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Abstract—We study online logistic regression with binary
labels and general feature values in which a learner tries to
predict an outcome/ label based on data/ features received
in rounds. Our goal is to evaluate precisely the (maximal)
minimax regret which we analyze using a unique and novel
combination of information-theoretic and analytic combinatorics
tools such as Fourier transform, saddle point method, and Mellin
transform in the multi-dimensional settings. To be more precise,
the pointwise regret of an online algorithm is defined as the
(excess) loss it incurs over a constant comparator which is
used for prediction. In the minimax scenario we seek the best
learning distribution for the worst label sequence. For dimension
d = o(T 1/3) we show that the maximal minimax regret grows
as d/2 · log(2T/π) + Cd +O(d3/2/

√
T ) where T is the number

of rounds of running a training algorithm and Cd is explicitly
computable constant that depends on dimension d and feature
values. We compute explicitly the constant Cd for features
uniformly distributed on a d-dimensional sphere or ball.

I. INTRODUCTION

In online learning sequentially received data must be used
to update the predictor for subsequent data, that is, a model
is trained to learn parameters from examples/ samples whose
outcomes are already labeled. The training algorithm consumes
data in rounds, where at each round t ∈ {1, 2, . . . , T}, it is
allowed to predict the label based only on the labels it observed
in the past t− 1 rounds. The prediction algorithm incurs for
each round some loss and updates its belief of the model
parameters. In this paper we study a more specific setting of
online logistic regression for binary classification. Logistic
regression has received a lot of attention in machine learning
([3], [24]) due to several important applications from category
classification to risk assessment.

More precisely, we phrase our learning problem in terms of a
game between nature/ environment and a learner. At each round
the learner obtains a d dimensional input/ feature vector xt and
makes prediction ŷt. Then the nature reveals the true output/
label yt. Throughout we assume binary labels yt ∈ {−1, 1}
(however, see Section III-B for extension to non-binary labels)
and bounded features xt living in a space of dimension d.
Thus at round t the learner incurs some loss which we denote
as `(ŷt, yt). For t ∈ {1, . . . , T} we write yT = (y1, . . . , yT )
and xT = (x1, . . . ,xT ). Then the cumulative relative loss or
better pointwise regret is defined as in [11], [9], [27]

RT (ŷT , yT |xT ) =

T∑
t=1

`(ŷt, yt)− inf
f∈F

T∑
t=1

`(f(xt), yt)

where F is a reference class of functions called also forecasters
or experts. In this paper, we consider the (maximal) minimax
regret defined as

r∗T (xT ) = inf
ŷT

max
yT

RT (ŷT , yT |xT ) (1)

which constitutes a fundamental/ universal lower bound over
a class of learning algorithms. This regret could be viewed as
“fixed-design” (or conditional) minimax regret with xT known
in advance. Another minimax regret called here the adversarial
minimax regret with known xT can be defined as

raT (xT )
4
= 〈〈min

ŷt
max
yt
〉〉Tt=1R(xT , yT , ŷT ) (2)

4
= min

ŷ1
max
y1

min
ŷ2

max
y2
· · ·min

ŷT
max
yT

R(ŷT , yT |xT ).

It was recently proved that r∗T (xT ) = raT (xT ) [32]. Hereafter,
we focus in rT (xT ) and give precise asymptotic expansion of
this regret.

In this paper we consider a more specific model, namely
logistic regression with logarithmic loss function and linear
reference class. More specifically, we restrict the reference
class to F = {xt → f(xt) = Sigmoid(〈xt,w〉)} where
Sigmoid(〈xt,w〉) = (1 + exp(−〈xt,w〉))−1 is the logistic
function and 〈xt,w〉 =

∑d
i=1 xi,twi is the scalar product

for some weight vector w = (w1, . . . , wd). We also define
`(yt|xt,w) := `(f(xt), yt) := log (1 + exp(−yt〈xt,w〉)) as
the loss function for the logistic regression.

In the minimax scenario studied in this paper, we postu-
late that the prediction is based on a learning distribution
Q(yt|xt) = Q(yt|ŷt) which best approximates the expert
prediction P (yt|xt,wt). For example, the most popular class
of learning algorithms are Bayesian (cf. [9], [16], [27]), but
we do not make such assumption here. For such a setting the
pointwise regret for a given learning distribution Q is then
defined as

RT (Q, yT |xT ) = −
T∑
t=1

logQ(yt|xt)− inf
w

T∑
t=1

`(〈xt,w〉, yt).

(3)
The (maximal) minimax regret studied here is defined as

r∗T (xT ) = inf
Q

max
yT

RT (Q, yT |xT ). (4)

Observe that r∗T (xT ) ≤ maxyT RT (Q, yT |xT ) for any learn-
ing algorithm and all label sequences. In this paper we provide



a precise asymptotic expansion of the maximal minimax regret,
a result that had been wanting for some time.

a) Our Contributions and Methods.: Our contribution is
two-fold. First, we present precise asymptotic expansions for
the maximal minimax regret (4) through the so called Shtarkov
sum (cf. [28], [6]). Second, we apply new methodology using
tools of analytic combinatorics such as complex asymptotics
and Fourier as well as Mellin transforms (cf [7], [30]) to handle
Shtarkov sum for the logistic regression.

More precisely, we first represent the minimax regret (4) as
the logarithm of the Shtarkov sum over all label sequences
of the optimal label probability which turns out to be the
maximum-likelihood distribution as presented in (12). Such a
sum arose already in the universal compression as witnessed
by [28], [6], [31]. In Theorem 1 we show that for d = o(T 1/3)
the minimax regret grows as

d

2
log(2T/π) + Cd(x

T ) +O(d3/2/
√
T )

where the constant Cd(xT ) depends on the dimension d and
data xT . We explicitly express this constant as the logarithm of
a multi-dimensional integral over the determinant of a matrix
that depends on data and the logistic function (cf. (18)). We
generalize it to non-binary labels in Theorem 2. Then we find
in Theorem 3 an asymptotic expression for Cd(xT ) when data
xT are distributed uniformly on a d-dimensional sphere Sd
and a ball Bd. This allows us to show in Theorem 3 that for
large d the minimax regret grows with high probability as
d
2 log T

d −
d
2 log

√
8π +O(1).

Our second technical contribution lies in unique and novel
methodology based on analytic combinatorics. As mention
above, we represent the maximal minimax regret as a Shtarkov
sum. Only recently [25] and [13] introduced Shtarkov sum in
the context of logistic regression. To analyze asymptotically
the Shtarkov sum, we translate the Shtarkov sum into a d-
dimensional integral that we evaluate using a multi-dimensional
Laplace/ saddle point method. Further embellishments, in-
cluding Mellin transform, discrete geometry and spectral
representation of matrices, are required to study the constant
Cd(x

T ) when the feature xT lie on a d-dimensional sphere.
b) Related Work.: In this paper we combine methodology

of analytic combinatorics (see, e.g., [7], [15], [30]) and
information theory (see, e.g., [1], [6], [17], [19], [22], [23],
[26], [33]) to study a machine learning problem (see, e.g., [3],
[24]), namely, the regret of logistic regression.

The set up of the logistic regression is similar to the redun-
dancy of universal coding studied extensively in information
theory. It corresponds to a single dimensional (i.e., d = 1)
regret problem for logistic regression. In this case, with m
being the alphabet size or the number of labels, it is known
that for a large class of sources (up to Markovian but not for
non-Markovian as discussed in [4], [8]) the redundancy grows
as m−1

2 log T when the alphabet size m is fixed (see [6], [23],
[26], [29], [33], [34]) and m−1

2 log(T/m) for m = o(T ) (see
also [19], [26], [31]). In fact in [31] full asymptotic expansions
were derived for all ranges of m.

In the machine learning literature a general online optimiza-
tion is studied, and generally pointwise regret is analyzed with
logarithmic regret in the strongly and weakly convex setting.
We note that logistic regression seems to fall under weakly
convex setting. We first mention work of [11] who studied the
pointwise regret of the logistic regression for the proper setting,
that is, when at time t the decision regarding wt is based on
knowledge available to the learner up to time t − 1. Unlike
the improper learning, studied in this paper, where feature xt
at time is also available to the learner and [11] showed that
the pointwise regret is Θ(T 1/3) for d = 1 and O(

√
T ) for

d > 1. Furthermore, the worst case adversarial minimax regret
for a wide variety of loss function and references classes is
discussed in a series of papers by [20], [21]. However, it should
be pointed out that the authors of [1], [35] studied a general
classes of densities smoothly parametrized by a d-dimensional
data to obtain general results for the (average) minimax regret
that can be phrased as an online regret.

For improper learning a more precise results are known.
To the best of our knowledge, [16] were first to demonstrate
results that suggest that pointwise regret for logistic regression
grows like O(d log T/d) where for fixed dimension d and
m = 2, which was further generalized in [9] to all m. The
authors of [16] used Bayesian model averaging. The O(log T )
pointwise and individual sequence regret can be achieved for
the single dimensional problem with gradient methods based
approaches, as was demonstrated in [18]. The authors of [18]
then posed the question of what happens for larger dimensions.
Subsequently, [9] demonstrated how to achieve regret bounds of
O(d log(T/d)) with Bayesian model averaging. These results
were strengthened in [27], which also provided matching lower
bounds. Recently, [13] analyze a precise maximal minimax
regret but only for finite number of feature values and fixed
dimension d. More precisely, [13] addresses a relaxed problem
with at most a finite number N = o(

√
T ) of distinct feature

vector values and regret is analyzed only for a fixed dimension
d = O(1). In this paper we consider: (i) no relaxation, where
feature vectors can take any values (up to N = T distinct ones);
(ii) the dimension d can grow with T as d = o(T 1/3); and (iii)
a different methodology based on a multidimensional Laplace
is used while the analysis of [13] is based on multidimensional
Gaussian approximation, which fails in our setting. To the best
of our knowledge here we present the first precise results for
the minimax regret.

II. PROBLEM FORMULATION AND NOTATION

We denote by xt = (x1,t, . . . , xd,t) a d-dimensional feature
vector such that ||x|| ≤ 1 for some norm || · ||. We also assume
that the set xt spans Rd. The label binary vector is denoted
as yT = (y1, . . . , yT ) with yt ∈ {−1, 1} (however, we also
present in Section III-B some results for non-binary labels).
Finally, wt = (w1,t, . . . , wd,t) is a d-dimensional vector of
weights. In this paper, we do not address the method used to
learn the weights (e.g., gradient method or Bayesian mixing),
however, see the end of this section for some remarks on a
sequential algorithm.



The cumulative logistic loss of an algorithm that plays wt

at round t is

L(yT |xT ,wT ) :=

T∑
t=1

log [1 + exp(−yt〈xt,wt〉)] (5)

where 〈xt,wt〉 =
∑d
i=1 xi,twi,t is the scalar

product of xt and wt. To simplify we also write
`(yt|xt,wt) := log [1 + exp(−yt〈xt,wt〉)]. Both `(yt|xt,wt)
and L(yT |xT ,wT ) depend on xt and wt only through
the product 〈xt,wt〉. As mention in the introduction, it is
convenient to interpret the logistic function in probabilistic
terms. The probability of a label is then given by

P (yt|xt,wt) = (1 + exp(−yt〈xt,wt〉))−1 (6)

and clearly `(yt|xt,wt) = − logP (yt|xt,wt).
Finally, we observe that the goal is to find the best learning

distribution Q(yt|xt) of the unknown distribution P (yt|xt,wt).
We notice that Q can be used to design an algorithm that
predicts yt. The pointwise regret for a given algorithm/
distribution Q is defined in (3) for individual sequences (yt,xt)
following [16], [10], [9], [27]. Thus

RT (Q, yT |xT ) = log
supw P (yT |xT ,w)

Q(yT |xT )
(7)

where

P (yT |xT ,w) =

T∏
t=1

(1 + exp(−yt〈xt,w〉))−1 . (8)

The pointwise regret RT (Q, yT |xT ) is a function of label
sequence yT , data/ feature vector xT , and algorithm/ label
distribution Q. A better measure of online logistic regression
performance should decouple the regret from the fluctuations
of yT (but may still depend on the feature vector xT ) and
minimize over a class of learning algorithms/ distributions
Q. Following information-theoretic view, as in [5], [6], [34],
we define the (maximal) minimax regret (conditioned on
xT ) as in (4). Notice that this definition is over all possible
learning algorithms represented by Q. Therefore, it constitutes
a (universal) lower bound of the pointwise regret for all label
sequences and for all learning distributions Q, including the
Bayesian ones studied in [16], [9], [27].

We study in this paper the precise growth of the minimax
regret for large T and wide range of d. However, to accomplish
it we need a more succinct and computationally manageable
representation of the maximal minimax regret. Following [28],
[6], [3] we add and subtract from (4) the logarithm of the
Shtarkov sum defined as

ST (xT )
4
=
∑
yT

sup
w
P (yT |xT ,w) (9)

resulting in

r∗T (xT ) = min
Q

sup
w

max
yT

(− logQ(yT |xT ) + logP ∗(yT |xT ))

+ log
∑
yT

sup
w
P (yT |xT ,w) (10)

= log
∑
yT

sup
w
P (yT |xT ,w) = logST (xT ) (11)

where we set Q(yT ,xT ) = P ∗(yT |xT ) with

P ∗(yT |xT ) :=
supw P (yT |xT ,w)∑
vT supw P (vT |xT ,w)

(12)

being the maximum-likelihood distribution. Indeed, since Q
and P ∗ are distributions, there is at least one yT such that the
first term in (11) is nonnegative, so that Q = P ∗ minimizes
it (see also [3]). We also observe that the Shtarkov sum is
invariant under scaling up data xT (and scaling down weights).

III. MAIN RESULTS

In this section we estimate asymptotically the Shtarkov sum
(9) for large T and wide range of d Throughout we write
p(w) := (1 + e−w)−1 and q(w) = 1− p(w) = p(−w).

A. Minimax Regret for General Case

We start with a general expression for the probability
P (yT |xT ,w) as given in (8). Noting that

P (yt = 1|xt,w) =
1

1 + exp(−〈xt,w〉)
=

exp(〈xt,w〉)
1 + exp(〈xt,w〉)

we find

P (yT |xT ,w) =

T∏
t=1

exp
(
1+yt
2 〈xt,w〉

)
1 + exp(〈xt,w〉)

= exp

(
−

T∑
t=1

log(1 + e〈xt,w〉) +

T∑
t=1

1 + yt
2
〈xt,w〉

)
.

Let now

LT (w) = LT (w,xT ) =

T∑
t=1

log(1 + e〈w,xt〉),

AT (yT ,xT ) := A(yT ) =
1

2

T∑
t=1

(1 + yt)xt.

Then P (yT |xT ,w) becomes

P (yT |xT ,w) = exp
(
−LT (w,xT ) + 〈w,AT (yT )〉

)
. (13)

Now we sketch the road map of our approach, leaving
technical details to the next section and full paper [14]. The
optimal value w∗ that maximizes P (yT |xT ,w) satisfies

∇wLT (w∗) = AT (yT ) (14)

where ∇LT (w∗) is the gradient vector of LT (w). It is easy
to see that

GT (w) := ∇wLT (w) =

T∑
t=1

p(〈w,xt〉)xt (15)



due to the crucial property p′(w) = p(w)q(w). In the next
section (see discussion below (26)) we prove that w∗ exists
and is unique in [−∞,∞]d.

In view of the above, the optimal probability P ∗(yT |xT ,w)
is then

P ∗(w∗) = P ∗(yT |xT ) = exp(−LT (w∗) + 〈w∗,GT (w∗)〉).
(16)

In the next section, we apply Laplace/Fourier transform to
represent the Shtarkov sum ST (xT ) as a multidimensional
integral that we evaluate using the multidimensional Laplace
method. This will allow us to conclude that

ST (xT ) =

∫
Rd

√
det(∇G(w∗)/(2π)dw∗·

(
1 +O

(
d3/2√
T

))
where

∇G(w) =

T∑
t=1

p(〈w,xt〉)q(〈w,xt〉)xt ⊗ xt.

In summary, our first main result proved in the next section
can be formulated as follows.

Theorem 1: Let xt ∈ [−1, 1]d and span Rd as well
as p(w) = (1 + e−w)−1 with q(w) = 1 − p(w). Then
asymptotically for d = o(T 1/3)

r∗(xT ) =
d

2
log T − d

2
log 2π+Cd(x

T )+O(d3/2/
√
T ) (17)

where the "discrepancy" Cd(xT ) is

Cd(x
T ) = log

(∫
Rd

√
det(Bd(w,xT ))dw1 · · · dwd

)
(18)

with

B(w,xT ) =
1

T

T∑
t=1

p(〈xt,w〉)q(〈xt,w〉)xt ⊗ xt (19)

and xt ⊗ xt = xtx
τ
t being the tensor product of xt with τ

denoting the transpose.
In passing we should observe that if data Xt is generated

by a stationary ergodic source, then by the ergodic theorem
we conclude that with high probability (whp)

B(w,XT )→ EX [B(w,X)]
4
= B̄(w) (20)

when T →∞. Therefore the discrepancy Cd(xT ) satisfies

Cd(X
T )→ log

(∫
Rd

√
det(B̄(w)dw

)
in probability (see [2]).

B. Extension to Non-binary Labels

Let us now consider a non-binary label alphabet of size m.
We will follow [9] and define a matrix W = [w1, . . . ,wm−1]
where each wk is a vector of dimension d.The multinomial
logistic function known also as softmax function is then defined
as

p`(x
τW) =

e〈x,w`〉

1 +
∑m−1
k=1 e

〈x,wk〉
(21)

and q(xτW) = 1 − p`(x
τW) for ` = 1, . . . ,m − 1.

Alternatively, we can express 〈x,w`〉 as 〈x,We`〉 where e` is
a column vector of dimension m− 1 with all coefficient equal
to zero except the `th coefficient which is set at 1. We also have
〈x,w`〉 = tr(We`⊗xτ ). Finally, we write p = (p1, . . . , pm).

Following the footsteps of our derivations for the binary
labels we present our second main result

Theorem 2: Let xt ∈ [−1, 1]d and span Rd. The label
alphabet is of size m, and for W = [w1, . . . ,wm−1] we define
p`(x

τW) for ` = 1, . . . ,m−1 as in (21). Then asymptotically
for md = o(T 1/3)

r∗(xT ) =
d(m− 1)

2
log

T

2π
+O((md)3/2/

√
T )+

log

(∫
Rdm

+
√

det(B(W))dw1 · · · dwm−1

)
where B(W) is equal to

1

T

T∑
t=1

xt ⊗ [Diag (p(xτiW))− p(xτiW)⊗ p(xτiW)]⊗ xt.

is a d(m− 1)× (m− 1)d matrix.

C. Spherical Features

Now we assume that the feature xt are either uniformly
distributed on a d-dimensional sphere Sd or inside a d-
dimensional ball Bd for large d. By (20) we know that with
high probability (whp)

B(w,Sd)→ B̄(w) =
1

sd

∫
Sd
p(〈xw〉)q(〈xw〉)x⊗ x dx

where sd is the area of the hypersphere of dimension d and
radius 1, that is, sd = 2π(d+1)/2/Γ(d+1

2 ).
We now write Cd(Sd) and Cd(Bd) for Cd(xT ) when xT

lies on the sphere Sd and on the ball Bd, respectively.
Theorem 3: Under assumptions of Theorem 1 let the feature

vector lies on the d-dimensional sphere Sd or ball Bd. Then
with high probability

Cd(Sd) = −d
2

log
d

4
+
d

4
log(π/8) +

3

8
log e+O(1/d) (22)

and

Cd(Bd) = −d
2

log
d

4
+
d

4
log(π/8)− 1

8
log e+O(1/d), (23)

respectively. Furthermore, the minimax regrets are:

r∗T (Sd) =
d

2
log

T

d
− d

2
log
√

8π +
3

8
log e+O(d3/2/

√
T )

and for the features inside a d dimensional ball Bd we find

r∗T (Bd) =
d

2
log

T

d
− d

2
log
√

8π − 1

8
log e+O(d3/2/

√
T ).



IV. PROOF OF THEOREM 1
Let AT (xT ) be the set of achievable partial sums of the

vectors xt, i.e.,

AT := AT (xT ) = {a ∈ Rd : ∃yT ∈ {−1, 1}T : AT (yT ) = a}

and let N(A) be the number of yT tuples such that AT (yT ) =
A. The enumeration Laplace-like function of e〈w,A〉 then
satisfies

FT (w) =
∑
yT

e〈w,A〉 =
∏
t

(1 + e〈w,xt〉) = exp(LT (w))

(24)
which can also be written as

FT (w) =

∫
e〈w,A〉dρT (A) with ρT =

∑
a∈AT

N(a)δa

where δa is the Dirac function on vector a and ρT is viewed as
a measure. Using (16) and above we can re-write the Shtarkov
sum as

ST (xT ) =
∑

A∈AT (xT )

NT (A) exp(−L(w∗(A))+〈w∗(A),A〉)

(25)
that we evaluate asymptotically for large T .

We now express (25) as

ST (xT ) =

∫
K(A)dρT (A), (26)

where K(A) = exp(−L(w∗(A)) + 〈w∗(A),A〉). Here
w∗(A) is the inverse of function GT (w). This inverse exists
because the function L(w) is in C∞ and it is convex since its
second derivative ∇2L(w) =

∑
t p(〈xtp(w〉)q(〈xtp(w〉)xt⊗

xt is strictly positive as soon as Rd is spanned by xt. Therefore,
it has a unique minimum although it can have some infinite
coordinates (which will make the optimal probability P ∗ = 1
but not changing in any substantial way the asymptotics of
the Shtarkov sum). In some cases the minimum can be at
infinity. Indeed, consider the case when the pairs (xt, yt) form
a separable set, i.e for binary labels there is an hyperplane
that separates the +1 labelled features from the -1 labelled
features. In this case let w0 be such that 〈w0,xt〉 > 0 for all
yt = 1 and 〈w0,xt〉 < 0 otherwise. The minimum is reached
at w0 = +∞ since lim∇L(w) = A when w = xw0 with
x → +∞. There can be hybrid cases where the minimum
is attained over ±∞ for some coordinates of w while the
other components remain finite. The example is when the pair
label features are separable on some components but are not
on the other components. But these are very “trivial” cases.
We conclude that K(A) is in C∞ and has a finite support
contained in [−T, T ]d.

Let now

K∗(w) =

∫
Rd

K(A)ei〈w,A〉dA

be the Fourier transform of function K(A). Parseval theorem
for multidimensional Fourier transform tells us that

ST (xT ) =
1

(2π)d

∫
c+Rd

FT (iw)K∗(−w)dw (27)

where c is any constant in the domain of the Fourier existence.
Notice that

K∗(w) =

∫
Rd

exp(−LT (w∗(A))+ 〈(w∗(A)+ iw),A〉)dA.

By change of variable A = G(w∗) we find that K∗(w) is
equal to∫
Rd

exp(−LT (w∗)+〈(w∗+iw),G(w∗)〉)det(∇G(w∗))dw∗

(28)
leading to (2π)d · ST (xT ) being equal to∫

Rd

exp(−LT (w∗) + 〈w∗,GT (w∗)〉)det(∇GT (w∗))dw∗

·
∫
−ic+Rd

exp(LT (iw)− i〈w,GT (w∗)〉)dw.

We now take the advantage of the fact that the functions
under the integrals are analytic functions so that we can move
the path of integration of the second integral from −ic + Rd

to −iw∗ + Rd, finding that (2π)d · ST (xT ) is equal to∫
Rd

exp(−LT (w∗) + 〈w∗,GT (w∗)〉)det(∇GT (w∗))dw∗

·
∫
−iw∗+Rd

exp(LT (iw)− i〈w,GT (w∗)〉)dw. (29)

Finally, we notice that on the segment =(w) = iw∗ the
quantity |LT (iw) − i〈w,GT (w∗)〉| attains its maximum at
w = −iw∗, since

∇(LT (iw)− i〈w,GT (w∗)〉) = iGT (iw)− iGT (w∗)

is zero when iw = w∗. Hence, for x→ 0 we conclude

LT (w∗ + ix)− 〈(w + ix),GT (w∗)〉
= LT (w∗)− 〈(w,GT (w∗)〉

− 1

2
〈x,∇2, LT (w∗)x〉+O(L

(3)
T (w∗)‖x‖3)

where L(3)
T (w∗) is the third derivative of LT (w) at w∗. But

∇2LT (w) and L
(3)
T (w∗) are of order O(T ), hence we can

apply the multidimensional Laplace method [12] to find∫
=(w)=iw∗

exp (LT (w)− 〈w,GT (w∗)〉) dw = (30)

=
exp(LT (w∗)− 〈w∗,GT (w∗)〉)√

det(∇2LT (w∗)/(2π))

×
(

1 +O

(
d3/2√
T

))
. (31)

Since exp(LT (w∗) − 〈w∗,GT (w∗)〉) cancels factor
exp(−LT (w∗) + 〈w∗,GT (w∗)〉) in (29) we find the leading
expression for ST (xT ).
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