon parity bits. This problem can be detected Experimental Results
in the encoding phase, when the blocks of si36 — 2e are In order to validate our theoretical studies presented in
processed in reverse order. If any block does not have enotiteorem 1 and test the correctness of our LZS'77 scheme,
redundancy to store the extra bytes, an error message isve instrumented several implementations. In the first oree, w
printed, and the user has to choose a smaller value.for designed an implementation of LZ'77 based on suffix trees
The decoder receives a sequence of pointers, preceded28], and we kept track of the multiplicity/ for each phrase
the parity bits of thefirst block It first breaks the rest of the of the LZ’77 parsing, when the length of the phrase is greater
input stream into blocks of siz255 — 2e. Then it uses the than two. The average value 8f is shown in Figure 5, for
parity bits to correct the first block. Once bloék is correct, increasing lengths of the prefixes. Note that for both graphs
it decompresse$; using LZS'77. This not only reconstructsthe average forM appears to converge asymptotically to a
the initial portion of the original text, but it also recogethe constant, as Theorem 1 suggests.
bits stored in those particular choices for the pointereseh In the second, we modified the code @fi p- 1. 2. 4 to
extra bits are collected, and they become the parity bits fevaluate the impact of our method on compression perfor-
the second block. The decoder can therefore detect ancctorreance. The toolyzi p is an implementation of thsliding

[& J L & | [8B [- [B |
BNy
Adjust Adjust Adjust

Store

pointers pointers pointers
A\/RS k/Rs k/RS bRS

Fig. 3. The right-to-left sequence of operations on the aesged blocks as processed by the LZRS'77 encoder

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

non-greedy parsing would introduce additional complekity
the LZS'77 decoder to recover correctly the extra redundant
bits, we used the compression leved but we increased the
size of the sliding window to the one used in levé in order
to maximize the chances to find multiple copies.

According to the documentation, in the presence of multiple
Be me we mm ww ww w0 ww me e e me o e o copies of the longest prefozi p always chooses the most re-
o . o _ _ ~ centoccurrence in the sliding window. Pointers are repitese
s e e e e et easi prebes as a paicisplacement lengihphere the displacement s the

distance between the copy in the database and the current

position, and they are Huffman encoded. By choosing always
the most recent occurrenagzi p produces frequent short
displacements that get shorter representations in thentdunff
tree. Because of this, the embedding of the message slightly
degrades the compression performance, on the order of 1%—

TABLE |
THE COMPRESSIONOF GZI P - 3" VERSUS"GZI PS - 3" FOR THE FILES
OF THE CALGARY CORPUS THE LAST COLUMN SHOWS THE TOTAL
NUMBER OF AVAILABLE BYTES FOR ERROR CORRECTION

file size gzip gzipS| file redundant 2% on average for the files in the Calgary corpus. A file
111,261 39,473 39511 bib 1,721 compressed witlyzi pS can be still be decompressed by the
g?g'gé ggg;g? ggg'gi Eggt% ig'géi orig_inal gz? p, and ther_efore is bac_kward—compatible.

102:400 69:478 71,'16 geo 4:101 Finally, in the last implementation we coded the error-
377,109 155,290 156,150 news 5,956 resilient LZRS'77. The prototype implementation is writte
21,504 10,584 10,783 obj1 353 in Python, with calls to C public-domain code that imple-
246,814 89,467 89,757 obj2 3,628 ments the Reed-Solomon encoder/decoder [14]. Based on the
53161 20,110 20,204 paper1 937 considerations mentioned in introduction, we initiallyocise
82,199 32,529 32,507 paper 2 1,551 . . .

46526 19450 19,567 paper 3 893 e = 1_ and e = 2 which require respectlv_ely at leagtand
13,286 5,853 5,898 paper 4 249 4 parity bytes on a block of data of siZ2h5 — 2e. We
11,954 5,252 5,294 paper5 210 experimented with the resilience to errors by introducing a
38,105 14,433 14,506 paper 6 738 controlled number of errors uniformly distributed over the
513216 62357 61259 pic 3,025 blocks of the compressed file. The graphs in Figure 6 show
39,611 14,510 14,660 progc 736 - . .

71646 18310 18407 prog 1.106 _the pro_bablhty that the file dichot uncompress correctly for
49,379 12,532 12,572 progp 741 increasing numbers of errors for different choices:afnd b.
93,695 22,178 22,098 trans 1,201 For example, using = 2 over 100 blocks, LZRS'77 is able

to decompress the file correctly with 20 uniformly distribdit
errors, 90% of the time. In this case, the compressed file size
window variant of LZ'77, that issues pointers in a fixed-siz&/ould be abou®5, 500 bytes. Assuming that LZRS'77 loses

window preceding the current position. Among the variouk¥—2% on average in compression performance compared to
parameters availablegzi p allows the user to specify thelLZ'77, we could conclude that we could save 255-510 bytes

level of compression from level1 (worst, fastest) to level by using the original LZ'77. The savings should be compared
-9 (best, slowest). This parameter mainly controls the si#@ the 400 parity bytes that are embedded in the LZRS'77 file.
of the sliding window (bigger windows correspond to higher

compression but slower programs), but also activates tey*| [1l. STREAMLINED ANALYSIS
evaluation” (or “non-greedy parsing”) strategy [9]. Theya In this section we guide the reader through the main ideas
evaluation scheme is active from leved to level - 9. of the proof of Theorem 1 with details explained in the last

The modifiedgzi p, called gzi pS, directly implements two sections.
LZS'77 as described in Section II-A. It allows the user to We recall the definition of the multiplicity matching pa-
specify a second file, which contains the text to be embeddedneter. The variablé/,, represents the number of longest
in the pointers. The compression performance ofghé pS matches within the first symbols of the database as formally
with respect to the originafjzi p was measured, and it isexpressed in (1). We now provide an alternative definition of
illustrated in Table | on the Calgary corpus dataset. SinceMd,, via suffix trees A suffix tree is a trie built from suffixes

we first analyze the analogous situation in a trie built over
independentstrings. Specifically, in Section IV we analyze
the distribution and moments of a random variable with
similar properties, namely/!, via the analysis oihdependent
tries, using analytical poissonization and depoissonization,
the Mellin transform, and complex analysis (cf. [27]). To
define M!, we consider the situation described above, but
we build a trie fromn + 1 independenstrings from.4*. So

we consider independet (i)'s (more specifically,X (i) =
X1(4)X2(1)X3(i) ..., where the X;(i)'s are i.i.d. random
variables). We letw denote thelongestprefix of X (n + 1)
such thatX (i) also hasw as a prefix, for some with 1 <

i < n. Then M} is defined as the number of(i)'s (with
———— 1 <4 <n)that also havev as a prefix, that is,

o jecte (1=, 10 buffers) Number of eror ijectd (=2, 100 bufrs)

Fig. 6. The probability that a file df blocks could not be recovered correctly, = #{1 S1sn | X(Z) hasw as a prefl)}. (6)

for increasing number of errors uniformly distributed ov¥ke blocks. Top- I
left: e = 1 andb = 10, top-right: e = 1 andb = 100, lower-left: e = 2 and In order to analyzeM » we define the a“gnmer@ﬁ ----- Jk

b = 10, lower-right: e = 2 andb = 100 amongk stringsX (1), ..., X (jx) as the length of the longest
common prefix of thek strings. Thekth depthD,, (k) in

a trie built overn + 1 strings is the length of the path from
the root of the trie to the leaf containing tl¢h string. Note

Dypyi(n+1) = 1Iilj_a<Xn Cjn+t1 + 1. Thus, in the context of

tries,
=#{j|11<j<n, Cjni1+1=Dppi(n+1)}

That is, M is the size of a subtree rooted at the branching
point of a new insertion.

We analyzeM;! through generating functions. Define the
exponential generating functions

1. z" .z
W= Y B Fi(:) = Y BIMD
Fig. 7. A trie and its multiple matching parametkf, after inserting string n>0 n>0

5. for complexu € C andj € N. A simple combinatorial
argument, based on our discussion above, shows that

of a single string. Atrie is a digital tree built over, say, 7 ek
strings (the reader is referred to [15], [24], [27] for andepth P"{1Mn =k} = Z Pr(wp) Pr(wo‘) (1= Pr(w))"™".
discussion of digital trees). A string is stored in an exaérn s

)
node of a trie; the path length to such a node is the shortest
prefix of the string that is not a prefix of any other strings (cft follows that
Figure 7). For a binary alphabet, each branching node irea tl’ig(z u) =1

is a binary node. A special case of a trie structure siix

trie (tree) which is a trie built over suffixes ofsingle string. + Z Pr(wp) (F=Prlw)ubrive)) ez(lfpr(w)))
Now we can re-definel/,, via suffix trees. First, build a “;Eeﬁ*

suffix tree from the firstn 4+ 1 suffixes of X. Consider the Z Pr(wf)e 2(1—Pr(wﬁ))(Pr(wa)Z)

insertion pointof the (n+1)st suffix. Then)/,, is exactly equal ot

to thenumber of leave the subtree rooted at the branching acA

point of the(n + 1)st insertion. For instance, suppose that thé/e derive in Section IV asymptotics using poissonizatibm, t
(n+ 1)st suffix starts withw(for someg € A := {0,1}, and Mellin transform, and depoissonization; details are givethe
somew € A*. Then, examining the first suffixes, if there next sectionThese methods allow us to establish Theorem 1
are exactlyk suffixes that begin withva (Wwherea = 1@ 3 with M,, replaced byM!.
where@® is addition modul®), and the othen — k suffixes Once we have established the probabilistic properties of
do not begin withw, we conclude thatVf,, = k. Figure 7 M/, we can deal with the more difficult problem, namely the
illustrates this scenario. mult|plicity matching parametet/,, in a suffix tree. We show
Our goal is to studyl/,, in a suffix tree built from a string that 7, has a similar asymptotic distribution a$.. To prove
X generated by a binary memoryless source. Unfortunatelyis, we compare the distribution @f,, in suffix trees versus
the strings in a suffix tree are highly dependent on each pthtre distribution of A/ in independent tries. Specifically, we
thus, a precise analysis 81, is quite difficult. For this reason, prove the following theorem.

Theorem 2:There exists > 0 such that, for somé > 0 the poles ofM(z,u) and M (z,u) using Cauchy’s theorem
and for all|u| <1+, (integrating with respect ta:). As a result, we prove that
. Qn(u) == [2"Q(z,u) = O(n=¢) uniformly for |u| < p~1/2
| M (u) = My (w)] = O(n™). (8) asfz)—> o[o]Thfen v3/e usé an)other applicatio|n| of Cauchy’s
As a consequence, there exists 1 such that theorem (integrating with respect#). Specifically, we extract
the coefficientPr(M,, = k) — Pr(M! = k) = [u*2"]Q(z, u).
Pr(M, = k) = Pr(M, = k) = O(n~b~") (9) This establishes Theorem 2.

for largen.
A detailed analysis oM, is presented in Section V. Briefly, IV. ANALYSIS OF INDEPENDENTTRIES
our proof technique follows these lines. We let In this section, we prove Theorem 1 fof! instead ofM,,.
Our first step is poissonization. Then we utilize the Mellin

M(z,u) = Z Pr(My, = k)u"2" transform anpd co?nplex analysis; thus we obtain asymptotic

1sknseo descriptions of the distribution and factorial moments\éf.

M'(z,u) = Y Pr(M}=kuF" Since these results are valid for theissonizednodel of the
1<k,n<oo problem, we must depoissonize our results in order to find the

asymptotic distribution and factorial moments f! in the

denote the bivariate generating functions fof, and M/, .
original model.

respectively. To study these generating functions, weidens
the w’s defined above. Specifically, fak/(z,), we recall

from (1) that if w denotes the longest prefix of (*+1) = A. Poissonization

Xn+1Xnt2Xp45. .. that appears as a prefix of ay®) = e first utilize analytical poissonization. The idea is to
XiXit1Xiy2 ..., then M, enumerates the number of sucheplace the fixed-size population model by a poissonized
occurrences ofv. This approach td/(z, u) allows us to sSUM model in which the number of strings is a Poisson random
over allw € A" instead of summing ovelr,n € N. Similarly, yariable with meam. We apply the Poisson transform to the
for M*(z,u), we utilize (6) to determine that it denotes the exponential generating functior&(z,) and Fj(z), which
longest prefix ofX "1 = X (n+ 1) Xo(n+ 1) X3(n+1)... yields
that appears as a prefix of ai (i) X2 (i) X5(i) . . ., then M. n n
is precisely the number of such occurrenceswofTherefore, G(z,u) = Z E[qul]z e, Fj(z) = Z E[(Mi)i]z_'eﬁ_
to evaluateM (z,u), we can sum over alb € A* instead of 7>0 s 7>0 ”'
summing over the integetis andn. (11)
We note that theX (Vs in a suffix tree are highly dependent/Ve observe that
on each other. In fact, if > j, thenX®) = X; X; 1 X;10...

. X : : G _ -z
is a substring ofX) = X;X;,1X;,.... This dependency (z,u) = e

makes the derivation of the bivariate generating function +) Pr(wp) (e‘zpr(w)(l_upr(o‘)) —e‘ZP'(w))
M (z,w) quite difficult. We overcome this hurdle by succinctly weA

describing the degree to which a suffix &f can overlap ~ oPr(wp))

with itself. We accomplish this by utilizing the autocoatibn i(2) = Z Pr(wp)e (Pr(wa)z)’
polynomial S, (z) of a wordw, which measures the amount e

of overlap of a wordw with itself. The autocorrelation py applying (7) to (11).
polynomial is defined as (cf. [10], [17], [20])

Sw(z) = Z Pr(wy’)z" " (10) B. Mellin Transform
keP(w) If f is a complex-valued function which is continuous on

where P(w) denotes the set of positioris of w satisfying (03 00) gnd is locally integrable, then the Mellin transform of
Wi... Wy = Wm_ki1 ... W, that is, w's prefix of length / is defined as

k is equal tow’s suffix of lengthk. Via the autocorrelation . o0 1

polynomial, we are able to surmount the difficulties inhéren M[f(z);s] = f*(s) = /0 fl@)a®™" da

in the overlapping suffixes. Thus, using,(z), we obtain

a succinct description of the bivariate g((en)erating furlrt:tio(See [8] gnd [271). ~ ~

M (z,u). The autocorrelation polynomial is well-understood; Ve defineG(z, u) = G(z,u) —1 (s0 thatG(z, u) = O(x)
we utilize several results abowt, () from [17] and [20]. 2% — 0)-If u€ R with u <min{1/p.1/q} and if R(s) €

In particular, when comparing/(z,u) and M (z,u), it is (=1,0), then
extremely useful to note that the autocorrelation polyrmmié*()1)q(l —pu) =+ p(1 — qu)~* — p—sHl — g+
Sw(z) is close to 1 with high probability (fofw| large), that 5u) =218 1= potl — g+

is, for a random stringv there is not much overlap.

In order to obtain information about the difference of th
above two random variables, we analyz2éz, u) = M (z,u)— ~. ,
M (z,u) using residue analysis. We make a comparison of Fj(s) =T(s +)

If j € N andR(s) € (—j,0), then

plg=s It 4 gips—itl
1 _p75+1 _ qferl

We next invert the Mellin transform, computing D. Depoissonization

B 1 —ltico _ Recall that in the original problem statements a large,
Fi(z) = eyl Fi(s)x™*ds fixed integer. Most of our analysis has utilized a model where
*5:10_0 n is a Poisson random variable. Therefore, to obtain results
~ 1 —atice s about the problem we originally stated, it is necessary to
Glau) = 5— | G (s,u)z™" ds depoissonize our results.

B R Using depoissonization results of [12] and [27], we can
sincec = —1/2 is in the fundamental strip off (z, u). depoissonize our results (cf. [28], [29]). Our conclusisithat

Theorem 1 holds if we replackf,, by M!.

C. Results for the Poisson Model

. . . V. ANALYSIS OF LZS’77 VIA SUFFIX TREES
We restrict our attention to the case whérep/Ingq is

rational. Thus we can writl p/ In g = 7/t for some relatively ~ In this section we establish Theorem 2, and as a conse-
primer,t € Z. Then, by a theorem of Jacquet and Schaching@¢#ence, we immediately prove the validity of our main result
(see [27]), we know that the set of poles BF(s)a—* is (namely, Theorem 1) fo/,,.
exactly{z, = 277 | & € Z}. We also observe that: (s)z Consider a suffix tree built fromm suffixes of X =

e polnd ' J X1X2X here theX,'s are i.i.d. rand iabl
has simple poles at each. Now we assume that # 1. Then 14243..., Where inei;s aré 1..d. random variables on
G*(s,u)z~* has the same set of poles A$(s)z~*, each of he alphabeid = {0,1} with Pr(X; = 0) = p andPr(X; =

which is a simple pole. 1) = q. As before, without loss of generality,< p. Let X)
Using the Cauchy residue theorem [1]jit N and z; = denote theth suffix of X. ThenM,, is defined as the number
2krri then of X(’s (with 1 < i < n) that also havev as a prefix, that
Inp ? iS,
Fi(z) = Z —Res[ﬁ;‘(s)x_s; ze] + O(z™F) M, =#{1<i<n| X" hasw as a prefi}.

hez In Section 11l we redefined/,, as the multiplicity matching

and parameter in a suffix tree built ove¥ (cf. Figure 7). In this
~ ~ s I section we analyz@/,, and compare its distribution to that of
Gla,u) =) —Res|G" (s, u)s ™" 2] + O(a™"). M. In short, we first obtain the bivariate generating function

hez for M,, and M/!, denoted asV/(z,u) and M’ (z,u), respec-
It follows that, forj € N, tively. (In particular, we re-deriva/’ (z,) in such a way that
; i a comparison td/ (z,) is very natural.) Next, we prove that
Fi(z) = P(j)q(p/q) +p(a/p) +6;(logy @) + O(@™") M(z,u) can be analytically continued from the unit disk to a
' h larger disk. Afterward, we determine the polesiéfz, ») and
whereh = —plnp — qln ¢ denotes the entropy and M (z,u). We write Q(z,u) = M(z,u) — M (z,u); we use

, o , , , Cauchy’s theorem to prove th&,(u) := [2"]Q(z,u) — 0

2krmit J o —z2k—J+1 —zr—j+1 i)

i) = Z _€ P(zx +4) (g~ 77F + ¢fp~ 77 ~uniformly for u < p~'/2 asn — co. Then we apply Cauchy’s
T p~# i Inp+ ¢ #+lIng theorem again to prove th&r(M,, = k) — Pr(M] = k) =

[u*2"]Q(2z,u) = O(n=cb~F) for somee > 0 andb > 1.

Also We conclude that the distribution of the multiplicity match
@(x W = Cgqn(l—pu)+pln(l—qu) - ing.par.amete_an is gsymptotically the same i_n suffix trees
’ - h as in tries built over independent strings, proving Theo&em
+ 7(10g1/px, u) + Oz~ 1) (12) i.e., M, and M/ have asymptotically the same distribution.
Therefore,M,, also follows the logarithmic series distribution
where plus some fluctuations, as claimed by Theorem 1.
) = 3 - (#rmim(a) . |
k20 A. Multiplicity Matching Parameter of Independent Tries
q(1 —pu)=2F + p(1 — qu) = — p==+l — g==F1 First we re-derive the bivariate generating function idjy.
p~#+Inp+ g *+llng " using a different approach (the so called “string-rulertinogl)

that is well suited for suffix trees. We deal here with a trie

As an immediate corollary of (12), we see that built over theindependenstrings XV, ..., X(»+1) where
~ gln(1—pu) +pln(1 —qu) X9 = X1()X2(0)X3(i) ... and {X;(i) | i,j € N} is a
G(z,u) = — 7 collection of i.i.d. random variables withr(X;(i) = 0) = p

+7y(logy /, 1) + Oz~ 5) andPr(X;(i) = 1) = ¢ = 1 — p. We letw denote thdongest
P '

prefix of both X (»+1) and at least one other string(® for
We note that, iflnp/Ingq is irrational andu is fixed, then somel < : < n. We write 3 to denote thé|w|+1)st character
vj(z) — 0 andy(x,u) — 0 asz — oo. Thus~y; andy(-,u) of XY, WhenM/! = k, we conclude that exactly strings
do not exhibit fluctuation wheim p/ In g is irrational. X havewa as a prefix, and the other— % strings X () do

10

not havew as a prefix at all. Thus the generating function fomultiplicity matching parameter of a suffix tree built ovéaet
Ml is exactly first n 4 1 suffixesX™) ..., X(+1) of a string X. Then

M(z,u) = Z uPr(B)Pr(w) Duya(z) — (1 —2)

M (z,u) = > ; Pr(M! = k) . Du(z) Du(z) = u(Dya(z) — (1-2))

o oo (15)

=> 3 Pr(wp) (Z) Pr(wa)®(1 — Pr(w))" *ukz". for |u| < 1 and|z| < 1. Here D, (z) = (1 — 2)S,(2) +
2IvIPr(w), andS,,(z) denotes the autocorrelation polynomial

for w, defined in (10).

After simplifying, it follows immediately that Proof. The generating functions associated with and 7.\

M (2o u) = Z uPr(B)Pr(w) are, respectively,
e 121 = Pr(w)) Ry (z) := Z Pr(v)z
- zPr(w)Pr(a) VR
T 2(1 £ aPr(w)Pr(a) — Priw))” &> and
T(O‘ Z Pr(v
The same line of reasoning abaut! (z,) can be applied in veT (™

the next section to derive the generating functidiz, u) for lw| _
M,, but the situation will be more complicated because thFerOm [20], we knowR,(z)/z = Pr(w)/Du(2), so we

occurrences ofv can overlap. simplify (14) to obtain

(a)
M(su) = Z uPr(B)Pr(w) Pr(a)zTw () . (16)
B. Multiplicity Matching Parameter of Suffix Trees S Du(2) 11— Pr(a)auT(z)

Now we obtain the bivariate generating function fbf,,, o .
which is the multiplicity matching parameter for a suffixdre 10 obtain an explicit form off " (2), we define
built over the firstn + 1 suffixesX (M), ..., X("*1) of a string M, := {v € A* | wv contains exactly two occurrences of
X (i.e., X = X; X1 Xiqa..). The bivariate generating located at the left and right enfis
function for the multiplicity matching parameter is muchmo
difficult to derive in the dependent (suffix tree) case than @nd
the independent (trie) case, because the suffixesX oére (O‘) = My, N (aAY).
dependent on each other. We tetdenote theongest prefix \we opserve that 7.\ —

() Thus, (16) simplifies to
of both X(»*+1 and at least on& () for somel < i < n. We

write 3 to denote the(|w| + 1)st character otX(’f“), when Mzu =Y uPr(8)Pr(w) HV(2) a7

M, = k, we conclude that exactly suffixes X () havewa S Du(z) 1—wH(2)

as a prefix, and the other — k strings X do not havew acA

as a prefix at all. Thus, we are interested in finding string®® we can complete the proof of Theorem 3 by establishing
with exactly k& occurrences ofva, ended on the right by an Lemma 1 below. u

occurrence ofv3, with no other occurrences af at all. This ~ Lemma 1:Let M. denote the Subset of V\(/g)rds from
set of words constitutes the languaRg a(7. a)*—17.{*) 3, Muw that begin witha. The generating functiod.,” (z) =

where ZUGHEUQ) Pr(v)z'”‘ is
R. ={v € A* | v contains exactly one occurrence gl — Duya(2) _(()1 —2)
w D, (z

of w, located at the right erjd

. —(1— [w]
T.®) ={v € A* | waw contains exactly two occurrences where Dy (z) = (1 - 2)Su(2) + 2" Pr(w).

; Proof. We utilize a method relying on combinatorics of
of w, located at the left and right enjds correlation with borders, as discussed in [20].

Thus the generating function fdvl,, is We defineH = {wa,wf}; also letH; = wa and Hy =
wf. We write

=3 Y Pr(sa)el (S Prita) - {Pr(fm Er(fm}

k=1 weA® sERy, T Pr(Hs) r(Ha)
k-1 We definedy r = {F/", | H7_,,, = F'} as a generaliza-
Z't“u) > Pr(vB)z"H=IwI=1 0 (14) tion of the autocorrelation polynomial, describing the rae
weTL) of H with F. This yields

Using combinatorics on words, as discussed in [10], [171],[2 Ava,wa(2) = Swal(z),
and as applied in [28], we derive a form &f (z,) that we Ava.ws(2) = (Swalz) — 1)Pr(8)/Pr(a),
summarize below. ' _

Theorem 3:Let M(z,u) = Y o > o, Pr(M, = Auwpwa(2) = (Sus(2) = DPria)/Pr(B),
k)u*z" denote the bivariate generating function fuf,, the Awpwp(z) = Swp(z) .-

11

Next we defineD(z) = (1 — 2)A(z) + 2™+ H?, whereH? E. Comparing Suffix Trees to Tries

denotes the transpose & and where We shall finally prove here Theorem 2 by comparing the

A(z) = Avawa(2) Awaws(2)| generating functions/ (z,v) and M (z,u). We define
Auwpwa(z) Awpws(2)
We also definei(z) = (D(z) + (z — 1)I)D(z)"t, wherel Q(z,u) = M(z,u) — M (z,u).

denotes th& x 2 identity matrix. Then

(1= 2)(Suwa(2) — DPHB)/Pr(a) + 2™ Pr(wp) Using the notation from (13) and (15), if we write

M = .
12(2) (1 = 2)Su(2) + 2mPr(w) as) M (eu) uPr(B)Pr(w)
zZ,u) =
w,o 1—z1-P
We know by [20] that the set enumeratedidy »(z), namely A r(w))
. ' zPr(w)Pr(a)
M o, is exactly the set of words such thatwav has exactly ,
one occurrence ofva and one occurrence o3, at the 1 = 2(1 +uPr(w)Pr(a) — Pr(w))
left and right ends, respectively. If we writes = v (for p7 (> u) = uPr(B)Pr(w) Dya(z) = (1 - 2)

the appropriate: € A*), this happens if and only ifvau ' Dy(2) Dy(2) = u(Dya(2) = (1 = 2))’
has exactly two occurrences af, at the left and right ends.

ThereforeM; 5 = Tl - 3. By also recallingHgUa) — oT'Y, then we have proved that

\t/;/]ee clzsr?]meealtsny simplify (18), thereby completing the pro:)f of Qz,u) = w;* (Ma (2, 0) — M2 (2,u).
Lemma 1 was the last required ingredient in the proof of aeA
Theorem 3. We also define,, (u) = [2"]Q(z,u). We denote the contri-
bution to Q,,(u) from a specificw and o as Q\”"* (u) =
C. Analytic Continuation [2"](Mu,a(2,u) — M], ,(2,u)). Then we observe that
In order to establish (9) of Theorem 2 we need to first note
that M (z,«) can be analytically continued. QU () = 1]{(Mw o) = ML () dz
Theorem 4:The generating functiod/ (z,«) can be ana- " 278 o WA T yntl

lytically continued for|u| < 6! and|z| < 1. the path of intearation | ircle about the origirtuit
The proof requires several lemmas and observations, \g’pere Ieplf 1 ofintegration IS a circle about the ongimwi
found in [28]. We merely state the main lemma underlyinﬁOunterC ockwise orientation.

this theorem. We define
Lemma 2:1f 0 < r < 1, then there exist6’ > 0 (depending (w.0) 1 , ds
on) such that L (pyu) = Py / (Muy,a(2,u) = Mw,a(zau))znﬂ-
z|=p

[Duw(2) = u(Dwa(z) = (1 = 2)) = C

B By Cauchy’s theorem, we observe that the contribution to
for |z| < r (and, as befordu| < §71).

Qn(u) from a specificw and« is exactly

D. Singularity Analysis Moy oz, 0)
We need some auxiliary results before we prove our main Q4w (u) = 1L (p, u) — ResZ:AwTH’
result of this section, namely Theorem 2. We first determine My o(z,u)
(for |u| < 61) the zeroes ofD,,(z) — u(Duwa(z) — (1 — 2)) —Res.—c,w—n1
and in particular the zeroes @,,(z). ML (z,u)
For instance, we state without proof the following lemma. + Res.—1/(1-Pr(w) — 77
(See [28] for a rigorous proof.) ~ M (z,u)
Lemma 3:There exists an integek; > 1 such that, for +Resz:l/(l+uPr(w)Pr(a)—Pr(w))L’-
. . _ . n+1
u fixed (with |u] < §71) and jw| > K, there is exactly z (19)
one root of Dy, (z) — u(Dya(z) — (1 — 2)) in the closed disk
{z | |2] < p}- To simplify this expression, note that
Whenwu = 0, this lemma implies (fotw| > K3) that D,,(z)
has exactly one root in the digk | |z| < p}. Let A,, denote Res My.o(z,u) 3 Pr(B)Pr(w) 1
this root, and letB,, = D], (A,). Also let Cy,(u) denote =Ae T T B, AL’
the root of D,,(2) — u(Dya(z) — (1 — 2)) in the closed disk My o(z,u) Pr(B)Pr(w) 1
{z | |2| < p}. Finally, we define Res.—c,,(u) ol Eo(u) Co(u)ntt’
E,(u) = (0, (Dw(z) —u(Dya(z) — (1 -2 _ ML (zu
v 1();<(cw>(—)u(pia<ci>)+ 1(>. e Reszzl/“—P“wDiz'nil ! Pr(8)Pr(n) 1 = ()"

My, o2, u)

We have precisely determined the singularitiesdfz, u). RS2~ 1/(1-+uPr(1)Pr(a) —Pr(w)) — i T— =
Z’ﬂ

Next, we comparé/(z,u) to M’ (z,u) to show thatM,, and .
M! have asymptotically similar behaviors. = —Pr(8)Pr(w)(1 + uPr(w)Pr(a) — Pr(w))". (20)

12

It follows from (19) that and

Q) = 1 + S @y O = (s) (Pr(w)™* (=8(1)* ™" + 1+ O(jw|Pr(w)))
PUpPrw) 1 gy 1+ OuiPrw)).
- Ey(u) Cy(u)rtl 7
+ Pr(8)Pr(w)(1 — Pr(w))" We define g*(s) = Z\wawezfg Pr(8)Pr(w)fx(s). Then we
— Pr(B)Pr(w)(1 + uPr(w)Pr(a) — Pr(w))" compute

* — P P 7*
We next determine the contribution of the= A,, terms of 9°(s) O;L‘ (0 |w|§K r(w)ful
M (z,u) and thez = 1/(1 — Pr(w)) terms of M (z,u) to the ’

differenceQ,,(u) = [z"](M (z,u) — M1 (z,u)). _ . s = sunfa—RE) m_
Lemma 4:The “A,, terms” and the /(1 — Pr(w)) terms” Z PrifT(s) Z (pla ’1}5) o),

(for jw| > K) altogether have only)(n~°) contribution to oA e
Qn(u), ie., where the last equality is true because> p— () > ¢=R(s)
whenR(s) is negative, and also becauge®(®) > p=%() > |
Z <—Resz_A M when R(s) is positive. We always havé < 1. Also, there
w|> £ 2 existsc > 0 such thatg—°6 < 1. Therefore,g*(s) is analytic
acA in N(s) € (—1,¢). Working in this strip, we choose with

Mi,a(zau)> — O 0 < ¢ < c¢. Then we have

+ReS.—1/(-Prw) ™ g1 1 [erioo
> PP fale) =5 [(o)

for somee > 0. e 270 Je—ioo
Proof. We define g’
1 N + Z Pr(8)Pr(w) fy,(0)e™".
fu(z) = m + (1 = Pr(w)) lwl> K
for x real. So by the set of equations in (20) it suffices tMajorizing under the integral, we see that the first term is
prove that O(z~¢) since g*(s) is analytic in the stripR(s) € (—1,¢)
. (and —1 < € < ¢). Also, the second term i®(e~*). This
> Pr(B)Pr(w)fu(z) = O(x™). completes the proof of the lemma. |
|w|=K2

acaA Now we bound the contribution tQ,, (u) from theO u)

(
Note thatZ\w\>K2 Pr(B)Pr(w) f., (z) is absolutely convergent terms of M (z,u) and thez = 1/(1 + uPr(w)Pr(a) — Pr(w))
for all z. Also ?w() = fu(®) — fu(0)e~" is exponentially €rms of M (z,u).
decreasing whem — +o0 and isO(z) whenz — 0 (notice ~ Lemma s:The “Cy(u) terms” and the I/(1 +
that we utilize thef,,(0)e~* term in order to make sure thattPr(w)Pr(a) — Pr(w)) terms” (for |w| > k) altogether
fu(z) = O(z) whenz — 0; this provides a fundamentalhave onlyO(n~¢) contribution toQ,(u), for somee > 0.
strip for the Mellin transform in the next step). Therefaite, More precisely,

Mellin transform f* (fo fu(z)zs~t dz is well-defined My o(z,u)
for R(s) > —1 (see [8] and [27]). We compute Z <_ Res:=c, (u)— ot
|w|> Ko
; (log Aw)™* -1 - e
Fiats) = 1) (PEL TS 4 (Cogtr — Prw)) -1 My
Awa + Resz:l/(lJruPr(w)Pr(a)fPr(w))W = O(TL)
whereI" denotes the Euler gamma function, and we note thRtoof. The proof technigue is the same as the one for Lemma
4 above.]
Pr(w)
(log Ay) ™ Su(1) (1+O(Pr(w)))7 Next we note that thel(”"*)(p,u) terms in (21) have
s O(n~*) contribution toQ,,(u).
—log(1 — Pr(w = Pr(w 1+ O(Pr(w))).
(= log(@)™ (w)™((Prw))) Lemma 6:The “IS"**) (p,u) terms” (for |w| > K>) alto-
Also gether have onlyO(n~¢) contribution to Q,,(u), for some
1 e > 0. More precisely,
Ay =1+ ——Pr(w) + O(Pr(w)?),
Sw(1) / > 1) (p,u) = O(n~°).
2 1 >
By, = —Su(1) + (— Swll) + m> Pr(w) + O(Pr(w)?). iz
Sw(1) Proof. We omit the proof here; see [28] for a proof. m
Therefore Finally, we consider the contribution 19,,(u) from small
1 1 words |w|. Basically, we observe thafw| has a normal

AwByw Su(1) + O(|w|Pr(w)), distribution with means logn and varianced logn, where

13

h = —plogp — qlog q denotes the entropy of the source, anbngest match we search for theh longest match. We expect

6 is a constant. Thereforéw| < K5 is extremely unlikely,
and as a result, the contribution €, («) from wordsw with
|w| < K3 is very small.

Lemma 7:The terms}_ i<k (Muy,o(z,u) = M (z,u))
altogether have onlp(n—e)aéontribution toQ, (u).
Proof. Again, we omit the proof due to space constraints. See
[28]. |

that if » grows with n in such a way that theth longest
match is of orderlogn — loglogn)/h, then M,, grows with
n (possibly M,, = O(logn)?); in this case, only the constant
of the asymptotic redundany(loglogn/logn) is affected.

ACKNOWLEDGMENTS

The work of SL was supported in part by NSF Grant

All contributions to (21) have now been analyzed. We af@Bl-0321756 and NSF CAREER 11S-0447773. WS was sup-
finally prepared to summarize our results. Combining the Ig@orted in part by NSF Grant CCR-0208709, NIH Grant RO1

four lemmas, we see tha,(u) = O(n~¢) uniformly for

GM068959-01, and AFOSR Grant FA8655-04-1-3074. MDW

lu| < 6=, wheres—! > 1. For ease of notation, we defihe= Was supported by NSF Grant 0603821.

5~L. Finally, we apply Cauchy’s theorem again. We compute

Pr(M, = k) — Pr(M! = k) = [uf2"]Q(2, u) a

= [u"]Qn(w) 2]
_ 1 Qn(u)
o 21 |u|=b uk+1 du. [3]
Since@,(u) = O(n~°), it follows that [4]
1 2mb O(n~°) —ep-ky [8]
|Pr(M,, = k)—Pr(M, =k)| < B bR O(n=b~")

Thus Theorem 2 holds. It follows that/,, and M. have 6]
asymptotically the same distribution, and therefddg, and
M ! asymptotically have the same factorial moments. The maii]
result of [29] gives the asymptotic distribution and fa@br
moments ofd/. As a result, Theorem 2 follows immediately. (8]
Therefore,M,, follows the logarithmic series distribution, i.e.,
Pr(M, = j) = ”qu%]p (plus some small fluctuations if [°]
Inp/Ing is rational). Theorem 1 is finally proved.

[10]

VI. CONCLUDING REMARKS 111

From the algorithmic perspective, two immediate challenge

remain. First, we would like to make LZRS'77 on-line. Thgy
implementation of LZRS’77 described here is off-line besmau
the blocks need to be processed backwards, but it is not cléat
if this is absolutely necessary. Second, we would like to hey
able to protect the first block while maintaining backward
compatibility. Note that we cannot embed the parity bits ¢#5]
the first block in the pointers of the last, because otherwisg
we would introduce a circular dependency in the process.
From an analytic perspective, it would be interesting t@est [17]
Theorem 1 to Markov sources. While it is well-known [32},g,
that the expectation for Markov sourcesB§M/,,] = O(1)
(cf. [16]), not much is known about the distribution 8f,, [19]
under that probabilistic model. The recent work of Fayollgq
and Ward [7], in which they extend the analysis of [11] to
Markov sources, is a step in that direction. (21]

Finally, we should point out that there is a way to extend our

scheme to recover more than a constant number of redundazit M. Rodeh, V. R. Pratt, and S. Even.

bits (and potentially to strongly mixing sources along the$

of [13]). One just has to give up the idea of always Iookin%]
for the longest match and instead agree to use “long enough”
matches. Such a scheme is still asymptotically optimal withl
the (compression) bit rate/h + O(loglog n/ logn) and with 55
M,, growing slowly withn. For example, instead of using the

REFERENCES

L. V. Ahlfors. Complex AnalysisMcGraw-Hill, New York, 1979.

M. J. Atallah and S. Lonardi. Augmenting LZ-77 with autttieation and
integrity assurance capabilitie€oncurrency and Computation: Practice
and Experience6:1063-1076, 2004.

T. C. Bell, J. G. Cleary, and |. H. WittenText CompressianPrentice
Hall, Englewood Cliffs, NJ, 1990.

V. Castelli and L. Lastras-Montano. Bounds on expangiohZ'77-like
coding. In2004 Intern. Symp. Information Theonyage 58, 2004.

J. Fayolle. An average-case analysis of basic parametethe suffix
tree. In M. Drmota, P. Flajolet, D. Gardy, and B. Gittenbergslitors,
Mathematics and Computer Sciengmages 217-227, Vienna, Austria,
2004. Birkhauser.

E. R. Fiala and D. H. Greene. Data compression with finitadews
Communications of the ACM82(4):490-505, 1989.

J. Fayolle and M. D. Ward. Analysis of the average deptta isuffix
tree under a Markov model. limternational Conference on the Analysis
of Algorithms Barcelona, 2005.

P. Flajolet, X. Gourdon, and P. Dumas. Mellin transforemsl asymp-
totics: Harmonic sumsTheoretical Computer Scienc&44:3-58, 1995.
R. N. Horspool The effect of non-greedy parsing in Zivalyeel
compression methods IHEEEE Data Compression Conferencpages
302-311, Snowbird, 1995.

L. Guibas and A. M. Odlyzko. Periods in strings. Combinatorial
Theory 30:19-43, 1981.

P. Jacquet and W. Szpankowski. Autocorrelation on woadd its
applications: Analysis of suffix trees by string-ruler agpgeh. Journal
of Combinatorial TheoryA66:237-269, 1994.

P. Jacquet and W. Szpankowski. Analytical depoissdiin and its
applications. Theoretical Computer Scienc201:1-62, 1998.

P. Jacquet, W. Szpankowski, | Apostol, Universal prtti based on
pattern matchinglEEE Trans. Inf. Theory48, 1462—-1472, 2002.

P. Karn. General-purpose Reed-Solomon encoder/éecetl0, 2004.
http://ww. ka9q. net/ code/ f ec.

D. E. Knuth. Fundamental Algorithms Addison-Wesley, Reading,
Massachusetts, 3rd edition, 1997.

] S. Lonardi and W. Szpankowski. Joint source—channé¥Z£oding. In

IEEE Data Compression Conferenqeages 273-282, Snowbird, 2003.
M. Lothaire, editor. Applied Combinatorics on Wordschapter 7,
Analytic Approach to Pattern Matching. Cambridge, 2005.

F. J. MacWilliams and N. J. A. Sloan&he Theory of Error-Correcting
Codes Elsevier, Amsterdam, 1977.

I. S. Reed and G. Solomon. Polynomial codes over ceftaite fields.
J. SIAM 8:300-304, 1960.

M. Régnier and W. Szpankowski. On pattern frequenayuaences in
a Markovian sequenceéilgorithmicg 22:631-649, 1998.

Y. Reznik and W. Szpankowski. On average redundancy cdtthe
Lempel-Ziv codes withc-error protocol.Information Sciencesl35:57—
70, 2001.

Linear algorithm faated
compression via string matching. Assoc. Comput. Mac28(1):16-24,
Jan. 1981.

K. Sayood, H. Otu, and N. Demir. Joint source/channedirng for
variable length codedEEE Trans. Commun48:787-794, 2000.

R. Sedgewick and P. Flajolet. An Introduction to the Analysis of
Algorithms Addison-Wesley, Reading, Massachusetts, 1996.

J. Storer and J. Reif. Error resilient optimal data coespion.SIAM J.
Computing 26:934-949, 1997.

14

[26] W. Szpankowski. A generalized suffix tree and its (uppeted asymp- Of the Analysis of Algorithms. He co-chaired the Informa-

[27] W. Szpankowski.Average Case Analysis of Algorithms on Sequence,

(28]

[29]

[30]

[31]

(32]

(33]

Stefano Lonardi is Assistant Professor at University of Cal—t

totic behaviors.SIAM J. Computing22:1176-1198, 1993.

Wiley, New York, 2001.

tion Theory and Networking Workshop, Metsovo, Greece,
e “NSF Workshop on Information Theory and Computer

M. D. Ward. Analysis of the Multiplicity Matching Parameter in Suffix Science Interface”, Chicago, and the workshop “Infornratio

Trees PhD thesis, Purdue University, West Lafayette, IN, May 200
M. D. Ward and W. Szpankowski. Analysis of a randomizetestion
algorithm motivated by the LZ'77 scheme. 1ist Workshop on Analytic

Beyond Shannon”, Orlando. In June 2004 he directed the
MSRI Graduate Program on the “Analysis of Algorithms and

Algorithmics and Combinatoricpages 153-160, New Orleans, 2004. Information Theory”.

M. D. Ward and W. Szpankowski. Analysis of the multijicmatching

parameter in suffix trees. Imternational Conference on the AnalysisMark Daniel Ward received his B.S

of Algorithms Barcelona, 2005.

Y. Wu, S. Lonardi, W. Szpankowski. Error-Resilient LZ\Bata

Compression. InIEEE Data Compression Conferencpp.193-202,

Snowbird, Utah, 2006.

A. J. Wyner. The redundancy and distribution of the gerkengths of the
fixed-database Lempel-Ziv algorithtEEE Transactions on Information
Theory 43:1439-1465, 1997.

J. Ziv and A. Lempel. A universal algorithm for sequahtidata

compression.|[EEE Transactions on Information Theor23:337-343,

1977.

in Mathematics and
Computer Science from Denison University, Granville, Qhio
in 1999; his M.S. in Applied Mathematical Sciences from
the University of Wisconsin—Madison in 2003; and his Ph.D.
in Mathematics with Specialization in Computational Scieen
from Purdue University, West Lafayette, Indiana, in 2005.
Since 2005, Ward has been a Lecturer in Mathematics at the
University of Pennsylvania. His research concerns aralyti
combinatorial, and probabilistic techniques for the asialy

of algorithms and data structures. In June 2004, he was a
eaching assistant at the MSRI Graduate Program on Analysis

ifornia, Riverside, CA. He is also a faculty member of the¢ aiorithms and Information Theory. In 2006, Ward was a

Graduate Program in Genetics, Genomics and Bioinformatiggemper of the program committee for Analytic Algorithmics
the Center for Plant Cell Biology, the Institute for Intetiva

Genome Biology, and the Graduate Program in Cell, Molec-
ular and Developmental Biology.
Stefano received his “Laurea cum laude” from University

and Combinatorics (ANALCO 2006).

of Pisa in 1994 and his Ph.D. in the summer of 2001 from
the Department of Computer Sciences, Purdue University,
West Lafayette, IN. He also holds a doctorate degree from
University of Padua (1999). During the summer of 1999, he
was intern at Celera Genomics, Department of Informatics
Research, Rockville, MD.

Stefano’s recent research interest includes data conipness
computational molecular biology, data mining. He has pub-
lished more than fifty papers in major theoretical computer
science and computational biology journals and conference
In the year 2005, he received the CAREER award from
National Science Foundation.

Wojciech Szpankowskireceived his M.S. and Ph.D. degrees
in Electrical and Computer Engineering from the Technical
University of Gdansk in 1976 and 1980, respectively. Cur-
rently, he is Professor of Computer Science (and by courtesy
Electrical and Computer Engineering) at Purdue University
In 1992 he was Professeur Invite at INRIA-Rocquencourt,
France, in 1999 he was Visiting Professor at Stanford Uni-
versity, and in 2006 the Erskine Fellow at University of Can-
terbury, Christchurch, New Zealand. Szpankowski's redear
interests cover mainly analysis of algorithms and infoiorat
theory, and also bioinformatics, analytic combinatoriasd
stability problems of distributed systems. He published th
book “Average Case Analysis of Algorithms on Sequences”,
John Wiley & Sons, 2001.

Szpankowski has been a guest editor and an editor of
technical journals, including the IEEE Transactions orotnf
mation Theory, Foundation and Trends in Communications
and Information Theory, Theoretical Computer Science, the
ACM Transaction on Algorithms, and Combinatorics, Proba-
bility, and Computing. He serves on the Steering Committee

