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Abstract

The minimum expected length for fixed-to-variable length encoding of an n-block memoryless source with
entropy H grows as nH +O(1), where the term O(1) lies between 0 and 1. However, this well-known performance
is obtained under the implicit constraint that the code assigned to the whole n-block is a prefix code. Dropping
the prefix constraint, which is rarely necessary at the block level, we show that the minimum expected length for
a finite-alphabet memoryless source with known distribution grows as

nH − 1
2

log n + O(1)

unless the source is equiprobable. We also refine this result up to o(1) for those memoryless sources whose log
probabilities do not reside on a lattice.

Index Terms

Shannon theory; source coding; fixed-to-variable lossless compression; memoryless sources; analytic informa-
tion theory; one-to-one codes.

I. INTRODUCTION

Lossless symbol-by-symbol compressors are required to satisfy the condition of “unique decodability”
whereby different input strings are assigned different compressed versions. Uniquely decodable non-prefix
codes do not offer any advantages over prefix codes since any uniquely decodable code must assign lengths
to the various symbols that satisfy Kraft’s inequality, while a prefix code is guaranteed to exist with those
symbol lengths. Achieved by the Huffman code, an exact expression for the minimum average length of
a prefix symbol-by-symbol binary code is unknown. It is upper bounded by the entropy (in bits) of the
probability distribution of the symbols plus one bit (this follows by the analysis of the suboptimal Shannon
code in [28], which, incidentally, Shannon devised to encode blocks of data). Macmillan [19] showed
that the minimum average length of a prefix symbol-by-symbol binary code is lower bounded by the
entropy–a result which is frequently wrongly attributed to Shannon, who never addressed the fundamental
limits of prefix codes. Further improvements on the upper bound (as a function of the distribution) were
reported in [3], [4], [12], [21], [27]. However, the paradigm of symbol-by-symbol compression is severely
suboptimal even for memoryless sources. For example, symbol-by-symbol compression is unable to exploit
the redundancy of biased coin flips. Algorithmically, at the expense of a slight penalty in average encoding
length, this inefficiency is dealt with stream codes such as arithmetic coding. To approach the minimum
average encoding length one can partition the source string of length n into blocks of length k and apply
the symbol-by-symbol approach at the block level. The resulting average compressed length per source
symbol is equal to the entropy of each symbol, H(X), plus at most 1/k bits if the source is memoryless,
or more generally, equal to the entropy of k consecutive symbols divided by k plus at most 1/k bits.
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Thus, to achieve the best average efficiency without regard to complexity, we can let k = n, apply a
Huffman code to the whole n-tuple and the resulting average compressed length behaves as

Ln = nH(X) +O(1). (1)

The O(1) term in (1) belongs to [0, 1], and has been investigated in detail for biased coin flips in [27],
[29]. In particular,1 when log2

1−p
p

is irrational (where p is the bias),

Ln = nh(p) +
3

2
− log2 e+ o(1) bits (2)

where h(p) is the binary entropy function.
As argued in [32], it is possible to attain average compressed length lower than (1). The reason is that

it is often unnecessary, and in fact wasteful, to impose the prefix condition on a code that operates at the
level of the whole file to be compressed. Applying prefix codes to n-block supersymbols is only optimal
in terms of the linear growth with n (it attains the entropy rate for stationary ergodic sources); however, as
far as sublinear terms, this conventional approach incurs loss of optimality. The optimal fixed-to-variable
length code performs no blocking on the source output; instead the optimal length-n compressor chooses
an encoding table that lists all source realizations of length n in decreasing probabilities (breaking ties
using a lexicographical ordering on the source symbols) and assigns, starting with the most probable, the
binary strings of increasing lengths2

{∅, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, . . .}.

The fact that the length of the compressed file is unknown a priori is immaterial since the decompressor
receives as input the compressed file, including where the file “starts and ends.” For example, files stored
in a random-access medium (such as a hard disk) do not satisfy the prefix condition: a directory (organized
as a so-called inode pointer structure, e.g. [20]) contains the starting and ending locations of the sequence
of blocks occupied by each file in the storage medium.

The foregoing code is optimal not just in the sense of average length but in the sense that the cumulative
distribution function of its length is larger than or equal to that of any other code. Such optimal codes
have been previously considered under the rubric of one-to-one codes, but because of their misguided
standing as non-uniquely decodable symbol-by-symbol codes, they have failed to attract much attention.

In the rest of this paper, Section II deals with the nonasymptotic analysis of one-to-one codes. Section
III summarizes previous results on the minimum average length achievable for biased coin flips. Section
IV states our results on asymptotic analysis of the minimum average length of fixed-to-variable length
codes for memoryless sources with known distributions. For equiprobable distributions we can save on
average between 1.914 and 2 bits (from the logarithm of the number of equiprobable realizations) plus an
exponentially vanishing term. For nonequiprobable distributions we can save 1

2
log2 n from the entropy of

the n-tuple plus an O(1) term. If the log probabilities of the source do not reside on a lattice, we show
that the O(1) term is in fact

1

2
log2

(
8πeσ2

)
plus a vanishing term, where σ2 is the variance of log2 PX(X). Proofs are given in Section V.

II. NONASYMPTOTIC ANALYSIS OF OPTIMAL VARIABLE-LENGTH CODES

Consider a probability distribution PX on a set of ordered elements X . Define πX : X 7→ {1, . . . , |X |}
by πX(a) < πX(b) if PX(a) > PX(b) or if PX(a) = PX(b) and a < b. Thus, πX(x) = ` if x is the `-th
most probable element in X according to distribution PX , with ties broken according to the ordering in

1We omit the more involved formula given in [29] for the rational case.
2Including the empty string is convenient but has no impact on our results.
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X . It is easy to verify that

PX(x)πX(x) ≤ 1 (3)

for all x ∈ X : if (3) failed to be satisfied for x0 ∈ X , there would be at least πX(x0) masses strictly
larger than 1/πX(x0).

The one-to-one code assigns to x the shortest (possibly empty) binary string (ties broken with the
ordering 0 < 1) not assigned to any element y with πX(y) < πX(x). Thus, we obtain the simple but
important conclusion that the length of the encoding of x is blog2 πX(x)c. Finding an exact expression
for the minimum average length

L(X) = E[blog2 πX(X)c] (4)

as a function of PX appears to be challenging. For X equiprobable on a set of M = |X | elements, it can
be shown that the average length of the one-to-one code is (cf. [17])

L(X) =
1

M

M∑
i=1

blog2 ic (5)

= blog2Mc+
1

M

(
2 + blog2Mc − 2blog2Mc+1

)
(6)

which simplifies to

1

M

M∑
i=1

blog2 ic =
(M + 1) log2(M + 1)

M
− 2 (7)

when M + 1 is a power of 2.
A simple upper bound first noticed in [34] is obtained as

L(X) = E[blog2 πX(X)c] (8)
≤ E[log2 πX(X)] (9)

≤ E
[
log2

1

PX(X)

]
(10)

= H(X) (11)

where (10) follows from (3). Note that dropping the prefix condition makes the entropy an upper bound
to the minimum average length, rather than a lower bound. Various lower bounds on L(X) have been
proposed in [1], [2], [5], [10], [18], [23], [33]. Distilling the main ideas in [1], the following result gives
the tightest known bound.

Theorem 1: Define the monotonically increasing function ψ : R+ 7→ R+ by

ψ(x) = x+ (1 + x) log2(1 + x)− x log2 x (12)

Then,

ψ−1 (H(X)) ≤ L(X) (13)
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Proof: For brevity denote Y = blog2 πX(X)c, and Z = Y + 1

H(X) = H(X|Y ) +H(Y ) (14)
≤ E[Y ] +H(Y ) (15)
= E[Y ] +H(Z) (16)
= E[Y ] + E[Z]h(1/E[Z])−D(PZ ||G1/E[Z]) (17)
≤ ψ(E[Y ])) (18)

where
• (14) ⇐= Y is a deterministic function of X;
• (15) ⇐= H(X|Y = k) ≤ k bits;
• (17) follows by writing out the relative entropy on the right side where the reference measure is the

geometric (positive) distribution Gp(k) = p(1− p)k−1;
• (18) ⇐= the relative entropy D(·‖·) ≥ 0.

Weakening the bound in (13) by

ψ(x) ≤ x+ log2 e+ log2(1 + x) (19)

and using the upper bound (11) we obtain the bound in [1]:

H(X)− log2(H(X) + 1)− log2 e ≤ E[blog2 πX(X)c] (20)

Another way of weakening (13) is to use the monotonic increasing nature of (1+x) log(1+x)−x log x
and (11) to conclude

L(X) ≥ H(X)− (1 + L(X)) log2(1 + L(X))− L(X) log2 L(X) (21)
≥ H(X)− (1 +H(X)) log2(1 +H(X))−H(X) log2H(X) (22)

which is the bound found in [2].
In the remainder of the paper we turn attention to the asymptotic behavior of the minimum average

length of the encoding of an n-tuple of a memoryless stationary source with marginal distribution PX:

L∗n = L(Xn). (23)

Note that all the results obtained in this section apply to that case by letting Xn and nH(X) play the role
of X and H(X), respectively.

III. ASYMPTOTIC MINIMUM AVERAGE LENGTH: COIN FLIPS

A. Fair coin flips
For fair coin flips (p = 1

2
), the exact result can be obtained from (6) letting M = 2n:

L∗n = n− 2 + 2−n(n+ 2), (24)

in contrast to

Ln = n (25)

obtained with the Huffman code operating on n-tuples (or single bits).

B. Biased coin flips
The minimum average length for a binary memoryless source with bias p 6= 1

2
has been investigated in

great detail (up to o(1) term) in [31], which shows that
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L∗n = nh(p)− 1

2
log2 n+O(1) (26)

and in fact [31] characterizes the O(1) term up to vanishing terms. If log2
1−p
p

is irrational and positive
(p < 1/2), then

L∗n = nh(p)− 1

2
log2 n−

1

2
log2

e3

π
+

p

1− 2p
+ log2

1

1− 2p
+

1

2(1− 2p)
log2

1− p
p

+ o(1) (27)

If

log2

1− p
p

=
N

J
(28)

where (28) is an irreducible fraction, we need to add the following quantity divided by J to (27):

1

2
+

1− 4p

1− 2p
log2 e+

−3 + 7p

1− 2p
E
[〈

J

2
(n+ 1) log2

1

1− p
− 1

2
U2 log2 e−

J

2
log2 2πp(1− 2p)2

〉]
(29)

where 〈x〉 = x− bxc and U is standard normal.

IV. ASYMPTOTIC MINIMUM AVERAGE LENGTH: MEMORYLESS SOURCES

We assume henceforth that the source is memoryless with distribution PX on a finite alphabet A, i.e.

PXn = PX × · · · × PX. (30)

The proofs of the following asymptotic results are given in Section V.
Theorem 2: For a non-redundant source (i.e. memoryless and equiprobable) with finite alphabet A, the

minimum expected length of a lossless binary encoding of Xn is given by

L∗n = n log2 |A| − 2 + τ(n log2 |A|) + o(ρn). (31)

where 1
|A| < ρ < 1 and

τ(x) = bxc − x− 2bxc+1−x + 2 (32)

which satisfies

0 ≤ τ(x) ≤ 1− log2 e+ log2 log2 e = 0.086 (33)

Definition 1: A discrete real-valued random variable is of lattice-type if there is a pair of real numbers
(α, β), such that the random variable has zero mass outside the lattice α + kβ, k = . . . ,−1, 0, 1, . . .

Theorem 3: If log2 PX(X) is a non-lattice random variable then, the minimum expected length of a
lossless binary encoding of Xn is given by

L∗n = nH(X)− 1

2
log2(8πeσ

2n) + o(1) (34)

where

σ2 = var (log2 PX(X)) . (35)

Note that in the cases in which X is either equiprobable or binary valued, log2 PX(X) only takes one
or two values, respectively, and therefore it is a lattice distribution, outside the purview of Theorem 3.
The complexity of the O(1) term solution in the binary case, particularly (29), illustrates that a general
expression for the lattice case may be challenging. Furthermore, for any fixed n, one can modify PX

so slightly that log2 PX(X) becomes non-lattice and the change in L∗n is as small as desired. Therefore,
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pursuing the modification to the O(1) term for sources with lattice-type log2 PX(X) does not in fact
improve the usefulness of the asymptotic results as approximations to finite-n fundamental limits.

At the expense of a weaker conclusion, the following result is more general than Theorem 3.
Theorem 4: If PX is not equiprobable, the minimum expected length of a lossless binary encoding of

Xn is given by

L∗n = nH(X)− 1

2
log2 n+O(1). (36)

The dominant sub-linear term is, thus, independent of the distribution of the source (as long as it is
not equiprobable). It is tempting to conjecture that the same behavior holds for finite-alphabet Markov
chains and other sources whose memory decays sufficiently rapidly.

V. PROOFS

Proof of Theorem 2: Substituting

M = |A|n (37)

in (6) we obtain

L∗n = bn log2 |A|c+
1

|A|n
(
2 + bn log2 |A|c − 2bn log2 |A|c+1

)
(38)

= bn log2 |A|c − 2bn log2 |A|c+1−n log2 |A| +
1

|A|n
(2 + bn log2 |A|c) (39)

= n log2 |A| − 2 + τ(n log2 |A|) + o(ρn) (40)

where ρ > 1
|A| and the nonnegative function τ(x) is maximized when x− bxc = 1− log2 log2 e at which

point it attains the value

τ(n+ 1− log2 log2 e) = 1 + log2 log2 e− log2 e = 0.086 (41)

Proof of Theorem 3: As shown in [32], the analysis of the minimal length of the optimal fixed-
to-variable non-prefix code is intimately connected to the analysis of error probability in fixed-to-fixed
data compression: the minimum error probability of an n-to-k fixed-to-fixed code ε∗(n, k) is equal to the
probability that the minimum length of the fixed-to-variable code is greater than or equal to k, i.e.,

ε∗(n, k) = P [blog2 πXn(Xn)c ≥ k] (42)

To verify (42), note that the optimum n-to-k fixed-to-fixed code assigns a unique k-bit string to each of
the most likely 2k − 1 realizations of Xn, and uses the string with k 1s to signal error; thus, an error
obtains if πXn(Xn) ≥ 2k, which happens with probability

P [log2 πXn(Xn) ≥ k] = P [blog2 πXn(Xn)c ≥ k] (43)

and (42) is established. This enables us to analyze the minimum average length of fixed-to-variable coding
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through the analysis of the fixed-to-fixed error probability:

L∗n =
∞∑
k=1

P [blog2 πXn(Xn)c ≥ k] (44)

=
∞∑
k=1

ε∗(n, k) (45)

= −ε∗(n, 1) +
∞∑
k=1

(k + 1) (ε∗(n, k)− ε∗(n, k + 1)) (46)

= −1 +

∫ 1

ε∗(n,1)

dt+
∞∑
k=1

∫ ε∗(n,k)

ε∗(n,k+1)

(k + 1) dt (47)

= −1 +

∫ 1

0

nR∗(n, ε) dε (48)

where

R∗(n, ε) =
k

n
if ε∗(n, k) ≤ ε < ε∗(n, k − 1) (49)

is the smallest rate of an n-to-k code with error probability not exceeding ε. Based on the refined central
limit theorem (e.g. [22]), Strassen [26] showed that for a memoryless source with a non-lattice distribution

R∗(n, ε) = R̄(n, ε) + ∆(n, ε) (50)

R̄(n, ε) = H +
σ√
n
Q−1(ε)− 1

2n
log2

(
2πσ2ne(Q

−1(ε))2
)

+
µ3

6σ2n

(
(Q−1(ε))2 − 1

)
(51)

∆(n, ε) = o

(
1

n

)
. (52)

where Q−1 is the inverse of the complementary cumulative Gaussian distribution function

Q(x) =
1√
2π

∫ ∞
x

e−t
2/2 dt (53)

and

σ2 = E
[
log2

2

1

PX(X)

]
−H2 > 0 (54)

µ3 = E

[(
log2

1

PX(X)
−H

)3
]

(55)

which are both finite since the alphabet is finite.
In order to integrate (50) with respect to ε, note that if U is uniform on [0, 1], Q−1(U) is a standard

Gaussian distribution. Therefore, ∫ 1

0

Q−1(ε) dε = 0 (56)∫ 1

0

(
Q−1(ε)

)2
dε = 1 (57)
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Using (56) and (57), we obtain∫ 1

0

n R̄∗(n, ε) dε = nH − 1

2
log2

(
2πσ2n

)
+

∫ 1

0

σ
√
nQ−1(ε)− log2 e

2
(Q−1(ε))2 +

µ3

6σ2

(
(Q−1(ε))2 − 1

)
dε (58)

= nH − 1

2
log2

(
2πσ2ne

)
(59)

We now proceed to deal with the integration of n∆(n, ε). Denote the zero-mean unit-variance random
variable

Zn =
1√
nσ

(
n∑
i=1

log2

1

PX(Xi)
− nH

)
(60)

Letting α3 be the third (non-centered) moment of log2
1

PX(X)
, Theorem 5.22 in [22] states that the function

φn(x) = P[Zn ≤ x]− 1 +Q(x)− α3

6σ3
√

2πn
(1− x2)e−x

2/2 (61)

is such that for any τ > 0, there exists n0, such that for all n > n0

|φn(x)| < τ√
n

(62)

for all real scalars x. Letting

ρn = exp(
√
nσ Q−1(ε)) (63)

and in view of [26] we can bound for any τ > 0 and all sufficiently large n,

n∆(n, ε) = log

(
1 + exp

(
−nR̄(n, ε)

) ∫ ρn

0

φn
(
Q−1(ε)

)
− φn

(
log z√
nσ

)
dz

)
(64)

≤ log

(
1 + exp

(
−nR̄(n, ε)

) 2ρnτ√
n

)
(65)

By monotone convergence, the integral of (65) with respect to ε on [0, 1] vanishes. Together with (48)
and (59) the desired result is established.

Proof of Theorem 4: Henceforth, we assume that the source is not equiprobable. We abbreviate
|A| = m, denote by p1, . . . pm the atoms of PX such that

p1 ≤ p2 ≤ · · · ≤ pm−1 ≤ pm, (66)

and we denote

Bi = log
pm
pi

(67)

for i = 1, . . . ,m− 1. Note that the entropy of PX can be expressed as

H(X) = log
1

pm
+

m−1∑
i=1

piBi (68)

Let

k = (k1, . . . , km) (69)
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such that k1 + · · ·+ km = n denote the type of an n-string; the probability of each such string is equal to

pk = pk11 · · · pkm
m . (70)

Denote the set of all types of n-strings drawn from an alphabet of m elements by

Tn,m = {(k1, . . . , km) ∈ Nm, k1 + · · ·+ km = n} (71)

We introduce an order among types:

j � k iff pj ≥ pk.

and we sort all types from the smallest index (largest probability) to the largest. This can be accomplished
by observing that pj ≥ pk is equivalent to

j1B1 + · · ·+ jm−1Bm−1 ≤ k1B1 + · · ·+ km−1Bm−1. (72)

Therefore, to sort types k one needs to sort the function S : Rm−1 7→ R+

S(k) = k1B1 + · · ·+ km−1Bm−1 (73)

from the smallest value S(00 · · · 0) = 0 to the largest.
There are (

n

k

)
=

(
n

k1, . . . , km

)
=

n!

k1! · · · km!
(74)

sequences of type k and we list them in lexicographic order. Then, the optimum code assigns length
blog ic to the ith sequence (1 ≤ i ≤ mn) in this list. Denote the number of sequences more probable than
or equal to type k as

Ak :=
∑
j�k

(
n

j

)
. (75)

Using somewhat informal, but intuitive, notation, k + 1 and k− 1 denote the next and previous types,
respectively, in the sorted list of the elements of Tn,m. Clearly, starting from position Ak the next

(
n

k+1

)
sequences have probability pk+1. Thus the average code length can be computed as follows

L∗n =
∑

k∈Tn,m

pk
Ak∑

i=Ak−1+1

blog2 ic (76)

=
∑

k∈Tn,m

pk
(n
k)∑
i=1

blog2(Ak − i+ 1)c (77)

=
∑

k∈Tn,m

(
n

k

)
pk log2Ak +O(1), (78)

= log2Anp +O(1), (79)

where p = (p1, . . . , pm) with pm = 1−p1−· · ·−pm−1. We now proceed to justify (78) and (79). Noticing
that for 1 ≤ i ≤

(
n
k

)
log2

(
Ak −

(
n

k

)
+ 1

)
≤ blog2(Ak − i+ 1)c ≤ log2(Ak + 1) (80)
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we conclude that∑
k∈Tn,m

(
n

k

)
pk log2Ak +

∑
k∈Tn,m

(
n

k

)
pk log

(
1−

(
n
k

)
− 1

Ak

)
≤ L∗n (81)

≤
∑

k∈Tn,m

(
n

k

)
pk log2(Ak + 1) (82)

We first estimate the second sum on the left side of (81). In (101) and (103) below we establish that(
n
np

)
Ap

= O
(
n−(m−2)/2

)
, (83)

which along with log(1 − x) = −x + O(x2) enables us to conclude that the second sum in (81) is of
order O(n−(m−2)/2).

In order to verify (78) we shall use a multinomial sum paradigm of the following form

Sf (n) :=
∑

k∈Tn,m

(
n

k

)
pkf(k) (84)

where f(k) is a function of at most polynomial growth. In our case f(k) = logAk = Θ(n), where
n = k1 + · · · + km. In [11], [16] it is proved that such a sum grows asymptotically as f(np). For the
reader’s convenience we offer a streamlined justification for functions of polynomial growth; in particular
when f(k) has an analytic continuation to a complex cone around the real positive axis [16], [30].

In general, Taylor’s expansion of f around np is

f(x) = f(np) + (x− p)∇f(np) +
1

2
(x− np)∇2f(x′)(x− np) (85)

for some x′ in the vicinity of np, where we use the same simplified notations as before. Observe now
that

Sf (n) = E[f(X)] (86)
= f(np) +O(nmax

x′,ij
f ′′ij(x

′)) (87)

= f(np) +O(nξ(n)), (88)

where X is a multinomial distribution with parameters n and p and f ′′ij(x) is the second derivative with
respect to xi and xj . Observe that in (87) we use the fact that variance of X is of order O(n). The above
asymptotic result is useful as long as the first term dominates the second term O(nξ(n)), as is the case
in our situation. One can argue that f has an analytic continuation in a cone around the real positive axis
and polynomial growth (cf. (105) below). By Lemma 3 of [15] or [30] we conclude that nξ(n) = O(1/n)
and f ′′(k) = O(1/n). Thus, (78)-(79) follow.

Let now

ji = npi + xi (89)

for i = 1, . . . ,m− 1. Then, by (72) pj ≥ pnp, is equivalent to

B1x1 + · · ·+Bm−1xm−1 ≤ 0. (90)
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Thus

Anp =
∑
pj≥pnp

(
n

j

)
(91)

=
∑

x:bT x≤0

(
n

np + x

)
(92)

where

xT = [x1, . . . , xm−1], (93)
bT = [B1, . . . , Bm−1]. (94)

The next step is to use Stirling’s formula

n! =
√

2πn · nne−n(1 +O(1/n)) (95)

to estimate the summands in (92). This leads to(
n

np + x

)
=

n!

(np1 + x1)! · · · (npm−1 + xm−1)!(npm − x1 − · · · − xm−1)!
=

√
2πnnne−nenp1+x1 · · · enpm−x1−···−xm−1(1 +O(1/n))√

2π(np1 + x1)(np1 + x1)np1+x1 · · ·
√

2π(npm − x1 − · · · − xm−1)(npm − x1 − · · · − xm−1)npm−x1−···−xm−1

=
1

(2π)(m−1)/2

1
√
p1 · · · pm

1

n(m−1)/2

(
1 +O(1/

√
n)
)
·

· nn

(np1)np1+x1(1 + x1

np1
)np1+x1 · · · (npm)npm−x1···xm−1(1− x1+···+xm−1

npm
)npm−x1−···−xm−1

=
1

(2π)(m−1)/2

1
√
p1 · · · pm

1

n(m−1)/2

1

pnp11 · · · pnpm
m

(
pm
p1

)x1

· · ·
(

pm
pm−1

)xm−1 (
1 +O(1/

√
n)
)

·
(

1 +
x1

np1

)−(np1+x1)

· · ·
(

1− x1 + · · ·xm−1

npm

)−(npm−x1···−xm−1)

(96)

Applying now Taylor’s expansion to (96)(
1 +

x

np

)−(np+x)

= exp

(
−(np+ x) ln

(
1 +

x

np

))
(97)

= exp

(
−(np+ x)

(
x

np
− x2

2(np)2
+O(n−3)

))
(98)

= exp

(
− x2

2np

)
(1 +O(1/n)) (99)
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we arrive at (
n

np + x

)
=

1

(2π)(m−1)/2

1
√
p1 · · · pm

1

n(m−1)/2
2nH(X) (100)

·
(
pm
p1

)x1

· · ·
(

pm
pm−1

)xm−1 (
1 +O(1/

√
n)
)

· exp

(
− x2

1

2np1

− · · · −
x2
m−1

2npm−1

− (x1 + · · ·+ xm−1)
2

2npm

)
=

(
1 +O(1/

√
n)
)
C

2nH(X)

n(m−1)/2

· exp (B1x1 + · · ·+Bm−1xm−1)

· exp

(
− 1

2n
xTΣ−1x

)
(101)

where Σ is an appropriately chosen invertible covariance matrix.
We are now in the position to evaluate the sum (92). We need to sum over bTx ≤ 0 which we split by

summing over hyperplanes bTx = −d for d ≥ 0 of dimension m − 2. We denote such a hyperplane by
Dm−2 = {x : bTx = −d}. Noting that the Gaussian kernel of (101) when summed over the hyperplane
Dm−2 is of order O(n(m−2)/2) we arrive at our final result. More precisely, plugging (101) into (92), yields

Anp =
C2nH(X)

n(m−1)/2

 ∑
bT x≤0

exp

(
bTx− 1

2n
xTΣ−1x

) (102)

=
∑
d≥0

exp(−d)
∑

bT x=−d

exp

(
− 1

2n
xTΣ−1x

)
. (103)

Noting now that [13] ∑
x∈Dm−2

exp

(
− 1

2n
xTΣ−1x

)
= C(d)n(m−2)/2. (104)

where C(d) is of at most polynomial growth of d (in fact, C(d) = O(d2)). Combining (103) and (104)
we finally arrive at

log2Anp = log2

(
C ′

2nH(X)

n(m−1)/2
n(m−2)/2

)
= nH(X)− 1

2
log2 n+O(1) (105)

where C ′ is a constant. Observe that the right order of Anp can be obtained by considering only the
hyperplane bTx = 0. In view of (79), this completes the proof of Theorem 4.

Example. To illustrate our methodology, we explain it first for m = 2 and then we give some details for
the case of m = 3 symbols with probability p1 < p2 < p3. For m = 2 we have (p < 1− p)(

n

np− x

)
=

2nH(X)√
2πp(1− p)n

(
p

1− p

)x
exp

(
− x2

2np(1− p)

)
(1 +O(1/n)).

Then

Anp =
∑
x≥0

(
n

np− x

)
=

1

1− p
(1−p)

2nH(X)√
2πp(1− p)n

(1 +O(1/n)).

Observe again that the order of growth of Anp is determined by x = 0. The summation of the geometric
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series contributes to the constant.
Let’s now focus on the case m = 3. With B1 = log(p3/p1) and B2 = log2(p3/p2), we need to evaluate

Anp1,np2 =
∑

k1B1+k2B2≤np1B1+np2B2

(
n

k1, k2

)
. (108)

As before, we denote k1 = np1 + x and k2 = np2 + y to arrive at(
n

np1 + x, np2 + y

)
=

1√
2πp1p2p3n

2nH(p)

(
p3

p1

)x(
p3

p2

)y
· exp

(
− x2

2np1

− y2

2np2

− (x+ y)2

2np3

)(
1 +O(1/

√
n)
)

(109)

In Figure 1 we show the behavior of the above multinomial coefficient on the critical line k1B1+k2B2 = 0

normal

geometric

np2

np1

k2

k1

O n( )

Fig. 1. Illustration for m = 3. The value of the multinomial coefficient (109) is shown as the third dimension: The normal distribution is
along the line k1B1 + k2B2 = np1B1 + np2B2, while away from this line the multinomial coefficient decays exponentially.

and below it. On the critical line the coefficient is well approximated by the normal distribution (blue
curve) around the point (np1, np2), while for (k1, k2) (or equivalently for (x, y)) away from the critical
line the coefficient decays exponentially (red curve). This leads to

Anp =
∑

B1x+B2y≤0

(
n

np1 + x, np2 + y

)
(110)

∼ 2nH(X)

n
√

2πp1p2p3

∑
B1x+B2y=0

exp

(
− x2

2np1

− y2

2np2

− (x+ y)2

2np3

)
(111)

= O(
√
n)

2nH(X)

n
(112)

= C
2nH(X)

√
n

(113)

where (112) follows from the normal approximation on the line B1x+B2y = 0.
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