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ABSTRACT

Motivation: Standardized annotations of biomolecules in interaction
networks (e.g., Gene Ontology) provide comprehensive understan-
ding of the function of individual molecules. Extending such annotati-
ons to pathways is a critical component of functional characterization
of cellular signaling at the systems level.

Results: We propose a framework for projecting gene regulatory net-
works onto the space of functional attributes using multigraph models,
with the objective of deriving statistically significant pathway annotati-
ons. We first demonstrate that annotations of pairwise interactions do
not generalize to indirect relationships between processes. Motiva-
ted by this result, we formalize the problem of identifying statistically
over-represented pathways of functional attributes. We establish the
hardness of this problem by demonstrating the non-monotonicity of
common statistical significance measures. We propose a statistical
model that emphasizes the modularity of a pathway, evaluating its
significance based on the coupling of its building blocks. We com-
plement the statistical model by an efficient algorithm and software,
NARADA, for computing significant pathways in large regulatory net-
works. Comprehensive results from our methods applied to the E.
coli transcription network demonstrate that our approach is effective
in identifying known, as well as novel biological pathway annotations.
Availability: NARADA is implemented in Java and is available at
http://ww. cs. purdue. edu/ hones/ j pandey/ nar ada/ .
Contact: Jayesh Pandey, j pandey@s. pur due. edu.

INTRODUCTION

Gene regulatory networks represent powerful formalismsfode-
ling cell signaling. These networks are inferred from gexgres-
sion, as well as other sources of data, using various stafistnd
computational methods (Friedma al,, 2000; Husmeier, 2003).
Recent studies on networks of specific organisms show thert in
actions between genes that take part in specific pairs obdjil
processes are significantly overrepresented @tesd., 2002; Tong
et al, 2004). Generalizing such observations to pathways of arbi
trary length may allow identification of standardized padlye;
enabling creation of reference databases of direct anceictdinter-
actions between various processes. Knowledge of such pgshis
useful, not only in general understanding of the relatignbktween
cellular processes at the systems level, but also in pingeekisting
knowledge of cellular organization of model organisms tbeot
species. Increasing availability of species-specificrattéon data,
coupled with attempts aimed at creating standardizedodiaties
of functional annotation for biomolecules provide the kiege
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base that can be effectively used for this purpose. Whatlsrig
is a comprehensive set of tools that combine these two seowfce
data to identify significantly over-represented patteifriateraction
through reliable statistical modeling with a formal congtignal
basis.

In this paper, we introduce the notion &inctional network
characterization derived from a gene regulatory network and asso-
ciated functional annotations of genes. We use the Gene-Onto
logy (GO) (Ashburneeet al., 2000) for annotations, however, our
methods themselves generalize to other networks and diumsta
Functional network characterization is based onabstractnotion
of regulatory interactions between pairs of functionafilatites (as
opposed to genes). In this context, we demonstrate thatoeeth
for identifying significant pairwise annotations do not galize
to pathway annotations. We introduce the problem of identif
ing statistically over-representguhthwaysof functional attributes,
targeted at the identification of chains of regulatory iatéions bet-
ween functional attributes. We study the hardness of tloblpm,
focusing on the non-monotonicity of commonly used statigti
significance measures. We show that the problem is hard alemg
dimensions: (i) the pathway space of the functional attalnet-
work, and (ii) the space of functional resolution specifigd@O
hierarchy. Emphasizing the modularity of a pathway to as#ss
significance, we propose a statistical model that focuséseocoup-
ling of the building blocks of a pathway. We use this statsti
model to derive efficient algorithms for solving the pathveano-
tation problem. Our methods are implemented in a web-bas#d t
NARADA which provides an intuitive user and data interface.

Comprehensive evaluation ofARADA on anE. coli transcrip-
tion network from RegulonDB (Salgadet al, 2006) shows that
our method identifies several known, as well as novel pateway
at near-interactive query rates. Note that the current kege
of regulatory networks is incomplete, and limited to a fewdwmlo
organisms. Therefore, the application of our method onecly
available data does not provide a comprehensive librarggidla-
tory network annotation. On the other hand, the partial tatian
provided by our method forms a useful basis for extending our
knowledge of regulatory networks beyond well-studied psses
and model organisms.

BACKGROUND AND MOTIVATION

Results from previous studiesLeeet al. (2002) study theS. cere-
visiaetranscription regulation network with a view to understagd
relationships between functional categories. They olestat tran-
scriptional regulators within a functional category conmiyobind
to genes encoding regulators within the same categaxy, (cell
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Fig. 1. Pairwise assessment of regulatory interactions betweantifu
nal attributes may result in identification of non-existertterns. Two
regulatory networks are shown in (a) and (b). The nodes &eldd by
corresponding genes and each gene is tagged with a set dibhaicattri-
butes. The network of functional attributes resulting frooth networks,
considering only pairwise interactions, is shown in (c).

cycle, metabolism, environmental response). They alsortepat
many transcriptional regulators within a functional catggbind to
transcriptional regulators that play key roles in the colndf other
cellular processes. For example, cell cycle activatorebserved to
bind to genes that are responsible for regulation of meistinpkenvi-
ronmental response, development, and protein biosyisth@sng
et al. (2004) identify putative genetic interactions in yeast sya-
thetic genetic array (SGA) analysis and investigate thetfanal
relevance of their results in the context of GO annotatidrsey
construct a network of GO terms by inserting an edge betwegn a
pair of terms that aréridged by a significant number of interac-
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Fig. 2. (a) A sample gene regulatory network and the functional tatiom

of the genes in this network. Each node represents a unique @ed is
tagged by the set of functional attributes attached to tleaeg Activator
interactions are shown by regular arrows, repressor ictierss are shown
by dashed arrows. (b) Functional attribute network derifrech the gene
regulatory network in (a). In this multigraph, nodes (fuoial attributes)
are represented by squares and ports (genes) are repceseatark circles.

Motivating example. Two regulatory pathways are shown in
Figure 1 — each node is identified by its corresponding gere (
and tagged by the functional attribug;f associated with the gene.
In Figure 1(a), genegi, g2, andgs indirectly regulate genegs,
ge, and g7 through gengys. In Figure 1(b), the network is isola-
ted and there is no indirect regulation. Now assume the nm&two
of functional attributes derived from the simple methodadibed
above, separately for each gene network. For both netwsitkse
all genes associated with functional attribifieregulate a gene with
T>, one may conclude thaf; regulatingTs is significant. A simi-
lar conclusion follows for the regulatory effect % on T5. If only
pairwise interactions are considered, we derive the sartveorie

ting gene pairs. Here, two GO terms are said to be bridged by aff functional attributes from both genetic networks (Figur(c)).

interaction if one of the interacting genes is associateith whe

This network clearly suggests that functional attriblifdndirectly

of the terms, and the other gene with the second term, but neitegulates’s throughZz. This is indeed a correct observation for the

her is associated with both terms. They show that the regulti
network is clustered according to underlying biologicabgasses,
while some biological processes buffer one another. Fompie,
microtubule-based functions buffer both actin-based aNé Byn-
thesis or repair functions, suggesting coordination asétfenctions
through interaction of various genes.

Approach. Establishing functional relationships from gene inter-
actions is essential to understanding functional orgéioizeof a
cell. Current investigations are limited to case-spectiidlies that
generally focus on validation or evaluation of results tiyio sim-
ple statistical analyses — yet they provide significantghts (Lee
et al, 2002; Tonget al, 2004; Gamalielssoet al, 2006). Com-
putational tools that are based on sophisticated absirectnd
customized statistical models are likely to yield novelghss. The
basic approach for integrating existing knowledge of gestevarks
and functional annotations is to project the network in geme
spaceonto thefunctional attribute spactéhrough mapping of genes
to attributes as specified by the annotation. A simple mefood
achieving this annotates each gene with its function anadtiiiies
overrepresented interacting annotations. This methddsyiatere-
sting insights, as illustrated by Torgg al. (2004) in the context of
synthetic genetic arrays. This model, however, does natrgdine
beyond pairwise interactions since each interaction betveepair
of functional attributes is within a specific context (a dint pair
of genes) in the network, as illustrated by the followingrepée.

network in Figure 1(a). However, this is not true for the natkvin
Figure 1(b).

To address this problem, we develop a formal framework for pr
jecting a gene network on to a network of functional attd@s,iusing
multigraphmodels that accurately capture the context in which an
interaction occurs. Through this framework, we generapaé-
wise interactions between functional attributes to thefifieation
of regulatory pathways of functional attributes.

METHODS

We now describe the biological, statistical, and compateti
formalisms that underly our methods.

Formal Model for Functional Attribute Networks

A gene regulatory networls modeled by a labeled directed graph
G(Va, Ec, Mca). In this network, nodeg; € Vi represent genes.
Directed edgey;g; € Ec, whereg;, g; € Vi, represents a regula-
tory interaction between gengsandg;. M¢ : E¢ — {+,—,+}
specifies a labeling of edges that represents the mode datiegu
activation (), repression ), or dual regulation£). A sample
gene regulatory network is shown in Figure 2. In our disarsdior
the sake of simplicity, we omit the mode of regulation anchttia!
interactions as activator interactions, whenever apjpatgr

Each gene in the network is associated with a sefuattio-
nal attributes These attributes describe a functionahotationof
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the gene,i.e,, they map an individual biological entity to known
functional classes.

DEFINITION 1. Functional Annotation. Given a set of gendg;
and a set of functional attributekr, let 2V¢ and 2'7 denote the
power set ofi; and Vr, respectively. Then, functional annotation
A(Va,Vr) = {F,G} defines mapping : Vo — 27 and g :

Ve — 2V6, such thatT; € F(g;) if and only ifg; € G(T}), for
anyg; € Ve andTj € Vr. The frequency df}, ¢(T;) = |G(T})|,
is equal to the number of genes that are mapped;to

In Figure 2(a), each geng is tagged with the functional attribu-

tesinF(g;). Foreactl;, G(T;) is composed of the genes tagged by F(Vr, Er),

T;. We use Gene Ontology (GO) (Ashburretral., 2000) as a refe-
rence library for annotating genes. For each gene, GO spetife
molecular functionsssociated with ithiological processek takes
part in, andcellular component& may be part of. The functional
attributes in GO, known as GO terms, are organized hiercatiii
throughis a andpart of relationships. For example, 'regulation of
stereoid biosynthetic process’ is a regulation of stetenetabolic
process’ and is part of 'stereoid biosynthetic process'is Ther-
archy is abstracted using a directed acyclic graph (DAGYhis
representation, if; is a, or part of[;, thenG (T;) C G(Tj), i.e. the
genes associated wiffj form a subset of genes associated \Wijh
In this case [} is said to be garentof T;. A term may have more
than one parent,e., G(T;) C G(7};) andG(T;) C G(T}) does not
imply G(T5) N G(T%) = G(T;) U G(T}). Furthermore, there is a
uniqueTp € Vr with no parent, calledbot, such thati (7o) = V.
In the rest of this section, we use a network of functionaitaites
with no constraintse.g, GO hierarchy) on functiog. We discuss
the issue specifically relating to the GO hierarchy when esking
the implementation of NRADA.

We model networks of functional attributes using multidgrapA
multigraph is a generalized graph, where multiple edgealiowed
between a single pair of nodes.

DEFINITION 2. Functional Attribute Network. Given gene
regulatory networkG(Ve, E¢), a set of functional attribute¥,
and functional annotationd(Vg, Vr) = {F, G}, the correspon-
ding functional attribute network’(Vr, Er) is a multigraph defi-
ned as follows. The set of functional attribufés is also the set
of nodes inF'. Each nod€T; € Vr contains a set of ports corre-
sponding to the set of genes associated Withi.e., G(T;). Each
multiedgeT’; T} is a set of ordered port pairs (edgeg)g., such that
gk € G(T3), g € G(T}), andgrge € Eq.

The functional attribute network corresponding to the gegi-
latory network in Figure 2(a) is shown in Figure 2(b). Thislmu
tigraph model captures the context of each interaction rately
through the concept of ports. As illustrated in Figure 1, #imple

graph model is used, paths that do not exist in the gene nletwor

emerge in the functional attribute network. This is not fassin
the multigraph model, since@athmust leave a node from the port
at which it enters the node.

DEFINITION 3. Path. In functional attribute networlk’(Ve, Er),
apathm = {(T3,,95.), (Tiss Gj2), ---» (T5y, g5, ) } IS an ordered set
of node-port pairs such that (iJ;,, # T, forl < r < s < k
(nodes are not repeated), (ii), € G(T3,.) for 1 < r < k, and (iii)
95+ 951 € T3, Ti, ., € Erfor1 < r < k (consecutive edges are
connected through the same port). The length isf|r| -1 = k—1.

In Figure 2(b), {(T1,q1),(T2,93),(T4,g96)} is a path but
{(T1,91), (T2, g94), (T4, gs) } is NOt, since multiedgé; 7> does not
contain the edgg: g4. Note that allowindl;, = T3, andg;, = g;,.,
we may also include cycles in this definition. According te ébove
definition, paths are characterized by ports. While anatyzegu-
latory pathways of functional attributes, however, we aterested
in paths that are characterized by nodes in the functiotdbate
network. Clearly, such pathways may correspond to mulppiths
in the functional attribute network. Therefore, we modelnthusing
multipaths

In functional attribute network
a multipathII {Ts,,Ts,, ..., T3, } is an ordered
set of nodes such that (J;, # T, for1 < r < s < k,
and (ii) there existg;, € T;. for 1 < r < k, such that
{(Ti,95), (Tis, 9o )s -, (Tiy, 95, )} 1S @ path. The occurrence
set O(II) of II consists of all distinct paths that satisfy (ii) and
each such path is called an occurrenceldf The frequency off,
¢(I) = |O(11)], is equal to the number of occurrencedbf

We use the termpathway and multipath interchangeably, to
emphasize the biological meaning of a multipath. Allowifig =
T;,, we also extend this definition tmulticycles occurrences of
which correspond to cycles in the gene network. In Figurd,2(b
{T1,T>,T3} (also denoted’ — T> - T3 throughout this paper)
is a multipath with frequency four. On the other hand, maltip
T, 4 Ty — T3 does not exist in this network,e., it has fre-
quency zero, although multiedg@s 4 7, andT, — T5 both exist.
Note that the distinction between activator and inhibitderactions
is emphasized in this example for illustrative purposesilenhis
omitted in the definition for simplicity. A multipath withigh fre-
quency is likely to be biologically interesting, since itrmsponds
to a regulatory pathway of functional attributes that regavarious
contexts in the underlying cellular organization. In orttequantify
this biological significance, it is useful to evaluate fregay from a
statistical perspective.

DEFINITION 4. Multipath.

Hardness of Significant Pathway Identification

Raw counts have long been used as a measure of significance —

primarily because of the resulting algorithmic simplicitjhis is
a direct consequence of itsonotonicityproperties, namely that a
subgraph (or substring/subset) of a frequent graph (arggset) is
itself frequent (Koyuturket al, 2006b). In identification of signifi-
cantly overrepresented pathways of functional attritesjuency
alone does not provide a good measure of statistical signie.
This is because, the degree distribution of gene regulai@iyorks
and the distribution of the frequency of functional atttémiare both
highly skewed. Consequently, paths including functiornaitautes
that are associated with high-degree gereeg,(molecular functi-
ons related to transcription) and those associated withyrganes
(e.g, GO terms that are at coarser levels of GO hierarchy) arlylike
to dominate. For this reason, a statistical measure thastako
account these distributions is needed.

Monotonicity of common statistical significance measurédle
identify the basic properties of a useful measure of stedist
significance.

PropPosITIONL. Statistical Interpretability. Consider a seK
of binary random variables and the set of corresponding plzge
onsx, whereX = 1 for X € X corresponds to an observation




Pandey et al.

7,9 T p T o T
19, g3 12 1122 g3 12 1222 93 12
5

Fig. 3. Example illustrating that an interpretable measure oissieal signi-
ficance is not monotonic with respect to GO hierarchy. GO $&fin and
Ti2 are parents df’;. The regulatory effect df’1; onTs is more significant
than that of7, but the regulatory effect df’; 2 is less significant.

supporting a hypothesis. Let(X = x) be a real-valued func-
tion, used to assess the statistical significance of thectidin of
observations defined hy. LetX andY be disjoint binary random
variable sets,j.e, X N'Y = (), and letx and y be the respec-
tive observation sets. A functighis statistically interpretable if it
satisfies the following conditions:

(i) fy=0Vy ey, thenf(X =
(i) fy=1Vy ey, thenf(X =

) <f(XUY =xUy),
)> f(XUY =xUy).

R

Here, without loss of generality(X = x) < f(Y = y) implies
that (X = x) is a more interesting observation thélf = y).
More generally, the binary random variables characterigattern,
and a larger set of these variables corresponds to a largerq@
general) pattern. This property simply states that adudipositive
(negative) observations should increase (decrease) aiideace
that a pattern is interesting.

Most significance measures used in the analysis of disciete b
logical data are statistically interpretable. Consider, éxample,
the identification of significantly enriched GO terms in a eét
genes. For a given term, the binary variablgg),( one for each

a binary random variable indicating the existence of therezor
sponding path in the underlying regulatory network. Cheatthe
frequency of multipath{T;, , T3, , ..., T3, } is equal to the sum of
the realizations of these random variables. Betbe the set of
these random variables. Now, without loss of generality)siter
pathway{Tr,T;,, ..., T3, }, such thatl'’» is a parent off;, , i.e,
G(Ti,) C G(Tp). Then, for each gengpr € G(Tp) \ G(T},),
there are multiple additional random variables, each feg oh
{gP, gjs, .-, gj, }- LetY be the set of these random variables. In
this setting, the definition of statistical interpretatyildirectly app-
lies. If all paths of the sorfgr, gj,, -.., g5, } €Xist in the underlying
regulatory network, then the pathwd{f’r,T;,, ..., T;, } is more
significant thar{7;, , Ti,, ..., T3, }. If none of them exist, then the
pathway containing the child is more significant. Applyingeb-
rem 1, we conclude that a statistically interpretable fiom;tthat
quantifies the significance of the frequency of a multipattihie
functional attribute network, cannot be monotonic withpess to
GO hierarchy.

The example in Figure 3 illustrates this point. Here, bBBth and
T1- are parents of ;. Since all genes that are notTh but in 73,
regulateTs, the regulatory effect ofi; on 75 is more significant
than that ofT;. Since none of the genes absenfinbut present in
T12 regulateTs, the regulatory effect of12 on T3 is less signifi-
cant than that of’;. Thus, any statistically interpretable measyire
should satisfyf(Ty1 — T3) < f(Th — T3) < f(Tia — T3),
which violates monotonicity. Note also that frequency, ethis
monotonically non-decreasing with respect to height (jnity to
root) in GO hierarchy, is not statistically interpretable¢d 77 —
Ts) = ¢(Tre — Ts).

This result can be interpreted as follows. GO hierarchy dsfm
combinatorial space of resolution for pathways of funcioattri-

gene X € X), indicate whether the gene is associated with thebutes. In other words, a pathway may be generalized or djzeda

term (X = 1). Adding a new geneY = {Y'}) to this set will
improve the significance of enrichmenf(k) < f(x Uy)) if the
new gene is associated with the terii & 1). If not (Y = 0),
the enrichment of the term in the new set will be less significa

by replacing a node (GO term) in the pathway with one of itssanc

stors or descendants in the GO DAG. Since this can be done for

each node in the pathway, the size of this space is expohantia
pathway length. However, as demonstrated above, the signdé

(f(x) > f(xUy)). Indeed, existing methods and statistical mea-of a pathway fluctuates in this space. Consequently, alifgignt

sures for this problem demonstrate this property (Hstead., 2005;
Grossmanret al., 2006).

pathways cannot be efficiently identified using traditionauctive
techniques, by starting from the highest (lowest) resoiuth GO

Now we show that, in contrast to approximations that do nothierarchy and pruning out coarser (finer) terms in chunks.

take into account the size of the sample spazg,(frequency),
statistically interpretable measures of significance dbopussess
monotonicity.

THEOREM 1. Let f be a monotonically nondecreasing (nonin-
creasing) functionj.e,, foranyX C Z andx C z, f(X = x) <
f(Z =z) (f(X =x) > f(Z = z)). Thenf is not statistically
interpretable.

PrROOF. Without loss of generality, assumeis nondecreasing.
Let Y be a set of binary random variables, apde a set of cor-
responding observations, such that € y, y = 1. Sincef is
monotonically nondecreasing, we hafeX = x) < f(XUY =
x Uy). This contradicts conditio(ii) in Proposition 1. |

Monotonicity with respect to GO hierarchyWe now show that
this result directly applies to the monotonicity of usefigrsfi-

Alternate approaches to this problem are necessary, ngt onl
in the context of significant pathway identification, butcatsher
combinatorial problems in systems biology that involveiehical
annotations. One possible approach is to develop a meafsstiaio
stical significance that admits a tight bound on the signifiesof a
pathway in terms of the frequencies of pathways that are &freeh
(lower) GO resolution. The discussion above clearly dermates
that it is not straightforward to do so. Indeed, the stai@tmodel
we introduce in the next section does not easily lead to sigti t
bounds, since it emphasizes tm@dularity of a pathway to assess
its significance. Consequently, in our implementation aRNDA,
we use the most specific GO terms as the default resolutiore-De
lopment of measures and methods that effectively pruneants pf
the GO space remains an open problem.

Monotonicity with respect to pathway lengthWe apply Theorem 1

cance measures with respect to the GO hierarchy. Consider ao the multipath space of a functional attribute netwoik,, to

ordered set of GO term§I;,,T;,, ..., T3, }. For any ordered set
{951+ 9jo> - gjp } SUCh thatg;, € G(T3,) for 1 < r < Ek, define

the relationship between a multipath and its subpaths. Asrée
a multipath is represented by a set of binary random vaable
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each corresponding to one of its potential occurrenceidlfitioss
of generality, consider multipatid,, = {7;,,T,,..., T3, } and
Mp—1 ={T5,, Ty -
1T, do not form a superset of those that repre$ént, . Rather, they
areextension®f them, as defined below:

DEFINITION 5. Extension.Given a seiX, an extensiorZ of X,
denotedZ > X, is defined as follows. Eac € X, is attached to
asubseZx C Z. EachZ € Z is attached to exactly on& € X,
i.e,forany Xy, X € X,Zx, NZx, = 0.

Each potential occurrence @f is a superpathof exactly one
potential occurrence di;,_; and there may be multiple such occur-
rences ofll; that correspond to a particular occurrencellpf_; .
Therefore, the set of random variables that reprefenform an
extension of the set of random variables that repreBent; .

PROPOSITION2. Statistical Interpretability w.r.t. Extension.
ConsiderX, x, and f(X = x) as defined in Proposition 1. Let

Motivating example. We illustrate the notion of the significance of
coupling between regulatory interactions using the reguanet-

, T3, _, }. The random variables that represent work and its corresponding functional attribute networkwgh in

Figure 2. In this exampley(T1 — T2) = ¢(T> 1 T3) = ¢(T> —
T.) = 2, i.e, regulatory interactiondy — T», T> - T3, and
T» — Ty occur twice. Furthermore, regulatory pathway (multi-
path in the functional attribute networky — 7> - T3 occurs
four times,i.e, ¢(T1 — T> 4 T3) 4. Observe that, given
the frequencies ofty — T» andT> - T3, this is the maximum
valuep(Ty — T> - T3) can take. In other words, any gene with
annotationT», which is up-regulated by @; gene, always down-
regulates dl’; gene. This observation suggests tHat, plays an
indirect, but important role in the regulation df. On the contrary,
o(Th — T> — Ti) = 2, since gengys with annotationT> up-
regulates &-gene (), but it is not regulated by @;-gene. These
observations suggest that the coupling between regulattasacti-
onsTy — T» andT> - T3 is stronger than the coupling between
Ty — T> andT> — Ty. In other words, the pathwa§, — T» - T3

Z > X and letz > x be the respective observation set. A function is more likely to bemodular compared td’ — 75 — T4.

f is statistically interpretable with respect to extensibit satisfies
the following conditions:

(i) Ifforall z € xsuchthatr = 1, z = 0V z € z,, then
fX=x)< f(Z=12),
(i) Ifforall x € xsuchthatr = 1, 2 = 1V 2z € z,, then

f(X=x)> f(Z=2).

We develop a statistical model that evaluates the modylafit
regulatory pathways based on the coupling between thelidibgi
blocks. For each pathway, our model assumes that the freguen
of the building blocks of a pathway are knowirg., constitute the
background distribution. We quantify the statistical #igance of
a pathway with the conditional probability of its frequerigsed on
this background.

Baseline model. To quantify the significance of a pathway of

Eachz = 1 corresponds to an occurrence of the correspondingshortest lengthife., a single regulatory interaction), we rely on a

pathway. Consequently, statistical interpretability hwiespect to
extension of a pathway requires the following. If for all ao@nces
of IT;_4, all corresponding potential occurrencedbf exist in the
network, therIl, is statistically more interesting thdfy, . If none

of them occurs, thefl,_; is more interesting.

COROLLARY 1. Let f be a monotonically nondecreasing (nonin-
creasing) function with respect to extensioa, for anyZ > X and
2> x, (X =x) < f(Z =2) (f(X = x) > f(Z = 2)). Thenf
is not statistically interpretable with respect to extemsi

The example shown in Figure 1 illustrates this result. Irhbumft
the scenarios shown in Figure 1(a) and )l% — T2) = ¢(T> —
T5) = 3. In (@), ¢(Tn — T> — T3) = 9, i.e, condition(i) in
Definition 2 (all potential occurrences @i — T» — T3, given the
occurrences ofy — 75, exist in the network), hence the pathway
T, — T» — T35 is more interesting than both, — T» andT: —
Ts. In (b), on the other handy(7hy — 7> — T5) = 0 (condition
(i) holds), so botly — T andT> — T35 are more interesting than

Ty — Ty — T3. This discussion motivates the statistical model we

present in the next section.

Statistical Model for Pathways of Functional Attributes

We present a novel statistical model for assessing thefisignce
of the frequency of a multipath in a functional attributewnetk.
In this approach, the “interestingness” of a pathway is ciased
with its modularity; i.e., the significance of the coupling of its buil-
ding blocks. In statistical terms, this is achieved by ctoding
the distribution of the frequency (modeled as a random kl)a

reference model that generates a functional attributear&tvr his
model takes into account (i) the degree distribution of thdeu-
lying gene network, as well as (ii) the distribution of thenmher

of genes associated with each functional attribute, basethe
independent edge generation paradigm commonly used in-mode
ling networks with arbitrary degree distribution (Chuetgal., 2003;
ltzkovitz et al,, 2003). Note that this model is better suited to mul-
tigraphs than simple graphs (King, 2004). We refer to thislehas
thebaseline modeland denote iB.

The baseline model is defined by a set of parameters, andispeci
the expectedhultidegreeof each node in the functional attribute net-
work. Here, the multidegree of a node in a multigraph referthe
number of multiedges incident to that node. Given gene eggoy
network G(Vg, Vi), functional attribute set/», and annotation
A(Va, Vr), the expected in-degre®(T;) and out-degreé(T;) of
a functional attributd; € Vx are estimated as follows:

B(T,) = > S(T.Ty), 6 = §(T7) = > #(IiTy),

T;eVR T;eVp
1)

where we denote the estimate of a parametey . Note also that,

if fis afunction ofx, we usef; to denotef(z;) whenever appro-
priate. Given these parametei8,generates a functional attribute
network as follows: there is a pool pbtential edgeshat contains
(3:6; potential edges between each pair of functional attribiites
andT}. The size of the pool is given byx = ZTi,Tjevp Bid;.A
total ofn edges are drawn from this pool, independently and without
replacement, where is equal to the number of edges in the obser-

=

of a pathway on the frequency of its subpaths (modeled as fixeded functional attribute network,e, n = >, 8; = Zj 0. Let

parameters).

B; = B(T;) and D; = D(T;) denote the random variables that
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Fig. 4. Model testing whether the frequency of pdth — 7% — T3, given
¢12 and ¢a3, is significant. (a) Pool of possiblé; 7> and 7773 edges.
There arep1 ¢2 = 6 andgpap3 = 4 possiblel’ T> andT) T3 edges, respec-
tively. (b) A possible pair of edges that corresponds to h.@&) A possible
pair of edges that does not correspond to a pathp{g)= 2 7 7% edges and

p-value of the coupling betwed, ; andIl; ; is defined as follows:
Prjk = P(Prk > 01k|Prj = ¢1,5, Pk = dj).  (4)

Our model for the distribution o, i, given ¢1; and ¢; %, is
illustrated in Figure 4. Assume that a pool contains all fes
occurrences of multipath§T;, , Ts, ..., T, } and{T;;, T, ..., Ty, }.
Clearly, there areni ; = [[J_, ¢;, andm; = Hif:]. ¢i, poten-
tial occurrences of each multipath. This is shown in Figui@).4
Now consider a pair of paths, one corresponding to a potentia
occurrence ofl; ;, the other toll; ;. Such a pair corresponds to
a path,i.e., an occurrence dfl; , only if the second path origina-
tes in the port in which the first one terminates. This is thated
in Figure 4(b) and (c). Since there ae ; and ¢;  occurrences
of IT;,; andII; x, respectively, the problem is formulated as fol-
lows: we drawe, ; paths fromm; ; potential occurrences al; ;
and ¢, paths fromm; ; potential occurrences dil; , forming
1,505, pairs. What is the probability that in at least . of these
pairs, the port ofT; will be common?

We approximate this probability using our result on the baira

do3 = 2 TuT; edges are randomly selected from the pool. (e) A possible®f dense subgraphs (Koyutiekal, 2006a) and Chvatal's bound on

configuration of selected edges. In this casgs = 2.

correspond to the in and out degreegbfn the generated network.
Then, we have

Ze Be

E[B;] = Zﬁidj% =B 253' 72“_ 55, Bi (2

and similarly E[D;] = ¢;. In other words, the expected values o
multidegrees in the generated network mirror the spedidicat

Significance of a regulatory interaction.Let ®(II) denote the
random variable representing the frequency of pathilain the
generated functional attribute network. Cleady, = ®(7;7;) is
a hypergeometric random variable with parametargnumber of
items),3;6; (number of good items); (number of selected items),

hypergeometric tail (Chvatal, 1979). In order to applystneesults,
we resolve dependencies assuming that the selected pashapai
independent from each other. Then, lettijg= 1/¢; be the pro-
bability that a given path pair will go through the same gend a
t1jk = 1,6/ 61,5051 be the fraction of observed paths among alll
existing pairs, we obtain the following bound:

Pk < exp(@1,;056He; (t1,55)), (5)
whereH,(t) = tlog £+ (1 —t) log =2 denotes weighted entropy.

f This estimate is Bonferroni-corrected for multiple tegtine,, it is

adjusted by a factor df[}_, | UWGTM_ Flge)l.

NARADA: A Software for Identification of Significant
Regulatory Pathways

Based on the above statistical model, we develop algorithnas
a comprehensive software tool, ARADA, for projecting gene
regulatory networks on the functional attribute domain.

and¢;; (number of selected good items) (Feller, 1968). Hence, the The input to MRADA consists of three files: (i) a gene regula-

p-value of a regulatory interactiofi;7; in the observed network,
i.e., the probability of observing at least; interactions between
genes associated wiffy and genes associated with, is given by

()

()

Significance of a pathway.We now present a statistical model
to assess the statistical significance of a pathway of fonati
attributes, which assumes a background distribution basethe
occurrence of the building blocks of a pathway. [Et: denote the
path{T;,, Ti,,..., T3 }. Forl < j < k, we want to evaluate the
significance of the coupling between pathwdys; andIl; . In
other words, we want to understand how strong a conclusioneof
sort “If a genege € G(T3,) is regulated through a chain of regu-
latory interactions characterized bl ;, then this gene is likely to
regulate &;, gene through pathwaly; ;" (or vice versa) can be.

min{ﬁiéj,n}

>

l=dij

pij = P(®i; > ¢45|B) = (3)

tory network, in which the source gene, target gene, and thedem
of interaction are specified for each regulatory interamt{@) spe-
cification of the functional attributes and their relatiqesy, Gene
Ontologyobo file), and (iii) annotation file that specifies the map-
ping between genes and functional attributea\RNDA currently
handles three types of queries:

e Q:: Given a functional attribut@&’, find all significant pathways
that are regulated by (originate from) genes that are aessati
with T'.

e Q: Given a functional attributé&’, find all significant pathways
that regulate (terminate at) genes that are associatedWwith

e Q3: Given a sequence of functional attribugs, T, , ..., T5, ,
find all occurrences of the corresponding pathway in the gene
network and determine its significance.

A pathway is identified as being significant if jisvalue is less than
the criticala-level, a user defined parameter.

To achieve this, we assume a reference model, in which the NARADA delivers near interactive query response using a novel,

frequency of pathway$l: ; andII;  is establishedr-priori. Let
®, 1, and¢; i, denoted(I1; ) and¢(I1; ), respectively. Then, the

biologically motivated pruning technique. We call a pativséon-
gly significantif all of its subpaths are significant. In biological
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Table 1. Total number of significant pathways found by RaDA onE. coli
transcription network for various path lengths.

Pathway length 2 3 4 5
All significant pathways 427 580 1401 942
Strongly significant pathways 427 208 183 142
Short-circuiting common terms184 119 3 1

terms, a strongly significant pathway is likely to corresphda a
significantly modular process, in which not only the buigliiocks
of the pathway, but also its constituent building blocks tghatly
coupled. In the context of queries implemented inRRMDA, these
subpaths are limited to those that originate from (ternairsd) the
query term. The option for searching strongly significarthpas
also available in MRADA.

The main motivation in identification of significant reguat
pathways is understanding the crosstalk between diffgrentes-
ses, functions, and cellular components. Therefore, fomstand

processes that are known to play a key role in gene regulation

(e.g, transcription regulator activity or DNA binding) may ol@ad
the identified pathways and overwhelm other interestingepas.
However, genes that are responsible for these functiontiketg
to bridge regulatory interactions between different psses (Lee

et al, 2002), so they cannot be ignored. For this reason, such G

terms are short-circuited,e., if processT; regulatesT;, which

GO:0006310

GO:0006350 =G0:0016310

GO:0015689
fis nNuoABEFGJKLMN

hyfBDEFGI

ihfAB fhiA

hycCEG

tdcA tdeD

(@)

GO:0006350:
G0:0045892 GO:0009296 G0:0006928

GO:0000160
GO:0045893

hdfR flgBCEFGHIJ

IrhA

fur flhcD
rcsAB

ompR fiDEFGHJLMN

(b)

Fig. 5. Sample significantly overrepresented pathways in Ecofistep-
ion network. (a) DNA recombinatior- transcription— phosphorylation

) transcription—| flagellum biogenesis— cell motility. The pathways in
functional attribute space are shown on the upper panéi,dbeurrences in

is a key process in transcription, aifg regulates another process e gene network are shown on the lower panel.

Ty, then the pathwa{; — T; — T} is replaced with regulatory

interactionT; — Tj.

RESULTS AND DISCUSSION

We test NRADA comprehensively on th&. coli transcriptional
network obtained from RegulonDB (Salgaét al., 2006). The
release 5.6. of this dataset contains 1364 genes with 3Thfare
tory interactions. 193 of these interactions specify degutation.
We separate these dual regulatory interactions as up ana Ggu-
latory interactions. We use Gene Ontology (Ashbuseteal., 2000)
as a library of functional attributes. The annotatiorEofcoli genes
is obtained from UniProt GOA Proteome (Camenal, 2004).

paths of length 4. Strongly significant pathwalys,, those obtained
by extending only significant pathways, compose a signifipan-
tion of the highly significant pathways. This observationggests
that significantly modular pathways are also likely to be posed
of significantly modular building blocks.

Discussion. One of the prominent features of the detected signi-
ficant pathways is that a large number of them begin with terms

relating to transcriptional and translational regulatidnile ending
in other cellular processes (Figure 5). This can be expiainyethe
fact that the network consists of a set of transcriptiondagenes

Using the mapping provided by GO, the gene network is mappe@nd set of genes regulated by them. Therefore, most of theareg
to functional attribute networks of the three name spaceG@n tory pathways of length 3 or more have to begin at or flow thioug
Mapping to the biological process space provides maximwereo this set of genes annotated with processes relating toctigtien,
age in number of genes annotated, 881 genes are mapped to omanslation, and regulation thereof. Pathways involvitigeo pro-
or more of 318 process terms. We discuss here results obithine cess terms occur with lower frequency, but most of them agkelyi

this mapping only. Results relating to molecular functiansl cel-
lular components, as well as comprehensive results on pgthof
biological processes, are available at theRMDA website.

significant.

Samples of pathways obtained are shown in Table 2. Some

pathways like (sensory perception| transcription— transport)

We use MRADA to identify all significant forward and reverse occur frequently and may constitute a common mechanisnefur-r

pathways of length 2 to 5. In order to identify these pathsruve
queriesy; andQ. with a criticala of 0.01 on all 318 biological pro-
cesses. The number of pathways obtained using combinatiohs
algorithmic options described in the previous section amvs in

lation of transport related activities. Parts of the siguaifit pathways
that regulate phosphorylation via genes involved in trepgon and

DNA recombination are shown in Figure 5(a). As genes inwblve
in transcription are abundantly present in the networki pathe

Table 1. On a Pentium M (1.6GHz) laptop with 1.21GB RAM the pathway DNA recombination— transcriptior) occurs rarely 12

brute-force approach takes on average 0.5 seconds perfqupath
length 2, to 12 seconds per query for paths of length 5. Fongly
significant paths, it takes less than 2 seconds per queryatbs pf
length 5, while for shortcutting terms it is 8 seconds perrgder

times) and is not significant, but i6 of the 12 times it occurs,
the genes involved in transcription regulate phosphapnatThe
fis transcriptional regulator is responsible for regulatidmaoA-
N operon (Wackwitzet al, 1999), while thefhlA transcriptional
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Table 2. Selection of significantly overrepresented pathways itledtby NARADA on E. coli transcription network.

Frequency p-value Pathway

217 2.7E-49 sensory perceptier} transcription— transport

64 7.1E-32 regulation of translation| DNA recombination— transport

50 2.0E-24 regulation of translation] DNA recombination—| generation of precursor metabolites and energy
45 1.1E-23 molybdate ion transpe#t sensory perception| metabolic process

34 1.6E-8 two-component signal transduction system (gdigtay)—| transcription— sensory perception

36 9.1E-8 transcription-| flagellum biogenesis~ chemotaxis

37 6.7E-5 two-component signal transduction system (gimgay)— transcription— cell motility

6 6.2E-3  sensory perception| regulation of transcription, DNA-dependent peptidoglycan catabolic process
8 6.2E-3  translatior-| regulation of transcription, DNA-dependent detection of virus

8 45E-3  glcolysis— transcription— amino acid biosynthetic process

G0:0017004

activator regulates thayf locus (Hopperet al, 1994; Skibinski

et al, 2002). Indeed, it is observed that the integration host fac £0:0042128
tor (ihfA,ihfB) affects the regulation of these phosphorylation related £0:0006118
genesiuoA-N, hyf hyxdirectly and indirectly (Hoppest al, 1994; G0:0006120
Nassekt al,, 2002). G0:0015689 G0:0006355 [££/4G0:0006118

In Figure 5(b), significant pathways that regulate cell fitgtare G0:0000160 G0:0015675
shown. This is part of a response to a query of tgpeThe flnD EOE0AEIE G0:0015886
operon that encoddthC andflhD has been shown to act as positive P G0:0008535
regulator of flagellar regulorii( flg) (Liu and Matsumura, 1994). COT00EEST G0:0015740
The flagellar master operdthDC, in turn, is tightly regulated at 50017608 G0:0016485
the transcriptional level byscAB, fur, ompR(Ko and Park, 2000; G0:0006461
Lehnenet al, 2002; Francez-Charlat al, 2003). The output of
NARADA captures this indirect regulation of flagellar expression NUOABEFGHIJK  narGHIJK fdnGHI nirBCD
perfectly. hcPR

moaABCDE torAC
/\ dmsAB

Case Study: Regulatory Network of Molybdate lon Transport. R narL /‘In —
Figure 6 shows all significant paths of maximum length 3 ratpd \I'
by molybdate ion transport. The genes associated with rdatgb / \\\\\/nﬁE norviY
ion transport arenodEand the operomodABCD but it has been °°mAB°DEFHL e \femhybAB

observed that the gemeodEdown-regulates the operanodABCD
(McNicholaset al, 1997), and the operon does not regulate any
other gene. The three pathways at the bottom of the figurehare t
only significant paths of length 2 originating at molybdate frans- ~ Fig. 6. Direct and indirect regulation of various processes by e ion
port. As can be seen on on the upper side of the figure (paths dfansportand the corresponding gene network.

length 3), molybdate ion transport promotes and suppressesis

processes indirectly, through DNA-dependent regulatibiran-

scription, two-component signal transduction system, itiite regulatory effect on several other processes with the iomak
assimilation. It is important to note that direct regulatiof these  associations afarL.

intermediate terms by molybdate ion transport is not sigaift An interesting observation is that, even though the regnas
by itself. By extending the search beyond pairwise intéoast mediated by the same gene, different biological processss-a
NARADA is able to capture these significant indirect interactionsciated withnarL are found to mediate the regulation of different

oppABCDF  napABCFGH nikBCDE

successfully. processes. Consider the paths molybdate ion transpdvto com-
The paths of length 2 mirror the direct regulatiomedaABCDE  ponent signal transductior| cytochrome complex assembly (1)
operon (McNicholasgt al.,, 1997) andbppABCDFoperon (Tat al., and molybdate ion transport nitrate assimilation-| cytochrome

2005) bymodE FurthermoremodEindirectly regulates cytochrome complex assembly (2). Even though the underlying genes fin bo
complex assemblgcmoperon (Overtoret al., 2006), electron trans-  pathways are identical, the significance values assign&thimapA
portnapoperon (McNicholas and Gunsalus, 2002), nitrate assemblyo each of them is different (one is found to be significantlavttie
nar operon (Selfet al, 1999), and mitochondrial electron trans- other is not). Further inspection reveals that the regnjatterac-
port nuo operon (Bongaertst al., 1995; Overtoret al., 2006). All tion molybdate ion transport- two component signal transduction
these indirect regulations occur through genes involvespira-  occurs only twice in the entire network, one of whighpdE —
tory nitrate reductasearXL (Tao et al, 2005). In the RegulonDB  narL, occurs in the context of (1). Similarly, two component sign
network, we observe thatodEindeed regulatesarlL, which regu-  transduction—| cytochrome complex assembly occurs 9 times, 8
lates other genes. ARADA associates the mediation afodEs of which, narL —| nrfE,ccmABCDEFH occur in the context of
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(). On the other hand, molybdate ion transpertnitrate assimi-
lation occurs 3 times in the complete network and is obseovee
in the context of (2), and only 8 of 15 occurrences of nitrasi-a

milation —| cytochrome complex assembly are associated with (2)

Furthermore, there are 43 genes in the network that areiatsbc
with two component signal transduction, while there are 4<oa
ciated with nitrate assimilation. Consequently, statatianalysis

suggests that a gene involved in two component signal teemsd

tion needs to be regulated by a molybdate ion transport talaiesy
cytochrome complex assembly. On the other hand, nitratméas
tion may regulate cytochrome complex assembly with andawith
the presence of molybdate ion transport gene regulatief.ifehe-
refore, the modularity of the indirect suppression of ciitoene

complex assembly by molybdate ion transport through two-com Ko, M. and Park, C. (2000).

ponent signal transduction is found to be stronger thantktinatigh
nitrate assimilation.

CONCLUDING REMARKS

In this paper, we introduce the notion of statistically gigant
regulatory pathways of functional attributes and provid®ranal
framework for projecting regulatory networks from genecspéo
functional attribute space. We demonstrate the hardnebe oésul-
ting general problem in terms of non-monotonicity of intetable
statistical measures. We propose a statistical model foctior
nal attribute networks that emphasizes the modularity tiveays
by conditioning on its building blocks. We present a compreh

sive software tool, MRADA, based on the proposed models and

methods, and validate results obtained fromEheoli transcription
network.
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