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ABSTRACT
Motivation: Standardized annotations of biomolecules in interaction
networks (e.g., Gene Ontology) provide comprehensive understan-
ding of the function of individual molecules. Extending such annotati-
ons to pathways is a critical component of functional characterization
of cellular signaling at the systems level.
Results: We propose a framework for projecting gene regulatory net-
works onto the space of functional attributes using multigraph models,
with the objective of deriving statistically significant pathway annotati-
ons. We first demonstrate that annotations of pairwise interactions do
not generalize to indirect relationships between processes. Motiva-
ted by this result, we formalize the problem of identifying statistically
over-represented pathways of functional attributes. We establish the
hardness of this problem by demonstrating the non-monotonicity of
common statistical significance measures. We propose a statistical
model that emphasizes the modularity of a pathway, evaluating its
significance based on the coupling of its building blocks. We com-
plement the statistical model by an efficient algorithm and software,
NARADA , for computing significant pathways in large regulatory net-
works. Comprehensive results from our methods applied to the E.
coli transcription network demonstrate that our approach is effective
in identifying known, as well as novel biological pathway annotations.
Availability: NARADA is implemented in Java and is available at
http://www.cs.purdue.edu/homes/jpandey/narada/.
Contact: Jayesh Pandey, jpandey@cs.purdue.edu.

INTRODUCTION
Gene regulatory networks represent powerful formalisms for mode-
ling cell signaling. These networks are inferred from gene expres-
sion, as well as other sources of data, using various statistical and
computational methods (Friedmanet al., 2000; Husmeier, 2003).
Recent studies on networks of specific organisms show that inter-
actions between genes that take part in specific pairs of biological
processes are significantly overrepresented (Leeet al., 2002; Tong
et al., 2004). Generalizing such observations to pathways of arbi-
trary length may allow identification of standardized pathways,
enabling creation of reference databases of direct and indirect inter-
actions between various processes. Knowledge of such pathways is
useful, not only in general understanding of the relationship between
cellular processes at the systems level, but also in projecting existing
knowledge of cellular organization of model organisms to other
species. Increasing availability of species-specific interaction data,
coupled with attempts aimed at creating standardized dictionaries
of functional annotation for biomolecules provide the knowledge
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base that can be effectively used for this purpose. What is lacking
is a comprehensive set of tools that combine these two sources of
data to identify significantly over-represented patterns of interaction
through reliable statistical modeling with a formal computational
basis.

In this paper, we introduce the notion offunctional network
characterization, derived from a gene regulatory network and asso-
ciated functional annotations of genes. We use the Gene Onto-
logy (GO) (Ashburneret al., 2000) for annotations, however, our
methods themselves generalize to other networks and annotations.
Functional network characterization is based on theabstractnotion
of regulatory interactions between pairs of functional attributes (as
opposed to genes). In this context, we demonstrate that methods
for identifying significant pairwise annotations do not generalize
to pathway annotations. We introduce the problem of identify-
ing statistically over-representedpathwaysof functional attributes,
targeted at the identification of chains of regulatory interactions bet-
ween functional attributes. We study the hardness of this problem,
focusing on the non-monotonicity of commonly used statistical
significance measures. We show that the problem is hard alongtwo
dimensions: (i) the pathway space of the functional attribute net-
work, and (ii) the space of functional resolution specified by GO
hierarchy. Emphasizing the modularity of a pathway to assess its
significance, we propose a statistical model that focuses onthe coup-
ling of the building blocks of a pathway. We use this statistical
model to derive efficient algorithms for solving the pathwayanno-
tation problem. Our methods are implemented in a web-based tool,
NARADA which provides an intuitive user and data interface.

Comprehensive evaluation of NARADA on anE. coli transcrip-
tion network from RegulonDB (Salgadoet al., 2006) shows that
our method identifies several known, as well as novel pathways,
at near-interactive query rates. Note that the current knowledge
of regulatory networks is incomplete, and limited to a few model
organisms. Therefore, the application of our method on currently
available data does not provide a comprehensive library of regula-
tory network annotation. On the other hand, the partial annotation
provided by our method forms a useful basis for extending our
knowledge of regulatory networks beyond well-studied processes
and model organisms.

BACKGROUND AND MOTIVATION
Results from previous studies.Leeet al. (2002) study theS. cere-
visiaetranscription regulation network with a view to understanding
relationships between functional categories. They observe that tran-
scriptional regulators within a functional category commonly bind
to genes encoding regulators within the same category (e.g., cell
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Fig. 1. Pairwise assessment of regulatory interactions between functio-
nal attributes may result in identification of non-existentpatterns. Two
regulatory networks are shown in (a) and (b). The nodes are labeled by
corresponding genes and each gene is tagged with a set of functional attri-
butes. The network of functional attributes resulting fromboth networks,
considering only pairwise interactions, is shown in (c).

cycle, metabolism, environmental response). They also report that
many transcriptional regulators within a functional category bind to
transcriptional regulators that play key roles in the control of other
cellular processes. For example, cell cycle activators areobserved to
bind to genes that are responsible for regulation of metabolism, envi-
ronmental response, development, and protein biosynthesis. Tong
et al. (2004) identify putative genetic interactions in yeast viasyn-
thetic genetic array (SGA) analysis and investigate the functional
relevance of their results in the context of GO annotations.They
construct a network of GO terms by inserting an edge between any
pair of terms that arebridged by a significant number of interac-
ting gene pairs. Here, two GO terms are said to be bridged by an
interaction if one of the interacting genes is associated with one
of the terms, and the other gene with the second term, but neit-
her is associated with both terms. They show that the resulting
network is clustered according to underlying biological processes,
while some biological processes buffer one another. For example,
microtubule-based functions buffer both actin-based and DNA syn-
thesis or repair functions, suggesting coordination of these functions
through interaction of various genes.

Approach. Establishing functional relationships from gene inter-
actions is essential to understanding functional organization of a
cell. Current investigations are limited to case-specific studies that
generally focus on validation or evaluation of results through sim-
ple statistical analyses – yet they provide significant insights (Lee
et al., 2002; Tonget al., 2004; Gamalielssonet al., 2006). Com-
putational tools that are based on sophisticated abstractions and
customized statistical models are likely to yield novel insights. The
basic approach for integrating existing knowledge of gene networks
and functional annotations is to project the network in thegene
spaceonto thefunctional attribute spacethrough mapping of genes
to attributes as specified by the annotation. A simple methodfor
achieving this annotates each gene with its function and identifies
overrepresented interacting annotations. This method yields intere-
sting insights, as illustrated by Tonget al. (2004) in the context of
synthetic genetic arrays. This model, however, does not generalize
beyond pairwise interactions since each interaction between a pair
of functional attributes is within a specific context (a different pair
of genes) in the network, as illustrated by the following example.

Fig. 2. (a) A sample gene regulatory network and the functional annotation
of the genes in this network. Each node represents a unique gene and is
tagged by the set of functional attributes attached to that gene. Activator
interactions are shown by regular arrows, repressor interactions are shown
by dashed arrows. (b) Functional attribute network derivedfrom the gene
regulatory network in (a). In this multigraph, nodes (functional attributes)
are represented by squares and ports (genes) are represented by dark circles.

Motivating example. Two regulatory pathways are shown in
Figure 1 – each node is identified by its corresponding gene (gi)
and tagged by the functional attribute (Tj) associated with the gene.
In Figure 1(a), genesg1, g2, andg3 indirectly regulate genesg5,
g6, andg7 through geneg4. In Figure 1(b), the network is isola-
ted and there is no indirect regulation. Now assume the network
of functional attributes derived from the simple method described
above, separately for each gene network. For both networks,since
all genes associated with functional attributeT1 regulate a gene with
T2, one may conclude thatT1 regulatingT2 is significant. A simi-
lar conclusion follows for the regulatory effect ofT2 on T3. If only
pairwise interactions are considered, we derive the same network
of functional attributes from both genetic networks (Figure 1(c)).
This network clearly suggests that functional attributeT1 indirectly
regulatesT3 throughT2. This is indeed a correct observation for the
network in Figure 1(a). However, this is not true for the network in
Figure 1(b).

To address this problem, we develop a formal framework for pro-
jecting a gene network on to a network of functional attributes, using
multigraphmodels that accurately capture the context in which an
interaction occurs. Through this framework, we generalizepair-
wise interactions between functional attributes to the identification
of regulatory pathways of functional attributes.

METHODS
We now describe the biological, statistical, and computational
formalisms that underly our methods.

Formal Model for Functional Attribute Networks
A gene regulatory networkis modeled by a labeled directed graph
G(VG, EG, MG). In this network, nodesgi ∈ VG represent genes.
Directed edgegigj ∈ EG, wheregi, gj ∈ VG, represents a regula-
tory interaction between genesgi andgj . MG : EG → {+,−,±}
specifies a labeling of edges that represents the mode of regulation:
activation (+), repression (−), or dual regulation (±). A sample
gene regulatory network is shown in Figure 2. In our discussion, for
the sake of simplicity, we omit the mode of regulation and treat all
interactions as activator interactions, whenever appropriate.

Each gene in the network is associated with a set offunctio-
nal attributes. These attributes describe a functionalannotationof
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the gene,i.e., they map an individual biological entity to known
functional classes.

DEFINITION 1. Functional Annotation. Given a set of genesVG

and a set of functional attributesVF , let 2VG and 2VF denote the
power set ofVG andVF , respectively. Then, functional annotation
A(VG, VF ) = {F , G} defines mappingF : VG → 2VF andG :
VF → 2VG , such thatTj ∈ F(gi) if and only ifgi ∈ G(Tj), for
anygi ∈ VG andTj ∈ VF . The frequency ofTj , φ(Tj) = |G(Tj)|,
is equal to the number of genes that are mapped toTj .

In Figure 2(a), each genegi is tagged with the functional attribu-
tes inF(gi). For eachTj , G(Tj) is composed of the genes tagged by
Tj . We use Gene Ontology (GO) (Ashburneret al., 2000) as a refe-
rence library for annotating genes. For each gene, GO specifies the
molecular functionsassociated with it,biological processesit takes
part in, andcellular componentsit may be part of. The functional
attributes in GO, known as GO terms, are organized hierarchically
throughis a andpart of relationships. For example, ’regulation of
stereoid biosynthetic process’ is a ’regulation of stereoid metabolic
process’ and is part of ’stereoid biosynthetic process’. This hier-
archy is abstracted using a directed acyclic graph (DAG). Inthis
representation, ifTi is a, or part ofTj , thenG(Ti) ⊆ G(Tj), i.e., the
genes associated withTi form a subset of genes associated withTj .
In this case,Tj is said to be aparentof Ti. A term may have more
than one parent,i.e., G(Ti) ⊆ G(Tj) andG(Ti) ⊆ G(Tk) does not
imply G(Tj) ∩ G(Tk) = G(Tj) ∪ G(Tk). Furthermore, there is a
uniqueT0 ∈ VF with no parent, calledroot, such thatG(T0) = VG.
In the rest of this section, we use a network of functional attributes
with no constraints (e.g., GO hierarchy) on functionG. We discuss
the issue specifically relating to the GO hierarchy when addressing
the implementation of NARADA .

We model networks of functional attributes using multigraphs. A
multigraph is a generalized graph, where multiple edges areallowed
between a single pair of nodes.

DEFINITION 2. Functional Attribute Network. Given gene
regulatory networkG(VG, EG), a set of functional attributesVF ,
and functional annotationA(VG, VF ) = {F , G}, the correspon-
ding functional attribute networkF (VF , EF ) is a multigraph defi-
ned as follows. The set of functional attributesVF is also the set
of nodes inF . Each nodeTi ∈ VF contains a set of ports corre-
sponding to the set of genes associated withTi, i.e., G(Ti). Each
multiedgeTiTj is a set of ordered port pairs (edges)gkgℓ, such that
gk ∈ G(Ti), gℓ ∈ G(Tj), andgkgℓ ∈ EG.

The functional attribute network corresponding to the generegu-
latory network in Figure 2(a) is shown in Figure 2(b). This mul-
tigraph model captures the context of each interaction accurately
through the concept of ports. As illustrated in Figure 1, if asimple
graph model is used, paths that do not exist in the gene network
emerge in the functional attribute network. This is not possible in
the multigraph model, since apathmust leave a node from the port
at which it enters the node.

DEFINITION 3. Path. In functional attribute networkF (VF , EF ),
a pathπ = {(Ti1 , gj1), (Ti2 , gj2), ..., (Tik

, gjk
)} is an ordered set

of node-port pairs such that (i)Tir 6= Tis for 1 ≤ r < s ≤ k
(nodes are not repeated), (ii)gjr ∈ G(Tir ) for 1 ≤ r ≤ k, and (iii)
gjrgjr+1

∈ Tir Tir+1
∈ EF for 1 ≤ r < k (consecutive edges are

connected through the same port). The length ofπ is |π|−1 = k−1.

In Figure 2(b), {(T1, g1), (T2, g3), (T4, g6)} is a path but
{(T1, g1), (T2, g4), (T4, g6)} is not, since multiedgeT1T2 does not
contain the edgeg1g4. Note that allowingTi1 = Tik

andgj1 = gjk
,

we may also include cycles in this definition. According to the above
definition, paths are characterized by ports. While analyzing regu-
latory pathways of functional attributes, however, we are interested
in paths that are characterized by nodes in the functional attribute
network. Clearly, such pathways may correspond to multiplepaths
in the functional attribute network. Therefore, we model them using
multipaths.

DEFINITION 4. Multipath. In functional attribute network
F (VF , EF ), a multipathΠ = {Ti1 , Ti2 , ..., Tik

} is an ordered
set of nodes such that (i)Tir 6= Tis for 1 ≤ r < s ≤ k,
and (ii) there existgjr ∈ Tir for 1 ≤ r ≤ k, such that
{(Ti1 , gj1), (Ti2 , gj2), ..., (Tik

, gjk
)} is a path. The occurrence

set O(Π) of Π consists of all distinct paths that satisfy (ii) and
each such path is called an occurrence ofΠ. The frequency ofΠ,
φ(Π) = |O(Π)|, is equal to the number of occurrences ofΠ.

We use the termspathway and multipath interchangeably, to
emphasize the biological meaning of a multipath. AllowingTi1 =
Tik

, we also extend this definition tomulticycles, occurrences of
which correspond to cycles in the gene network. In Figure 2(b),
{T1, T2, T3} (also denotedT1 → T2 ⊣ T3 throughout this paper)
is a multipath with frequency four. On the other hand, multipath
T2 ⊣ T4 → T3 does not exist in this network,i.e., it has fre-
quency zero, although multiedgesT2 ⊣ T4 andT4 → T3 both exist.
Note that the distinction between activator and inhibitor interactions
is emphasized in this example for illustrative purposes, while it is
omitted in the definition for simplicity. A multipath withhigh fre-
quency is likely to be biologically interesting, since it corresponds
to a regulatory pathway of functional attributes that recurs in various
contexts in the underlying cellular organization. In orderto quantify
this biological significance, it is useful to evaluate frequency from a
statistical perspective.

Hardness of Significant Pathway Identification
Raw counts have long been used as a measure of significance –
primarily because of the resulting algorithmic simplicity. This is
a direct consequence of itsmonotonicityproperties, namely that a
subgraph (or substring/subset) of a frequent graph (or string/set) is
itself frequent (Koyutürket al., 2006b). In identification of signifi-
cantly overrepresented pathways of functional attributes, frequency
alone does not provide a good measure of statistical significance.
This is because, the degree distribution of gene regulatorynetworks
and the distribution of the frequency of functional attributes are both
highly skewed. Consequently, paths including functional attributes
that are associated with high-degree genes (e.g., molecular functi-
ons related to transcription) and those associated with many genes
(e.g., GO terms that are at coarser levels of GO hierarchy) are likely
to dominate. For this reason, a statistical measure that takes into
account these distributions is needed.

Monotonicity of common statistical significance measures.We
identify the basic properties of a useful measure of statistical
significance.

PROPOSITION1. Statistical Interpretability. Consider a setX
of binary random variables and the set of corresponding observati-
onsx, whereX = 1 for X ∈ X corresponds to an observation
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Fig. 3. Example illustrating that an interpretable measure of statistical signi-
ficance is not monotonic with respect to GO hierarchy. GO terms T11 and
T12 are parents ofT1. The regulatory effect ofT11 onT2 is more significant
than that ofT1, but the regulatory effect ofT12 is less significant.

supporting a hypothesis. Letf(X = x) be a real-valued func-
tion, used to assess the statistical significance of the collection of
observations defined byx. LetX andY be disjoint binary random
variable sets,i.e., X ∩ Y = ∅, and letx and y be the respec-
tive observation sets. A functionf is statistically interpretable if it
satisfies the following conditions:

(i) If y = 0 ∀ y ∈ y, thenf(X = x) < f(X ∪ Y = x ∪ y),

(ii) If y = 1 ∀ y ∈ y, thenf(X = x) > f(X ∪ Y = x ∪ y).

Here, without loss of generality,f(X = x) < f(Y = y) implies
that (X = x) is a more interesting observation than(Y = y).
More generally, the binary random variables characterize apattern,
and a larger set of these variables corresponds to a larger (or more
general) pattern. This property simply states that additional positive
(negative) observations should increase (decrease) our confidence
that a pattern is interesting.

Most significance measures used in the analysis of discrete bio-
logical data are statistically interpretable. Consider, for example,
the identification of significantly enriched GO terms in a setof
genes. For a given term, the binary variables (X), one for each
gene (X ∈ X), indicate whether the gene is associated with the
term (X = 1). Adding a new gene (Y = {Y }) to this set will
improve the significance of enrichment (f(x) < f(x ∪ y)) if the
new gene is associated with the term (Y = 1). If not (Y = 0),
the enrichment of the term in the new set will be less significant
(f(x) > f(x ∪ y)). Indeed, existing methods and statistical mea-
sures for this problem demonstrate this property (Hsiaoet al., 2005;
Grossmannet al., 2006).

Now we show that, in contrast to approximations that do not
take into account the size of the sample space (e.g., frequency),
statistically interpretable measures of significance do not possess
monotonicity.

THEOREM 1. Let f be a monotonically nondecreasing (nonin-
creasing) function,i.e., for anyX ⊆ Z andx ⊆ z, f(X = x) ≤
f(Z = z) (f(X = x) ≥ f(Z = z)). Thenf is not statistically
interpretable.

PROOF. Without loss of generality, assumef is nondecreasing.
Let Y be a set of binary random variables, andy be a set of cor-
responding observations, such that∀y ∈ y, y = 1. Sincef is
monotonically nondecreasing, we havef(X = x) ≤ f(X ∪ Y =
x ∪ y). This contradicts condition(ii) in Proposition 1.

Monotonicity with respect to GO hierarchy.We now show that
this result directly applies to the monotonicity of useful signifi-
cance measures with respect to the GO hierarchy. Consider an
ordered set of GO terms{Ti1 , Ti2 , ..., Tik

}. For any ordered set
{gj1 , gj2 , ..., gjk

} such thatgjr ∈ G(Tir ) for 1 ≤ r ≤ k, define

a binary random variable indicating the existence of the corre-
sponding path in the underlying regulatory network. Clearly, the
frequency of multipath{Ti1 , Ti2 , ..., Tik

} is equal to the sum of
the realizations of these random variables. LetX be the set of
these random variables. Now, without loss of generality, consider
pathway{TP , Ti2 , ..., Tik

}, such thatTP is a parent ofTi1 , i.e.,
G(Ti1) ⊂ G(TP ). Then, for each genegP ∈ G(TP ) \ G(Ti1),
there are multiple additional random variables, each for one of
{gP , gj2 , ..., gjk

}. Let Y be the set of these random variables. In
this setting, the definition of statistical interpretability directly app-
lies. If all paths of the sort{gP , gj2 , ..., gjk

} exist in the underlying
regulatory network, then the pathway{TP , Ti2 , ..., Tik

} is more
significant than{Ti1 , Ti2 , ..., Tik

}. If none of them exist, then the
pathway containing the child is more significant. Applying Theo-
rem 1, we conclude that a statistically interpretable function, that
quantifies the significance of the frequency of a multipath inthe
functional attribute network, cannot be monotonic with respect to
GO hierarchy.

The example in Figure 3 illustrates this point. Here, bothT11 and
T12 are parents ofT1. Since all genes that are not inT1 but in T11

regulateT3, the regulatory effect ofT11 on T3 is more significant
than that ofT1. Since none of the genes absent inT1 but present in
T12 regulateT3, the regulatory effect ofT12 on T3 is less signifi-
cant than that ofT1. Thus, any statistically interpretable measuref
should satisfyf(T11 → T3) < f(T1 → T3) < f(T12 → T3),
which violates monotonicity. Note also that frequency, which is
monotonically non-decreasing with respect to height (proximity to
root) in GO hierarchy, is not statistically interpretable as φ(T1 →
T3) = φ(T12 → T3).

This result can be interpreted as follows. GO hierarchy defines a
combinatorial space of resolution for pathways of functional attri-
butes. In other words, a pathway may be generalized or specialized
by replacing a node (GO term) in the pathway with one of its ance-
stors or descendants in the GO DAG. Since this can be done for
each node in the pathway, the size of this space is exponential in
pathway length. However, as demonstrated above, the significance
of a pathway fluctuates in this space. Consequently, all significant
pathways cannot be efficiently identified using traditionalinductive
techniques, by starting from the highest (lowest) resolution in GO
hierarchy and pruning out coarser (finer) terms in chunks.

Alternate approaches to this problem are necessary, not only
in the context of significant pathway identification, but also other
combinatorial problems in systems biology that involve hierarchical
annotations. One possible approach is to develop a measure of stati-
stical significance that admits a tight bound on the significance of a
pathway in terms of the frequencies of pathways that are at a higher
(lower) GO resolution. The discussion above clearly demonstrates
that it is not straightforward to do so. Indeed, the statistical model
we introduce in the next section does not easily lead to such tight
bounds, since it emphasizes themodularityof a pathway to assess
its significance. Consequently, in our implementation of NARADA ,
we use the most specific GO terms as the default resolution. Deve-
lopment of measures and methods that effectively prune out parts of
the GO space remains an open problem.

Monotonicity with respect to pathway length.We apply Theorem 1
to the multipath space of a functional attribute network,i.e., to
the relationship between a multipath and its subpaths. As before,
a multipath is represented by a set of binary random variables,
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each corresponding to one of its potential occurrences. Without loss
of generality, consider multipathsΠk = {Ti1 , Ti2 , ..., Tik

} and
Πk−1 = {Ti1 , Ti2 , ..., Tik−1

}. The random variables that represent
Πk do not form a superset of those that representΠk−1. Rather, they
areextensionsof them, as defined below:

DEFINITION 5. Extension.Given a setX, an extensionZ of X,
denotedZ D X, is defined as follows. EachX ∈ X, is attached to
a subsetZX ⊆ Z. EachZ ∈ Z is attached to exactly oneX ∈ X,
i.e., for anyX1, X2 ∈ X, ZX1

∩ ZX2
= ∅.

Each potential occurrence ofΠk is a superpathof exactly one
potential occurrence ofΠk−1 and there may be multiple such occur-
rences ofΠk that correspond to a particular occurrence ofΠk−1.
Therefore, the set of random variables that representΠk form an
extension of the set of random variables that representΠk−1.

PROPOSITION2. Statistical Interpretability w.r.t. Extension.
ConsiderX, x, and f(X = x) as defined in Proposition 1. Let
Z D X and letz D x be the respective observation set. A function
f is statistically interpretable with respect to extension if it satisfies
the following conditions:

(i) If for all x ∈ x such thatx = 1, z = 0 ∀ z ∈ zx, then
f(X = x) < f(Z = z),

(ii) If for all x ∈ x such thatx = 1, z = 1 ∀ z ∈ zx, then
f(X = x) > f(Z = z).

Eachx = 1 corresponds to an occurrence of the corresponding
pathway. Consequently, statistical interpretability with respect to
extension of a pathway requires the following. If for all occurrences
of Πk−1, all corresponding potential occurrences ofΠk exist in the
network, thenΠk is statistically more interesting thanΠk−1. If none
of them occurs, thenΠk−1 is more interesting.

COROLLARY 1. Letf be a monotonically nondecreasing (nonin-
creasing) function with respect to extension,i.e., for anyZDX and
z D x, f(X = x) ≤ f(Z = z) (f(X = x) ≥ f(Z = z)). Thenf
is not statistically interpretable with respect to extension.

The example shown in Figure 1 illustrates this result. In both of
the scenarios shown in Figure 1(a) and (b),φ(T1 → T2) = φ(T2 →
T3) = 3. In (a), φ(T1 → T2 → T3) = 9, i.e., condition (i) in
Definition 2 (all potential occurrences ofT1 → T2 → T3, given the
occurrences ofT1 → T2, exist in the network), hence the pathway
T1 → T2 → T3 is more interesting than bothT1 → T2 andT2 →
T3. In (b), on the other hand,φ(T1 → T2 → T3) = 0 (condition
(ii) holds), so bothT1 → T2 andT2 → T3 are more interesting than
T1 → T2 → T3. This discussion motivates the statistical model we
present in the next section.

Statistical Model for Pathways of Functional Attributes
We present a novel statistical model for assessing the significance
of the frequency of a multipath in a functional attribute network.
In this approach, the “interestingness” of a pathway is associated
with its modularity, i.e., the significance of the coupling of its buil-
ding blocks. In statistical terms, this is achieved by conditioning
the distribution of the frequency (modeled as a random variable)
of a pathway on the frequency of its subpaths (modeled as fixed
parameters).

Motivating example. We illustrate the notion of the significance of
coupling between regulatory interactions using the regulatory net-
work and its corresponding functional attribute network shown in
Figure 2. In this example,φ(T1 → T2) = φ(T2 ⊣ T3) = φ(T2 →
T4) = 2, i.e., regulatory interactionsT1 → T2, T2 ⊣ T3, and
T2 → T4 occur twice. Furthermore, regulatory pathway (multi-
path in the functional attribute network)T1 → T2 ⊣ T3 occurs
four times, i.e., φ(T1 → T2 ⊣ T3) = 4. Observe that, given
the frequencies ofT1 → T2 andT2 ⊣ T3, this is the maximum
valueφ(T1 → T2 ⊣ T3) can take. In other words, any gene with
annotationT2, which is up-regulated by aT1 gene, always down-
regulates aT3 gene. This observation suggests that,T1 plays an
indirect, but important role in the regulation ofT3. On the contrary,
φ(T1 → T2 → T4) = 2, since geneg4 with annotationT2 up-
regulates aT4-gene (g6), but it is not regulated by aT1-gene. These
observations suggest that the coupling between regulatoryinteracti-
onsT1 → T2 andT2 ⊣ T3 is stronger than the coupling between
T1 → T2 andT2 → T4. In other words, the pathwayT1 → T2 ⊣ T3

is more likely to bemodular, compared toT1 → T2 → T4.
We develop a statistical model that evaluates the modularity of

regulatory pathways based on the coupling between their building
blocks. For each pathway, our model assumes that the frequency
of the building blocks of a pathway are known,i.e., constitute the
background distribution. We quantify the statistical significance of
a pathway with the conditional probability of its frequencybased on
this background.

Baseline model. To quantify the significance of a pathway of
shortest length (i.e., a single regulatory interaction), we rely on a
reference model that generates a functional attribute network. This
model takes into account (i) the degree distribution of the under-
lying gene network, as well as (ii) the distribution of the number
of genes associated with each functional attribute, based on the
independent edge generation paradigm commonly used in mode-
ling networks with arbitrary degree distribution (Chunget al., 2003;
Itzkovitz et al., 2003). Note that this model is better suited to mul-
tigraphs than simple graphs (King, 2004). We refer to this model as
thebaseline model, and denote itB.

The baseline model is defined by a set of parameters, and specifies
the expectedmultidegreeof each node in the functional attribute net-
work. Here, the multidegree of a node in a multigraph refers to the
number of multiedges incident to that node. Given gene regulatory
network G(VG, VE), functional attribute setVF , and annotation
A(VG, VF ), the expected in-degreeβ(Ti) and out-degreeδ(Ti) of
a functional attributeTi ∈ VF are estimated as follows:

β̂i = β̂(Ti) =
X

Tj∈VF

φ(TiTj), δ̂i = δ̂(Ti) =
X

Tj∈VF

φ(TjTi),

(1)
where we denote the estimate of a parameterx by x̂. Note also that,
if f is a function ofx, we usefi to denotef(xi) whenever appro-
priate. Given these parameters,B generates a functional attribute
network as follows: there is a pool ofpotential edgesthat contains
βiδj potential edges between each pair of functional attributesTi

andTj . The size of the pool is given by:m =
P

Ti,Tj∈VF
βiδj .A

total ofn edges are drawn from this pool, independently and without
replacement, wheren is equal to the number of edges in the obser-
ved functional attribute network,i.e., n =

P

i
βi =

P

j
δj . Let

Bi = B(Ti) andDi = D(Ti) denote the random variables that
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Fig. 4. Model testing whether the frequency of pathT1 → T2 → T3, given
φ12 and φ23, is significant. (a) Pool of possibleT1T2 and T1T3 edges.
There areφ1φ2 = 6 andφ2φ3 = 4 possibleT1T2 andT1T3 edges, respec-
tively. (b) A possible pair of edges that corresponds to a path. (c) A possible
pair of edges that does not correspond to a path. (d)φ12 = 2 T1T2 edges and
φ23 = 2 T2T3 edges are randomly selected from the pool. (e) A possible
configuration of selected edges. In this case,φ123 = 2.

correspond to the in and out degrees ofTi in the generated network.
Then, we have

E[Bi] =
X

j

βiδj
n

m
= βi

X

j

δj

P

ℓ
βℓ

P

ℓ,j βℓδj

= βi (2)

and similarlyE[Di] = δi. In other words, the expected values of
multidegrees in the generated network mirror the specifications.

Significance of a regulatory interaction.Let Φ(Π) denote the
random variable representing the frequency of pathwayΠ in the
generated functional attribute network. Clearly,Φij = Φ(TiTj) is
a hypergeometric random variable with parametersm (number of
items),βiδj (number of good items),n (number of selected items),
andφij (number of selected good items) (Feller, 1968). Hence, the
p-value of a regulatory interactionTiTj in the observed network,
i.e., the probability of observing at leastφij interactions between
genes associated withTi and genes associated withTj , is given by

pij = P (Φij ≥ φij |B) =

min{βiδj ,n}
X

ℓ=φij

`

βiδj

ℓ

´`

m−βiδj

n−ℓ

´

`

m

n

´ . (3)

Significance of a pathway.We now present a statistical model
to assess the statistical significance of a pathway of functional
attributes, which assumes a background distribution basedon the
occurrence of the building blocks of a pathway. LetΠi,k denote the
path{Ti1 , Ti2 , ..., Tik

}. For 1 < j < k, we want to evaluate the
significance of the coupling between pathwaysΠ1,j andΠj,k. In
other words, we want to understand how strong a conclusion ofthe
sort “If a genegℓ ∈ G(Tij

) is regulated through a chain of regu-
latory interactions characterized byΠ1,j , then this gene is likely to
regulate aTik

gene through pathwayΠj,k” (or vice versa) can be.
To achieve this, we assume a reference model, in which the

frequency of pathwaysΠ1,j andΠj,k is establisheda-priori. Let
Φi,k andφi,k denoteΦ(Πi,k) andφ(Πi,k), respectively. Then, the

p-value of the coupling betweenΠ1,j andΠj,k is defined as follows:

p1,j,k = P (Φ1,k ≥ φ1,k|Φ1,j = φ1,j , Φj,k = φj,k). (4)

Our model for the distribution ofΦ1,k, given φ1,j andφj,k, is
illustrated in Figure 4. Assume that a pool contains all possible
occurrences of multipaths{Ti1 , Ti2 ..., Tij

} and{Tij
, Ti2 ..., Tik

}.

Clearly, there arem1,j =
Qj

ℓ=1
φiℓ

andmj,k =
Qk

ℓ=j
φiℓ

poten-
tial occurrences of each multipath. This is shown in Figure 4(a).
Now consider a pair of paths, one corresponding to a potential
occurrence ofΠ1,j , the other toΠ1,k. Such a pair corresponds to
a path,i.e., an occurrence ofΠ1,k, only if the second path origina-
tes in the port in which the first one terminates. This is illustrated
in Figure 4(b) and (c). Since there areφ1,j andφj,k occurrences
of Π1,j and Πj,k, respectively, the problem is formulated as fol-
lows: we drawφ1,j paths fromm1,j potential occurrences ofΠ1,j

andφj,k paths frommj,k potential occurrences ofΠj,k, forming
φ1,jφj,k pairs. What is the probability that in at leastφ1,k of these
pairs, the port onTj will be common?

We approximate this probability using our result on the behavior
of dense subgraphs (Koyutürket al., 2006a) and Chvátal’s bound on
hypergeometric tail (Chvátal, 1979). In order to apply these results,
we resolve dependencies assuming that the selected path pairs are
independent from each other. Then, lettingqj = 1/φj be the pro-
bability that a given path pair will go through the same gene and
t1,j,k = φ1,k/φ1,jφj,k be the fraction of observed paths among all
existing pairs, we obtain the following bound:

p1,j,k ≤ exp(φ1,jφj,kHqj
(t1,j,k)), (5)

whereHq(t) = t log q

t
+(1− t) log 1−q

1−t
denotes weighted entropy.

This estimate is Bonferroni-corrected for multiple testing, i.e., it is
adjusted by a factor of

Qk

j=1
|
S

gℓ∈Tij
F(gℓ)|.

NARADA : A Software for Identification of Significant
Regulatory Pathways
Based on the above statistical model, we develop algorithmsand
a comprehensive software tool, NARADA , for projecting gene
regulatory networks on the functional attribute domain.

The input to NARADA consists of three files: (i) a gene regula-
tory network, in which the source gene, target gene, and the mode
of interaction are specified for each regulatory interaction, (ii) spe-
cification of the functional attributes and their relations(e.g., Gene
Ontologyobo file), and (iii) annotation file that specifies the map-
ping between genes and functional attributes. NARADA currently
handles three types of queries:

• Q1: Given a functional attributeT , find all significant pathways
that are regulated by (originate from) genes that are associated
with T .

• Q2: Given a functional attributeT , find all significant pathways
that regulate (terminate at) genes that are associated withT .

• Q3: Given a sequence of functional attributesTi1 , Ti2 , ..., Tik
,

find all occurrences of the corresponding pathway in the gene
network and determine its significance.

A pathway is identified as being significant if itsp-value is less than
the criticalα-level, a user defined parameter.

NARADA delivers near interactive query response using a novel,
biologically motivated pruning technique. We call a pathway stron-
gly significant if all of its subpaths are significant. In biological
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Table 1. Total number of significant pathways found by NARADA onE. coli
transcription network for various path lengths.

Pathway length 2 3 4 5
All significant pathways 427 580 1401 942
Strongly significant pathways 427 208 183 142
Short-circuiting common terms184 119 3 1

terms, a strongly significant pathway is likely to correspond to a
significantly modular process, in which not only the building blocks
of the pathway, but also its constituent building blocks aretightly
coupled. In the context of queries implemented in NARADA , these
subpaths are limited to those that originate from (terminate at) the
query term. The option for searching strongly significant paths is
also available in NARADA .

The main motivation in identification of significant regulatory
pathways is understanding the crosstalk between differentproces-
ses, functions, and cellular components. Therefore, functions and
processes that are known to play a key role in gene regulation
(e.g., transcription regulator activity or DNA binding) may overload
the identified pathways and overwhelm other interesting patterns.
However, genes that are responsible for these functions arelikely
to bridge regulatory interactions between different processes (Lee
et al., 2002), so they cannot be ignored. For this reason, such GO
terms are short-circuited,i.e., if processTi regulatesTj , which
is a key process in transcription, andTj regulates another process
Tk, then the pathwayTi → Tj → Tk is replaced with regulatory
interactionTi → Tk.

RESULTS AND DISCUSSION
We test NARADA comprehensively on theE. coli transcriptional
network obtained from RegulonDB (Salgadoet al., 2006). The
release 5.6. of this dataset contains 1364 genes with 3159 regula-
tory interactions. 193 of these interactions specify dual regulation.
We separate these dual regulatory interactions as up and down regu-
latory interactions. We use Gene Ontology (Ashburneret al., 2000)
as a library of functional attributes. The annotation ofE. coli genes
is obtained from UniProt GOA Proteome (Camonet al., 2004).
Using the mapping provided by GO, the gene network is mapped
to functional attribute networks of the three name spaces inGO.
Mapping to the biological process space provides maximum cover-
age in number of genes annotated, 881 genes are mapped to one
or more of 318 process terms. We discuss here results obtained by
this mapping only. Results relating to molecular functionsand cel-
lular components, as well as comprehensive results on pathways of
biological processes, are available at the NARADA website.

We use NARADA to identify all significant forward and reverse
pathways of length 2 to 5. In order to identify these paths, werun
queriesQ1 andQ2 with a criticalα of 0.01 on all 318 biological pro-
cesses. The number of pathways obtained using combinationsof the
algorithmic options described in the previous section are shown in
Table 1. On a Pentium M (1.6GHz) laptop with 1.21GB RAM the
brute-force approach takes on average 0.5 seconds per queryfor path
length 2, to 12 seconds per query for paths of length 5. For strongly
significant paths, it takes less than 2 seconds per query for paths of
length 5, while for shortcutting terms it is 8 seconds per query for

(a)

(b)

Fig. 5. Sample significantly overrepresented pathways in Ecoli transcrip-
tion network. (a) DNA recombination→ transcription→ phosphorylation
(b) transcription−| flagellum biogenesis→ cell motility. The pathways in
functional attribute space are shown on the upper panel, their occurrences in
the gene network are shown on the lower panel.

paths of length 4. Strongly significant pathways,i.e., those obtained
by extending only significant pathways, compose a significant por-
tion of the highly significant pathways. This observations suggests
that significantly modular pathways are also likely to be composed
of significantly modular building blocks.

Discussion. One of the prominent features of the detected signi-
ficant pathways is that a large number of them begin with terms
relating to transcriptional and translational regulationwhile ending
in other cellular processes (Figure 5). This can be explained by the
fact that the network consists of a set of transcription factor genes
and set of genes regulated by them. Therefore, most of the regula-
tory pathways of length 3 or more have to begin at or flow through
this set of genes annotated with processes relating to transcription,
translation, and regulation thereof. Pathways involving other pro-
cess terms occur with lower frequency, but most of them are highly
significant.

Samples of pathways obtained are shown in Table 2. Some
pathways like (sensory perception−| transcription→ transport)
occur frequently and may constitute a common mechanism for regu-
lation of transport related activities. Parts of the significant pathways
that regulate phosphorylation via genes involved in transcription and
DNA recombination are shown in Figure 5(a). As genes involved
in transcription are abundantly present in the network, part of the
pathway (DNA recombination→ transcription) occurs rarely (12
times) and is not significant, but in6 of the 12 times it occurs,
the genes involved in transcription regulate phosphorylation. The
fis transcriptional regulator is responsible for regulation of nuoA-
N operon (Wackwitzet al., 1999), while thefhlA transcriptional
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Table 2. Selection of significantly overrepresented pathways identified by NARADA on E. coli transcription network.

Frequency p-value Pathway
217 2.7E-49 sensory perception−| transcription→ transport
64 7.1E-32 regulation of translation−| DNA recombination→ transport
50 2.0E-24 regulation of translation−| DNA recombination−| generation of precursor metabolites and energy
45 1.1E-23 molybdate ion transport→ sensory perception−| metabolic process
34 1.6E-8 two-component signal transduction system (phosphorelay)−| transcription→ sensory perception
36 9.1E-8 transcription−| flagellum biogenesis→ chemotaxis
37 6.7E-5 two-component signal transduction system (phosphorelay)→ transcription→ cell motility
6 6.2E-3 sensory perception−| regulation of transcription, DNA-dependent→ peptidoglycan catabolic process
8 6.2E-3 translation−| regulation of transcription, DNA-dependent−| detection of virus
8 4.5E-3 glcolysis→ transcription→ amino acid biosynthetic process

activator regulates thehyf locus (Hopperet al., 1994; Skibinski
et al., 2002). Indeed, it is observed that the integration host fac-
tor (ihfA,ihfB) affects the regulation of these phosphorylation related
genes (nuoA-N, hyf,hyc) directly and indirectly (Hopperet al., 1994;
Nasseret al., 2002).

In Figure 5(b), significant pathways that regulate cell motility are
shown. This is part of a response to a query of typeQ2. TheflhD
operon that encodesflhC andflhD has been shown to act as positive
regulator of flagellar regulons(fli, flg) (Liu and Matsumura, 1994).
The flagellar master operonflhDC, in turn, is tightly regulated at
the transcriptional level byrscAB, fur, ompR(Ko and Park, 2000;
Lehnenet al., 2002; Francez-Charlotet al., 2003). The output of
NARADA captures this indirect regulation of flagellar expression
perfectly.

Case Study: Regulatory Network of Molybdate Ion Transport.
Figure 6 shows all significant paths of maximum length 3 regulated
by molybdate ion transport. The genes associated with molybdate
ion transport aremodEand the operonmodABCD, but it has been
observed that the genemodEdown-regulates the operonmodABCD
(McNicholaset al., 1997), and the operon does not regulate any
other gene. The three pathways at the bottom of the figure are the
only significant paths of length 2 originating at molybdate ion trans-
port. As can be seen on on the upper side of the figure (paths of
length 3), molybdate ion transport promotes and suppressesvarious
processes indirectly, through DNA-dependent regulation of tran-
scription, two-component signal transduction system, andnitrate
assimilation. It is important to note that direct regulation of these
intermediate terms by molybdate ion transport is not significant
by itself. By extending the search beyond pairwise interactions,
NARADA is able to capture these significant indirect interactions
successfully.

The paths of length 2 mirror the direct regulation ofmoaABCDE
operon (McNicholaset al., 1997) andoppABCDFoperon (Taoet al.,
2005) bymodE. Furthermore,modEindirectly regulates cytochrome
complex assemblyccmoperon (Overtonet al., 2006), electron trans-
portnapoperon (McNicholas and Gunsalus, 2002), nitrate assembly
nar operon (Selfet al., 1999), and mitochondrial electron trans-
port nuo operon (Bongaertset al., 1995; Overtonet al., 2006). All
these indirect regulations occur through genes involved inrespira-
tory nitrate reductasenarXL (Tao et al., 2005). In the RegulonDB
network, we observe thatmodEindeed regulatesnarL, which regu-
lates other genes. NARADA associates the mediation ofmodE’s

Fig. 6. Direct and indirect regulation of various processes by molybdate ion
transport and the corresponding gene network.

regulatory effect on several other processes with the functional
associations ofnarL.

An interesting observation is that, even though the regulation is
mediated by the same gene, different biological processes asso-
ciated withnarL are found to mediate the regulation of different
processes. Consider the paths molybdate ion transport→ two com-
ponent signal transduction−| cytochrome complex assembly (1)
and molybdate ion transport→ nitrate assimilation−| cytochrome
complex assembly (2). Even though the underlying genes in both
pathways are identical, the significance values assigned byNARADA

to each of them is different (one is found to be significant while the
other is not). Further inspection reveals that the regulatory interac-
tion molybdate ion transport→ two component signal transduction
occurs only twice in the entire network, one of which,modE→
narL, occurs in the context of (1). Similarly, two component signal
transduction−| cytochrome complex assembly occurs 9 times, 8
of which, narL −| nrfE,ccmABCDEFH, occur in the context of
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(1). On the other hand, molybdate ion transport→ nitrate assimi-
lation occurs 3 times in the complete network and is observedonce
in the context of (2), and only 8 of 15 occurrences of nitrate assi-
milation−| cytochrome complex assembly are associated with (2).
Furthermore, there are 43 genes in the network that are associated
with two component signal transduction, while there are 14 asso-
ciated with nitrate assimilation. Consequently, statistical analysis
suggests that a gene involved in two component signal transduc-
tion needs to be regulated by a molybdate ion transport to regulate
cytochrome complex assembly. On the other hand, nitrate assimila-
tion may regulate cytochrome complex assembly with and without
the presence of molybdate ion transport gene regulating itself. The-
refore, the modularity of the indirect suppression of cytochrome
complex assembly by molybdate ion transport through two com-
ponent signal transduction is found to be stronger than thatthrough
nitrate assimilation.

CONCLUDING REMARKS
In this paper, we introduce the notion of statistically significant
regulatory pathways of functional attributes and provide aformal
framework for projecting regulatory networks from gene space to
functional attribute space. We demonstrate the hardness ofthe resul-
ting general problem in terms of non-monotonicity of interpretable
statistical measures. We propose a statistical model for functio-
nal attribute networks that emphasizes the modularity of pathways
by conditioning on its building blocks. We present a comprehen-
sive software tool, NARADA , based on the proposed models and
methods, and validate results obtained from theE. coli transcription
network.
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