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Abstract—In online learning, a learner receives data in rounds
1 ≤ t ≤ T and at each round predicts a label which is then
compared to the true label resulting in a loss. The total loss over
T rounds, when compared to a loss over the best expert from
a class of experts, is called the regret. This paper focuses on
logarithmic loss over a class of experts Hp,w, represented by a
probability distribution p and parameterized by a d-dimensional
weight vector w. Unlike previous work that studied bounded
weight, we assume that the norm of the weight can be unbounded.
This unboundedness poses a challenging problem that leads to
unexpected results. For such a class of weighted experts we
analyze the (fixed design) minimax regret for the best predictor
and worst label sequence. Such a minimax regret turns out to
be a universal lower bound for most regrets analyzed in the
literature. For bounded weights it is known that the minimax
regret can grow like (d/2) log(TR2/d) where R is an upper
bound on the weight norm. In contrast, we show in this paper
that for unbounded norm with R = ∞ the minimax regret is
asymptotically (d − 1) log(T/d) for a logistic-like expert class
which we also extend to R = Ω(

√
T ). We prove it by introducing

the so called splittable label sequences that partition the weight
space into T d−1 regions with maximum sequence probability
equal to 1. Finally, for a general class of monotone experts we
present an upper bound 2d log T for the minimax regret.

I. INTRODUCTION

We study the problem of online learning and online
regret minimization. Formally, we phrase the online learning
problem in terms of a game between nature/environment and
a learner/predictor. Broadly, the objective of the learner is to
process past observations to predict the next realization of the
nature’s labeling sequence. At each round t ∈ N, let yt be the
true label that is yet to be revealed. The learner obtains a d
dimensional data/feature vector xt ∈ Rd to make a prediction
ŷt = gt(y

t−1,xt), where gt represents the strategy/algorithm
of the learner to obtain its prediction based on the past and
current observations. Once the prediction is made, nature
reveals the true label yt and the learner incurs some loss
evaluated based on a predefined function ℓ : Ŷ × Y → R+,
where Ŷ ∈ R and Y ∈ {−1, 1} are the prediction and label
domains, respectively. In regret analysis, we are interested
in comparing the accumulated loss of the learner with that
of the best strategy within a predefined class of predictors
(forecasters or experts) denoted as H. Here, H is a collection
of predicting functions h : Rd 7→ R, with input being xt at
each time t. After T rounds, the pointwise regret is defined as

R(gT , yT ,H|xT ) =

T∑
t=1

ℓ(ŷt, yt)− inf
h∈H

T∑
t=1

ℓ(h(xt), yt),

where ŷt = gt(y
t−1,xt) where yt−1 = (y1, . . . , yt−1) and

xt = (x1, . . . ,xt) for all t ∈ [T ]. The first summation
of R(gT , yT ,H|xT ) represents the accumulated loss of the
learner (algorithmic loss) while the second summation repre-
sents the loss of the best expert within the class H.

In this paper, we consider only the logarithmic loss ℓ :
Ŷ × Y → R+ defined as

ℓ(ŷt, yt) = −yt log(ŷt)− (1− yt) log(1− ŷt). (1)

Moreover, we restrict our study to a specific class of experts
defined as

Hp,w = {h : Rd → R : h(x) = p(⟨w|x⟩) : w,x ∈ Rd}, (2)

where w is a d dimensional weight vector, ⟨w|x⟩ is the scalar
product of xt and w, and p(w) with w = ⟨w|x⟩ is a function
R → [0, 1]. Often p(w) is either the logistic function p(w) =
(1 + exp(−w))−1 (see e.g., [13], [17]) or the probit function
p(w) = Φ(−w) where Φ(w) is CDF (cumulative distribution
function) of the normal distribution (see [5]). Throughout,
we assume that xt lies on a compact manifold Md such as
Md = [−1, 1]d or Md = Sd where Sd is a d dimension
sphere. We do not restrict the weights w ∈ Rd and this seems
never been analyzed in the past, to the best of our knowledge.
To be precise, we assume that ∥w∥2 ≤ R ≤ ∞ and study two
cases: (i) R = ∞ and (ii) R = Ω(

√
T ) when T → ∞.

There are several perspectives on studying regret that
decouples it from the prediction strategy, sequences of labels,
and data. In the fixed design setting analyzed here, we study
the minimal regret for the worst realization of the label with
the feature vector xT known in advance. The fixed design
minimax regret is then defined as

r∗T (H|xT ) = inf
gT

sup
yT

R(gT , yT ,H|xT ). (3)

Note that this notion was also studied in [18], [14], and in
[7] under the name transductive online learning. To further
decouple it from the feature vector xt one either maximizes
over all xt or take the average over the features, that is,
r̄∗T (H) := Ex[r

∗
T (H|xT )] where the feature vector xt is

generated i.i.d. from some distribution µ over Md.
In this paper, we focus on precise asymptotics of the (fixed

design) minimax r∗T for large d, T , and unbounded weights w.
Note that, the fixed design minimax regret forms a universal
lower bound for a large class of regrets analyzed in literature
[3], [4], [16], [18], [14], [24]. To see this, we consider the



following general notion of minimax regret as in [25]. We
assume that xT is sampled from some distribution (random
process) µ in a class P of distributions over xT while the
true labels are still presented adversarially. The expected worst
case minimax regret is defined in [25] as

r̃T (H,P) = inf
gT

sup
µ∈P

ExT∼µ

[
sup
yT

R(ŷT , yT ,H | xT )

]
,

where gt : X t × Yt−1 → Ŷ runs over all possible prediction
rules, and ŷt = gt(x

t, yt−1). This regret is quite general and
recovers previously known minimax regrets including the fixed
design minimax regret. Indeed, r∗T (H|xT ) is equal to r̃T (H,P)
when P is the singleton distribution that assigns probability
1 to xT . More importantly, if P is a class of all singleton
distributions over X T , then r̃T (H,P) = raT (H) where the
sequential minimax regret raT (H) is defined as

raT (H) = inf
gT

sup
xT ,yT

(
T∑

t=1

ℓ(ŷt, yt)− inf
h∈H

T∑
t=1

ℓ(h(xt), yt)

)
(4)

and it is equivalent to

raT (H) = sup
x1

inf
ŷ1

sup
y1

· · · sup
xT

inf
ŷT

inf
yT

R(ŷT , yT ,H|xT )

as discussed e.g., in [16]. Clearly, the maximum fixed design
minimax regret r∗T (H)

def
= supxT r∗T (H|xT ) is a lower bound

for raT (H). Moreover, if P is the class of all i.i.d. distributions
over xT , then r∗T (H) is also a lower bound of r̃T (H,P) up
to a log T factor (see Theorem 21 in [25]).

a) Our Contribution: In this paper, we present for the
first time tight bounds for the fixed design minimax regret for
the class Hp,w with unbounded w and logistic-like as well as
general monotone p. We accomplish it by analyzing Shtarkov’s
sum using tools from analytic combinatorics such as complex
asymptotics as discussed in [10], [21]. See also [3], [4], [26].

More precisely, we first represent the minimax regret as
the logarithm of the Shtarkov sum over all label sequences
of the maximum label probability which turns out to be
the maximum-likelihood distribution. Shtarkov’s sum arose
already in the universal compression as witnessed by [8],
[9], [22]. In this paper we consider the minimax regret with
unbounded weights which leads to a challenging problem
with unexpected results. It is known by [11], [19], [26]
that, for bounded weights, the regret grows asymptotically
like (d/2) log(R2T/d) where ∥w∥ ≤ R. However, this
does not scale well with large R. Our first main result
demonstrates that for R = ∞ the fixed design regret satisfies
(d − 1) log(T/d) ≤ r∗T (Hp,w) ≤ 2d log T for any monotone
function p. This establishes a fundamental distinction with the
sequential minimax regret as in (4), for which a Ω(logR) lower
bound is necessary [11]. We then provide tighter bounds for
the logistic function, showing that for i.i.d. generated features
r∗T (Hp,w) ≤ (d−1) log(T/d)+O(1). Finally, we demonstrate
that for logistic function, an (d− 3) log(T/d) lower bound is
achievable even with R = Ω(

√
T ). These together provide a

precise characterization of the fixed design minimax regret for
the logistic function.

We establish these bounds by introducing a set of "splittable"
label sequences yT that partition the w space into O((T/d)d−1)
regions where the optimal label probability is 1. To obtain
an upper bound for the logistic functions, we apply Mellin
transform and precise counting of label sequences that are k
Hamming distance away from a splittable sequence.

b) Related Work: Online learning can be viewed as a
universal compression (source coding) with side information as
discussed in [2]. In particular, the online regret in information
theory language is the excess of a universal code length over
the shortest description achieved by a class of sources (experts)
with extra side information available to the learner. There are
a number of useful and precise bounds on various regrets.
We mention here only a few: [11], [13], [15], [17], [26] Our
findings are closest to [18], [14], [26]. For example, in [14] a
precise maximal minimax regret is analyzed but only for finite
number of feature values and fixed dimension d while in [26]
only bounded w was studied. We should also mention that
the general form of the minimax regret, is related to Fisher
information and was already known in information theory [23]
but only for fixed d and bounded weights.

II. PROBLEM FORMULATION

We denote by xt = (x1,t, . . . , xd,t) a d-dimensional
bounded data/feature vector such that ∥x∥ ≤ 1 for some norm
∥ · ∥, e.g., xt ∈ Sd ⊂ Rd where Sd is a sphere of radius
1. The binary label vector is written as yT = (y1, . . . , yT )
with yt ∈ {−1, 1}. At last, the d dimensional weight vector
wt = (w1,t, . . . , wd,t) is assumed to belong to a ball B(R) of
radius R with R ≤ ∞. Thus w can be unbounded and this
scenario has never been analyzed in depth before. We study
first the case R = ∞ and then consider the transition region
when R; = RT → ∞ with T but not slower than

√
T . In a

forthcoming paper we study the region of R = o(
√
T ) which

is a very hard problem if one wants a precise statement.
In this paper we focus on the logarithmic loss (1) for the

class of experts H := Hp,w as defined in (2). More specifically,
for any h ∈ H, we interpret h(x) ∈ [0, 1] as the probability
assigned to Y = −1, that is, P (Yt = −1|xt,w) = p(⟨w|xt⟩)
is the probability assigned to Y = −1, and ℓ(h(x), y) =
− logP (Y = y|x). Likewise, for any probability distribution
Q over {−1, 1}T we can induce a predictor ŷt = Q(−1|yt−1).
Therefore, ℓ(ŷ, y) := − logQ(yt|yt−1) where Q represents a
“universal” distribution that approximates the expert probability
P (yt|xt,w). Thus, we can re-write the pointwise regret in
terms of Q as

RT (Q, yT |xT ) =

−
T∑

t=1

logQ(yt|yt−1) + sup
w

T∑
t=1

logP (yt|xt,w) =

= log
supw P (yT |xT ,w)

Q(yT )
.
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Then the fixed design minimax regret can be represented as

r∗T (H|xT ) = inf
Q

max
yT

RT (Q, yT |xT ), (5)

and r̄∗T (H) := Ex[r
∗
T (H|xT )] where it is assumed that xt is

generated by a memoryless (i.i.d.) source.
In order to study precisely the the minimax regret r∗T (H|xT )

we first find a more manageable representation. Following [20],
[8], [6] we add/subtract from (5) the logarithm of the Shtarkov
sum defined as

ST (x
T ) :=

∑
yT

sup
w

P (yT |xT ,w) (6)

resulting in

r∗T (H|xT ) = log
∑
yT

sup
w

P (yT |xT ,w) = logST (x
T )

which we shall use throughout the rest of the paper.

III. MAIN RESULTS

As discussed above, we assume that ∥w∥2 ≤ R and mostly
focus on the case R = ∞, however, we also consider the
case when R is finite but grows w.r.t. T . Observe that for a
sequence of labels yT and a sequence of features xT we have

P (yT |xT ,w) =
∏

t:yt<0

p(⟨w|xt⟩)
∏

t:yt>0

(1− p(⟨w|xt⟩)). (7)

In particular, for the logistic function p(w) = (1 + e−w)−1

this becomes

P (yT |xT ,w) =

T∏
t=1

exp
(
1+yt

2 ⟨xt,w⟩
)

1 + exp(⟨xt,w⟩)
. (8)

We now define some important notation. Let

w∗(yT |xT ) = arg sup
w

P (yT |xT ,w),

P ∗(yT |xT ) = sup
w

P (yT |xT ,w∗).

Observe that w∗(yT |xT ) ≤ ∞ and for w∗(yT |xT ) = ∞ we
may have P ∗(yT |xT ) = 1. Throughout we often drop xT ,
especially when xT is fixed.

A. Unbounded Weights and Splittable Sequences

We now assume that R = ∞ so that w is unbounded. We
shall find all yT such that w∗(yT ) = ∞, thus for those yT

we have P ∗(yT |xT ) = 1. In this case, we present tight lower
and upper bounds for the regret. We work with the following
class

Hsplit = {p(⟨w|x⟩) : p(−∞) = 0 and p(∞) = 1}. (9)

We call a sequence yT splittable if there exists w such that
∀t ∈ [T ], yt⟨xt,w⟩ > 0 for a given xT . We denote the set of
such sequences as SP(xT ), that is

SP(xT ) := {yT : ∀t ∈ [T ], yt⟨xt,w⟩ > 0, w ∈ Rd}. (10)

Such sequences partition the w-space into regions as illustrated
in Figure 1 (for d = 2). The next lemma bounds the number
of such splittable sequences.

w1

w2

(1,−1,−1)

(1, 1,−1)(1, 1, 1)

(1,−1,−1)(−1, 1, 1)

(−1,−1, 1) (−1,−1,−1)

Fig. 1. Illustration to splittable sequences for T = 3 and d = 2 where
the boundary of the regions are solutions (of w) to ⟨xt,w⟩ = 0 where
x1 = ( 1√

2
, 1√

2
),x2 = (− 1√

2
, 1√

2
),x3 = (− 2√

5
, 1√

5
)). There are six

splittable sequences y3 out of eight possible label sequences (e.g (−1, 1,−1)
is not splittable).

Lemma 1. For any xT in a general position (i.e., for all
k ≤ d + 1 there is no k points of xT that lie on a k − 2
dimensional linear space) the following holds

|SP(xT )| = 2

d−1∑
i=0

(
T − 1

i

)
= 2

(
T − 1

d− 1

)
(1 +O(1/T ))

≥
(
T − 1

d− 1

)d−1

. (11)

Proof. This follows by computing the regions/chambers of
d dimensional general position hyperplane arrangements [1,
Theorem 3.1]. We illustrate this in Figure 1 for d = 2 and
T = 3 leading to six out of eight splittable sequences in
agreement with (11).

a) Lower Bound: For yT ∈ SP(xT ) we have w∗(yT ) =
∞ leading to the following lower bound for the regret.

Lemma 2. Let Hsplit be as in (9), we have

r∗T (Hsplit|xT ) ≥ log |SP(xT )| ≥ (d−1) log

(
T − 1

d− 1

)
+log 2

(12)
for all T , d and xT in the general position.

Proof. The minimax regret r∗T (Hsplit|xT ) = logST (x
T ) and

ST (x
T ) =

∑
yT

P ∗(yT |xT ) ≥
∑

yT∈SP(xT )

P ∗(yT |xT )

= |SP(xT )|

since P ∗(yT |xT ) = 1 for yT ∈ SP(xT ) by (9).
b) Upper Bound for Logistic Regression: We now focus

on the logistic regression, and provide a precise matching
(including the leading constant) upper bound.

Theorem 1. If p(w) = (1 + e−w)−1 (logistic function), then
for xT uniformly distributed over a unit sphere, with high
probability we have

r∗T (Hlogistic|xT ) ≤ (d− 1) log

(
T − 1

d− 1

)
+O(1), (13)
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thus r̄∗T (Hlogistic) = (d− 1) log((T − 1)/(d− 1)) +O(1).

Proof. Let IT (w,xT ) =
∑

t log(1 + e−|⟨w|xt⟩|) and define
w = wu where u is a unit vector. We know that if yT is
a splittable sequence, then P (yT |xT ,w) = exp(−I(w,xT )).
Let IT (w) = Ex[IT (w,xT )] where xts are uniform on a unit
sphere. Clearly IT (w) = TI(w). By expanding the expectation

I(w) =
1

sd

∫ π/2

0

log(1 + e−w sin θ)(cos θ)d−1dθ

with the normalizing factor

sd =

∫ π/2

0

(cos θ)d−1dθ =

√
πΓ(d/2)

2Γ((d+ 1)/2)
.

We now apply the powerful Mellin transform to estimate
I(w). Recall that, I∗(s) is the Mellin transform of I(w) if
I∗(s) =

∫∞
0

I(w)ws−1dw for some complex s (see [21]).
Using properties of the Mellin transform we obtain

I∗(s) =

∫ ∞

0

I(w)dw

=
1

sd

∫ π/2

0

(cos θ)d−1(sin θ)−sdθ(1− 2−s)Γ(s)ζ(s+ 1)

=
2(1− 2−s)

sd
ζ(s+ 1)

Γ((−s+ 1)/2)Γ(d/2)Γ(s)

Γ((−s+ d+ 1)/2)
.

The main singularity of I∗(s) is at s = 1 with residue α
sd

where α = ζ(2) = π2

6 . By inverse Mellin transform, we find

I(w) =
α

sdw
+O(

1

w2
).

Let’s now consider sequences that are within Hamming
distance 1 from a splittable sequence, that is, the inequality
yt⟨w|xt⟩ > 0 holds for all t except one. Without loss of
generality, let’s assume that the switched index is y1. We have
for all t ̸= 1, yt⟨w|xt⟩ = w| sin θt|, where w = ∥w∥ and θt
is the co-angle between w and xt. Therefore, we have w.h.p.
over xT that for all w

− logP (yT |xT ,w) = w| sin θ1|+ IT (w).

This is justified by: (1) Using Chernoff bound we have, for
any ε,w, P

(
IT (wu,x

T ) /∈ [(1− ε)IT (w), (1 + ε)IT (w)]
)
<

exp(−T β
w ) for some β > 0; (2) This can be extended to

hold for all w via a covering argument. Since −w| sin θ1| −
IT (wu,x

T ) ∼ −w| sin θ1| − Tα
sdw

, the maximum value of

P (yT |xT , wu) with respect to w is −2
√

α
sd
T | sin θ1|. There-

fore, by summing over all T switch positions, we have

S1
T (x

T )/|SP(xT )| =
∑
t

e−2
√

α/sdT sin θt

≈ T

sd

∫ π/2

0

e−2
√

α/sdT sin θ(cos θ)d−1dθ

=
1

α

∫ αT/sd

0

e−2
√
x

(
1− x2s2d

α2T 2

)(d−1)/2

dx

=
1

α

∫ ∞

0

e−2
√
xdx =

1

2α
+O(exp(−

√
T )). (14)

Here, Sk
T (x

T ) is the Shtarkov sum that counting only
sequences yT with distance k to a splittable sequences. Now
consider general k, that is, sequences that are within Hamming
distance k from a splittable sequence. Assuming without loss
of generalities that the mismatches are on the k first features,
we have

− logP (yT |xT , wu) = w sin θ1 + · · ·+ w sin θk + TI(w).

The maximum is e−2
√

α/sdT (sin θ1+···+sin θk). Since there are(
T
k

)
possible choices of the k switches, we have:

Sk
T (x

T )/|SP(xT )| =

(
T

k

)(
1

sd

)k

×

∫
[0,π/2]k

e−2
√

α/sdT (sin θ1+···+sin θk) (cos θ1 · · · cos θk)d−1 dθ1 · · · dθk

=

(
T

k

)(
1

αT

)k ∫
[0,αT/sd]

k

e−2
√
x1+···+xk

(
1− x2

1s
2
d

α2T 2

)(d−1)/2

×

· · ·
(
1− x2

ks
2
d

α2T 2

)(d−1)/2

dx1 · · · dxk

∼

(
T

k

)(
1

αT

)k ∫
[0,∞[k

e−2
√
x1+···+xkdx1 · · · dxk

=

(
T

k

)(
1

αT

)k
1

(k − 1)!

∫ ∞

0

e−2
√
yyk−1dy

=

(
T

k

)(
1

4αT

)k
(2k)!

(k!)
≤

(
2k

k

)(
3

2π2

)k

.

We now notice that
∑∞

k=1

(
2k
k

)
xk = (1−4x)−1/2 and conclude

that the Shtarkov sum is upper bounded (with high probability)
by

ST (x
T ) ≤ 2

(
T − 1

d− 1

)
1√

1− 6
π2

as desired. Note that, there are many overlaps among these
sequences, our result provide only an upper bound.

B. A General Upper Bound

We now consider general features xT and a general
monotone class H and derive a general upper bound on the
minimax regret. More specifically, let X be the feature space
and H ⊂ RX be the expert class. We recall now some standard
facts: We say a sequence xd ∈ X d is pseudo-shattered by H
witnessed by sd ∈ Rd if for any ϵd ∈ {0, 1}d there exists
h ∈ H such that for all t ∈ [d]: (1) If ϵt = 1, then h(xt) ≥ st;
(2) If ϵt = 0, then h(xt) < st. The pseudo-dimension of H is
defined to be the maximum number d such that there exist xd

that can be pseudo-shattered by H, denoted as P(H).

Lemma 3. Let Hlin = {p(⟨x|w⟩) = ⟨w|x⟩ : w,x ∈ Rd},
then

P(Hlin) ≤ d.

Proof. Suppose otherwise, there exists a sequence xd+1 that
can be pseudo-shattered by H witnessed by sd+1. For any

4



ϵd+1 ∈ {0, 1}d+1, we denote ϵ̄d+1 to be the complement of
ϵd+1 such that for all t ∈ [d + 1], ϵt = 1 − ϵ̄t. Let w1,w2

be the parameters corresponding to the functions in Hlin that
witness ϵd+1 and ϵ̄d+1 respectively. Taking w′ = w1 − w2,
we have for all t ∈ [d+ 1]: (1) If ϵt = 1, then hw′(xt) ≥ 0;
(2) If ϵt = 0, then hw′(xt) < 0. To see this, assume w.o.l.g.
ϵt = 1, we have hw1

(xt) ≥ st while hw2
(xt) < st. Therefore,

by linearity, we have hw′(xt) = hw1(xt)−hw2(xt) ≥ 0. This
implies that the sequence xd+1 is VC-shattered by Hthres =
{1{⟨w|x⟩ ≥ 0} : w,x ∈ Rd}. This contradicts to the fact that
VC-dimension of Hthres is upper bounded by d.

We now define a new general monotone hypothesis class:

Hmono := {p(⟨x|w⟩) : p is monotone increasing }.

The next lemma follows directly from the definition.

Lemma 4. Let σ : R → R be an arbitrary monotone
increasing function. For any class H, we denote by Hσ =
{σ(h) : h ∈ H}. Then

P(Hσ) ≤ P(H).

Let H ⊂ [0, 1]X be an arbitrary class with values in [0, 1].
Let J ⊂ [0, 1] be a discretization of [0, 1] with step size 2α > 0,
i.e. , |J | ≤ 1/2α. We define the discretized class

H̃ = {h̃(x) = argmin
a∈J

{|a− h(x)|} : h ∈ H},

where we break ties by choosing the larger one.

Lemma 5. For any class H ⊂ [0, 1]X , we have

P(H̃) ≤ P(H).

Proof. Let xd be the sequence that can be pseudo-shattered by
H̃ witnessed by sd. We enumerate J = {0, 2α, · · · , 1}. For any
t ∈ [d], there must be some i such that 2iα < st ≤ 2(i+ 1)α.
We take s′t = (2i + 1)α. We now claim that xd is pseudo-
shattered by H witnessed by s′d. For any ϵd ∈ {0, 1}d, we take
h̃ ∈ H̃ such that if ϵt = 1 then h̃(xt) ≥ st and h̃(xt) < st
otherwise. Let h ∈ H be any function with discretization h̃.
We have if h̃(xt) ≥ st, then h̃(xt) ≥ s′t + α, meaning that
h(xt) ≥ h̃(xt)− α ≥ s′t. If h̃(xt) < st, then h̃(xt) ≤ st − α.
This implies h(xt) < h̃(xt) +α ≤ s′t, where we used the fact
that the discretization resolves ties by choosing the larger one.
This completes the proof.

The following lemma bounds the size of discretized class
w.r.t. pseudo-dimension, which is due to [12, Corollary 3].

Lemma 6. For any discretized class H̃ ⊂ JX and xT ∈ X T

we denote by H̃xT the class of H̃ restricted on xT . Then

|H̃xT | ≤ (T |J |)P(H̃).

We now state our main upper bound:

Lemma 7. For any xT ∈ RdT , we have

r∗T (Hmono | xT ) ≤ 2d log T + 1.

Proof. Let H̃ be the discretization of Hmono with step size
2/T . Note that H̃ is an 1/T -cover of Hmono, meaning that

r∗T (Hmono | xT ) ≤ r∗T (H̃ | xT ) + 1.

By the above Lemmas 4–6 , we have P(H̃) ≤ d. By Lemma 4,
we conclude that

r∗T (H̃ | xT ) ≤ log |H̃xT |
≤ d log(T |J |) ≤ d log(T 2/2) ≤ 2d log T.

This completes the proof.

In conclusion, we arrive at our next main result.

Theorem 2. For any monotone class Hmono and almost all
xT (under Lebesgue measure) the following holds

(d−1) log

(
T − 1

d− 1

)
+log 2 ≤ r∗T (Hmono|xT ) ≤ 2d log T+1.

C. Logistic Regression: Lower Bound for R = Ω(
√
T )

We now consider the case when w is finite but may grow
with T . We know from [26] that the growth (d/2) log T holds
for R = exp(o(log T )). We also know from Lemma 2 and
Theorem 2 that the minimax regret for unbounded w (i.e.,
R = ∞) is

r∗T (Hmono|xT ) = Θ(d log(T/d))

for the class Hmono. Two questions naturally arise: (i) For
what R(T ) the growth of the minimax regret transits from
d log T to (d/2) log T ; (ii) Is there a smooth transition from
(d/2) log T to d log T , and can the regret grows like D log T
where d/2 ≤ D ≤ d when R → ∞? Here we only partially
answer question (i) for logistic regression.

Theorem 3. For R = Ω(
√
T ) the average minimax regret for

the logistic regression grows as d log T , more precisely

r̄∗T (Hlogistic) ≥ (d− 3) log
T − 1

d− 1
+ log(

6

π2
) + o(1)

for d > 3 and xT distributed i.i.d. over a unit sphere.

Proof. We consider now sequences that are exactly at Ham-
ming distance 1 from a splittable sequence SP(xT ) as defined
in (10). To avoid overlaps between them we only consider
sequences that are within distance one from a unique splitable
sequence. In other words, we consider about T d−1/T 2 = T d−3

splittable sequences for which the distance one Hamming balls
are disjoint. Then we follow the derivation from the proof
of Theorem 1. In particular, we conclude from (14) that for
R = Ω(

√
T ) (recall that R = ∥w∥2 = w):

ST (x
T )/|SP(xT )| ≥ 3

π2
+O(exp(−

√
T )).

Since instead of using all splittable sequences we only consider
those that are at least of distance two, that is O(T d−3) to avoid
the overlap, and this gives us the desired lower bound for all
R = Ω(

√
T ).
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