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Abstract—In source coding since Davisson’s seminal paper
[1] various redundancy and regrets were thoroughly analyzed,
from pointwise redundancy, to average and maximal minimax
and maxmin regrets. Similarly, in online learning, there are
various formulations of regrets that are grouped into fixed-
design (when data is known in advance) and sequential. This
position paper gives a brief overview of current formulations of
regrets, and provides a thorough comparison of the sequential
and fixed design formulations. Moreover, inspired by the source
coding literature, new classes of regrets, from average to worst
case minimax, are introduced. In particular, it is shown that
the fixed design and sequential regrets are equal in the worst
case and average sense when data is known in advance; but,
in maximal sense (when maximizing over data), the former
can be significantly smaller than the latter. Specifically, this
paper proves that under logarithmic loss (i) for linear predictors
the two maximal formulations are of the same order; and (ii)
for linear threshold predictors, fixed design maximal regret is
logarithmically smaller than the sequential one.

I. INTRODUCTION

In universal source coding of information theory the goal is
to find the best (shortest) description of a sequence generated
by a source from a class of sources S. Since the seminal
paper of Davisson [1] the quality of universal compression
is measured by one of many minimax redundancies which
are defined as the excess of the real compression over the
optimal one, either on average or for the worst case. This
program led to several deep results attesting the performance
of universal compression algorithms. Prior work in information
theory such as [1]–[8] established numerous techniques and
result. Furthermore, relationships between different minimax
redundancies/ regrets were comprehensively analyzed in [9].

The situation in learning is more complex since we must
deal not only with the label sequence yT = (y1, . . . , yT ) but
also data xT = (x1, . . . ,xT ) [10], [11]. In the online learning,
the training algorithm consumes d dimensional data xT in
rounds where at each round t ∈ {1, 2, . . . , T}, it is allowed
to predict the label ŷt based only on the labels it observed
in the past t − 1 rounds. Then the true label yt is revealed
and the loss ℓ(yt, ŷt) is incurred. The (pointwise) regret of
an online algorithm is defined as the (excess) loss it incurs
over some value of a constant comparator that is used for
prediction of the complete sequence. Several minimax regrets
can be defined in the fixed design (when the whole feature
data is known in advance) or in the sequential scenario where

optimizations are performed online. Furthermore, in machine
learning we also optimize over a concept class that represents
possible predictors. This unattainable situation begs for better
understanding the relationships between various regrets leading
to a generalization of [9] to the machine learning situation.

a) Regrets in Information Theory: We now briefly review
various notions of regret and redundancy from universal
source coding of information theory. The pointwise redundancy
RT (P ; yT ) and the average redundancy R̄T (P ) for a given
source P and source (label) sequence yT = (y1, . . . , yT ) of
length T over alphabet of size m are defined as RT (P ; yT ) =
L(yT )+ logP (yT ) and R̄T (P ) = E[L(Y T )]−HT (P ) where
HT (P ) is the entropy for a block of length T , E denotes
the expectation, and L(yT ) is the loss of some algorithm that
predicts yT . The loss can be thought of L(yT ) = − logQ(yT )
for some unknown distribution Q that approximates P . In the
worst case setting of individual sequences [4], we define the
maximal or worst case regret as

R∗
T (Q,P ) = max

yT
[− logQ(yT ) + logP (yT )].

In universal sources coding we often do not know P but only
a class of sources S to which P belongs. Following Davisson
[1], we analyze the minimax regrets defined as follows (cf.
[7]–[9]):

r̄T (S) =min
Q

sup
P∈S

EP [− logQ(yT ) + log sup
P∈S

P (yT )],

r∗T (S) =min
Q

max
yT

[− logQ(yT ) + log sup
P∈S

P (yT )].

The big question is how these different regrets are related
for different classes of sources S . In [9] it is shown that if the
maximum likelihood distribution belongs to the convex hull
of S, then r∗T (S)− r̄T (S) = O(cT (S)) where

cT (S) =
∑
yT

P (yT ) log

(
sup
P∈S

P (yT )/P (yT )

)
.

It was also proved that r∗T (S) = r̄T (S) +O(1) provided the
maximum likelihood distribution belongs to the convex hull
of S (e.g., for sources with finite memory such as Markovian
sources). It is known [3], [5], [7]–[9], [12], [13] that for a large
class of sources the redundancy grows as m−1

2 log T when the
alphabet size m is fixed and m−1

2 log(T/m) for m = o(T )
(see [3], [6], [12]).



b) Regret in Online Learning: We phrase our online learn-
ing problem in terms of a game between nature/ environment
and a learner/predictor. Broadly, the learner’s objective is to
process past observations to predict the next realization of
nature’s labeling sequence. At each round t ∈ N, let yt be the
true label yet to be revealed. At each time t, the learner obtains
a d dimensional input/ feature vector xt ∈ Rd. In addition to
xt, the learner may use the past observations (xr, yr), r < t to
make a prediction ŷt of the true label. Therefore, the prediction
can be written as ŷt = gt(y

t−1,xt), where gt represents the
strategy of the learner to obtain its prediction based on the past
and current observations. Hence, the learner is modeled by the
sequence of predicting actions gt, t > 0. Once a prediction
is made, the nature reveals the true label yt and the learner
incurs some loss evaluated based on a predefined function
ℓ : Ŷ × Y → R, where Ŷ and Y are the prediction and label
domains respectively.

In regret analysis, we are interested in comparing the
accumulated loss of the learner with that of the best strategy
within a predefined class of predictors (experts) denoted as
H. More precisely, H is a collection of predicting functions
h : Rd 7→ Ŷ , with input being xt at each time t. Therefore,
given a learner gt, t > 0 and after T rounds with the
realizations (yt,xt)

T
t=1, the pointwise regret is defined as

R(gT , yT ,H|xT ) =

T∑
t=1

ℓ(ŷt, yt)− inf
h∈H

T∑
t=1

ℓ(h(xt), yt),

where ŷt = gt(y
t−1,xt), and the first and the second

summations represent the accumulated loss of the learner and
the best predictor in H, respectively. There are two main
perspectives on analyzing the regret, highlighted next.
Fixed Design: This point of view studies the minimal regret
for the worst realization of the label with the feature vector
xT known in advance. Let gt, t > 0 be the strategy of the
predictor. Then, the fixed design minimax regret is defined as

r∗T (H|xT ) = inf
gT

sup
yT

R(gT , yT ,H|xT ). (1)

Further, the fixed design maximal minimax regret is given by

r∗T (H) = sup
xT

inf
gT

sup
yT

R(gT , yT ,H|xT ). (2)

Note that this notion was also discussed in the literature under
the name of Transductive Online Learning, see [14].
Sequential Design: In this point of view, the optimization on
regret is performed at every time t without knowing in advance
xT or yT . Then the sequential minimax regret is defined as

raT (H|xT ) = inf
ŷ1

sup
y1

· · · inf
ŷT

sup
yT

R(ŷT , yT ,H|xT ).1 (3)

Moreover, the sequential maximal minimax regret is [15]

raT (H) = sup
x1

inf
ŷ1

sup
y1

· · · sup
xT

inf
ŷT

sup
yT

R(ŷT , yT ,H|xT ). (4)

The sequential regret should be interpreted as follows. At round
t = 1, the adversarial chooses a x1 ∈ Rd that gives the worst

1Here we abused ŷt to denote a number instead of a function.

regret for the best choice of ŷ1 for the worst choice of y1 and
for the interleaved worst, best, worst choices of xt, h(·) to
compute ŷt and yt, respectively. Then, for the given x1, and
subsequent worst/best choices, the player chooses ŷ1, and the
adversary chooses the worst choice of y1.
Average Regrets: We also introduce the averaged variants of
regrets. Let D be a joint probability distribution on (Rd,Y)T .
Then the fixed design average minimax regret is

r̄T (H, D|xT ) = inf
gT

EY T∼DY T |XT
R(gT , Y T ,H|xT ).

Similarly, the sequential average minimax regret is

r̄aT (H, D|xT ) = inf
ŷ1

EY1 · · · inf
ŷT

EYT |xT−1yT−1R(ŷT , Y T ,H|xT ).

c) Main Contributions: In the next section, we present
our main results establishing relationships between fixed
design and sequential minimax regrets for different hypothesis
classes and loss functions. Throughout, we assume binary
labels yt and bounded features xt living in Rd. We prove in
Theorem 1 that the sequential and fixed design regrets are
equal in two cases when data is known in advance: (i) for the
worst case formulation raT (H|xT ) = r∗T (H|xT ); and (ii) for
the average sense r̄T (H, D|xT ) = r̄aT (H, D|xT ). Moreover,
maximizing over xT in a fixed design scenario gives us a
universal lower bound for the sequential minimax regret, that
is, raT (H) ≥ r∗T (H). Thus a question arises as to whether
this lower bound is achievable or not. It turns out that the
answer depends on the hypothesis classes. In Theorem 2 we
prove that for the logarithmic loss and linear class functions
these two regrets are asymptotically equivalent. But, we show
that for linear threshold predictors, the fixed design maximal
regret is logarithmically smaller than the sequential one (see
Theorem 3) under log-loss. More precisely, raT (Ha) ≥ T ,
while r∗T (Ha) ≤ log(T + 1). Our main results are presented
in Section II with some proofs in Section III.

II. MAIN RESULTS

In this section, we present our main results in two categories:
First, we discuss general relationships between the maximal
and average fixed design and sequential minimax regrets. Then
we focus on certain hypothesis classes H for which we present
some precise asymptotics indicating that in some cases the
maximal minimax regret r∗T (H) and the sequential minimax
regret raT (H) are asymptotically equal while for other classes
one can only assert that raT (H) > r∗T (H).

We first briefly review main techniques used in this context.
There are some standard techniques to derive bounds on these
two regrets. For example, when the loss function is ℓ(ŷ, y) =
|y − ŷ| (generalized error) for any class H of binary-valued
functions, one can show [14], [16]

r∗T (H) = O(
√
VC(H)T ), raT (H) = O(

√
Ldim(H)T ),

where VC(H) and Ldim(H) are the Vapnik–Chervonenkis
(VC) and the Littlestone dimensions of H, respectively.

In addition to such techniques, we are aware of two main
methods to analyze the regrets: (i) the Sequential Rademacher
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complexity [15] for the sequential regrets; and (ii) Shtarkov
Sum for the fixed design regrets. The first approach is typically
used to analyze raT (H) and provides bounds on the regrets
for general predictor classes. Namely, for H being a class of
binary valued functions with the absolute loss ℓ(ŷ, y) = |y− ŷ|,
the sequential regret is bounded as

Ra
T (H) ≤ raT (H) ≤ 2Ra

T (H)

where Ra
T (H) is the Sequential Rademacher complexity of H,

see [15, Definition 5]. While this approach is quite successful
in characterizing the regrets under absolute loss (and similarly
convex bounded losses), it can be quite loose in characterizing
unbounded losses [17], e.g., logarithmic loss of the form ℓ(P,
xT ) = − logP (yT |xT ,H).

The second approach (Shtarkov sum [4], [9]) typically
leads to precise characterizations for logarithmic losses [18].
Particularly, for any class H of functions with image in [0, 1]
and with logarithmic loss, we have that

r∗T (H) = sup
xT

logST (H|xT ) = sup
xT

log
∑
yT

sup
h∈H

Ph(y
T |xT ),

where ST (H|xT ) is the Shtarkov sum of H conditioned on
xT [18]. However, the Shtarkov sum based approach can only
address fixed design regrets. The main objective of this paper is
to investigate the relationships between the two notions of the
regrets under different losses, and develop general approaches
for analyzing the regrets.

Now we present our main results. We start with relationships
between the regrets for a general hypothesis class H and
a general loss function ℓ. The following relations between
different minimax regrets hold.

Theorem 1 (General Relations). Let H be any general
hypothesis class and ℓ be any loss function. Then raT (H|xT ) =
r∗T (H|xT ) and r̄aT (H, D|xT ) = r̄T (H, D|xT ) for any xT ∈
RdT and distribution D. Furthermore, raT (H) ≥ r∗T (H), and
the inequality is strict for certain H, and loss function ℓ.

We now consider a few hypothesis classes and loss functions
to assess the strength of the inequality in Theorem 1.
Logarithmic loss: Let f : R → [0, 1] be a L-Lipschitz function
such that there exist constant c, such that for all B ∈ [−1, 1],
f(x) takes the full range of [ 12 − cB, 1

2 + cB] ⊂ [0, 1] with
x ∈ [−B,B]. We denote Bd

2 to be unit ball of dimension d
with ℓ2 norm. In this subsection we consider the following
hypothesis class

Hf,w = {h : Rd → R : h(x) = f(⟨w,x⟩) : w,x ∈ Bd
2},

where w is a d dimensional weight vector and ⟨w,x⟩ is the
scalar product. For any h ∈ H, we interpret h(x) ∈ [0, 1] as
the probability assigned to Y = 1. Therefore, the logarithmic
loss function corresponding to h(x) equals to ℓ(h(x), y) =
− log |1 − h(x) − y|, for all y ∈ {0, 1}. We just observe
that this loss function is equivalent to the logarithmic loss
function of the correct classification probability, that is, ℓ(h(x),
y) = − logP (Y = y|x).

Theorem 2. If d = O(T 1/2−ε), then the regret for the
hypothesis class Hf,w and the log-loss function satisfies

r∗T (Hf,w) = Θ(d log T ), raT (Hf,w) = Θ(d log T ).

In summary, r∗T (Hf,w) ≍ raT (Hf,w).

Theorem 2 shows that the d log T upper bound holds for
any L-Lipschitz function f , while in [19] the author considers
only the case when the second derivative of log(1/f(x)) is
bounded (see [19, Equation (19)])2.

Lastly, we end this section with studying regrets for linear
threshold predictors. In particular, we can prove our third main
result in the following theorem. The proof is rather standard
and left to the reader due to the lack of space.

Theorem 3. Let Ha = {ha : ha(x) = 1{x ≥ a}, a, x ∈ R} be
the class of all linear threshold functions. If ℓ(yt, ŷt) = |yt−ŷt|,
i.e., the absolute loss, then

raT (Ha) ≥
T

2
, and r∗T (Ha) ≤ O(

√
T log T ).

If ℓ(yt, ŷt) = − log |1− yt− ŷt|, i.e, the logarithmic loss, then
raT (Ha) = T and r∗T (Ha) = log(T + 1).

The above results lead us to the following open problem:

Problem 1 (Open Problem). Under what conditions on the
class H do we have raT (H) ≍ r∗T (H) for the log-loss? In
particular, suppose the fat-shattering number and sequential
shattering number as in [15] are of the same order, do we
have raT (H) ≤ poly log(T )r∗T (H)?

We should remark that without any restriction on H, for
any function f(T ) ≤ T , we can construct a class H such that
r∗T (H) ≤ O(log T ) but raT (H) ≥ f(T ) for infinitely many T
and raT (H ≤ O(f(T )). This is achieved by choosing H such
that the sequential fat-shattering number scales much faster
than the fat-shattering number (by e.g., embedding the linear
threshold functions).

III. PROOF OF THE MAIN RESULTS

A. Proof of Theorem 1

We start with the following lemma.

Lemma 1. Let A,B be two sets, and f : A×B → R be an
arbitrary function, then

inf
g∈G

sup
b∈B

f(g(b), b) = sup
b∈B

inf
a∈A

f(a, b),

where G = AB is the class of all functions from B → A.

Proof: The proof is similar to the idea in the
proof of [15, Lemma 3]. For any b, we define function
ĝ(b) = argmina∈A f(a, b). We have supb∈B f(ĝ(b), b) =
supb∈B infa∈A f(a, b). Thus, we have LHS ≤ RHS. To see
the converse, let g∗ = argming∈G(supb∈B f(g(b), b)). We
have supb∈B f(g∗(b), b) ≥ supb∈B infa∈A f(a, b) since in the

2Note that the result in [20] also implies a similar upper bound, but has a
worse leading constant.
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former term the first argument in f(a, b) is fixed while the
second term has an infimum. This implies LHS ≥ RHS.

The first part of Theorem 1 follows from the next lemma.

Lemma 2. For any function f : ŶT × YT → R, we have

inf
g1∈G1,···,gT∈GT

sup
yT∈YT

f(g1(∅), g2(y1), · · · , gT (yT−1), yT )

= inf
ŷ1∈Ŷ

sup
y1∈Y

· · · inf
ŷT∈Ŷ

sup
yT∈Y

f(ŷT , yT ),

where ∅ is empty string.

Proof: We prove the lemma by induction on T , the case
for T = 0 is trivial since g1 is simply an element in Ŷ . Note
that inf ŷT

supyT
f(ŷT , yT ) can be viewed as a function over

ŶT−1 × YT−1. By induction hypothesis for T − 1, we have

inf
ŷ1∈Ŷ

sup
y1∈Y

· · · inf
ŷT∈Ŷ

sup
yT∈Y

f(ŷT , yT ) =

inf
gT−1

sup
yT−1

inf
ŶT

sup
yT

f(g1(∅), · · · , gT−1(y
T−2
1 ), yT−1

1 , ŷT , yT ).

By Lemma 1, for any gT−1, we have

sup
yT−1

inf
ŷT

sup
yT

f(g1(∅), · · · , gT−1(y
T−2), yT−1, ŷT , yT ) =

inf
gT∈GT

sup
yT

f(g1(∅), · · · , gT (yT−1
1 ), yT1 ).

Putting infgT−1
1

on both side one will finish the proof.
Note that the average case part in Theorem 1 follows from

similar argument as above by notice that infg EXf(g(X),
X) = EX infa f(a,X). The final part follows from the
minimax inequality infa supb f(a, b) ≥ supb infa f(a, b) since
we can iteratively interchange supxt

and inf ŷt in the expression
of raT without increase the value.

B. Proof of Theorem 2

We first prove the lower bound of r∗T (Hf,w) by choosing a
particular xT . We partition the inputs xT and outputs yT into
d parts where each part has length of T/d. With that, the ith
part of the inputs and the outputs are denoted by x(i) =
(x(T/d)∗(i−1)+1, · · · ,x(T/d)∗i) and y(i) = (y(T/d)∗(i−1)+1,
· · · , y(T/d)∗i), respectively. Note that each element of x(i)

is a vector in Rd. We choose any element of x(i) equal to the
standard basis vector i ∈ Rd, that is 1 at the coordinate i and
0 elsewhere.

For each xi,w ∈ Rd, we interpret Pr[yi = 1|xi] = f(⟨w,
xi⟩) at the prediction of yi. Which further defines a product
measure pw(yT |xT ) =

∏T
i=1 Pr[yi|xi] over yT ∈ {0, 1}n.

Note that for any given xT

r∗T (Hf,w) ≥ r∗T (Hf,w|xT ) = logST (Hf,w|xT ),

where ST (Hf,w|xT ) is the Shtarkov sum of the mea-
sures pw(·|xT ). Therefore, it is sufficient to lower bound
ST (Hf,w|xT ) which, with the above notation, is written as

ST (Hf,w|xT ) =
∑

yT∈{0,1}n

sup
w∈Bd

2

pw(yT |xT ).

By the selection of xT in the first paragraph and since ⟨w,

i⟩ = wi, we have

ST (Hf,w|xT ) =
∑

yT∈{0,1}T

sup
w∈Bd

2

d∏
i=1

Pf (y
(i)|wi), (7)

where Pf (y
(i)|wi) = f(wi)

ki(1−f(wi))
T/d−ki with ki being

the number of 1s in y(i). Next, we derive a lower bound on
ST by limiting the range of w so that |wi| ≤ 1/

√
d for all

i ∈ [d]. Therefore, we have that

ST (Hf,w|xT ) ≥
∑

yT∈{0,1}T

d∏
i=1

sup
wi∈[−1/

√
d,1/

√
d]

Pf (y
(i)|wi)

=

d∏
i=1

∑
y(i)∈{0,1}T/d

sup
wi∈[−1/

√
d,1/

√
d]

Pf (y
(i)|wi)

=
( ∑

y∈{0,1}T/d

sup
w∈[−1/

√
d,1/

√
d]

Pf (y|w)
)d

, (8)

where the last equality holds due to the symmetry over i. We
proceed with the following lemma.

Lemma 3. The following inequality holds:∑
y∈{0,1}T/d

sup
w∈[−1√

d
, 1√

d
]

Pf (y|w) ≥ Ω(
√

T/d2). (9)

Proof: Note that for all k ∈ [T/d], there exists a constant
C ∈ R+ such that

B(k, T/d)
def
=

(
T/d

k

)(
k

T/d

)k (
1− k

T/d

)T/d−k

≥ C

√
T/d

k(T/d− k)
.

Note that∑
y∈{0,1}T/d

sup
w∈[−1√

d
, 1√

d
]

Pf (y|w) ≥
T/2d+cT/d

√
d∑

k=T/2d−cT/d
√
d

B(k, T/d).

Therefore, for each k in the above summation, we have that

1√
k(T/d− k)

≥ d/T√
1

1/4−c2/d

=
√
(1/4− c2/d)d/T.

Therefore, the LHS of (9) is lower bounded by

C
√
(1/4− c2/d)

√
T

d

2c√
d
= Ω(

√
T/d2),

for d > 4c2.
With this lemma and (8), we find the following lower bound

ST (Hf,w|xT ) ≥ cd1

(
T

d2

)d/2

,

for some constant c1 independent of T, d. As a result,

r∗T (Hf,w) ≥ logST (Hf,w|xT ) ≥ d/2 log T−d log d+d log c1,

which completes the proof of the lower bound in the theorem.
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We now prove the upper bound for r∗T (Hf,w). For that, we
choose a covering set G of Bd

2 such that any point in Bd
2 is

d/LT 2 close to some point in G under ℓ2 distance. Clearly,
we have |G| ≤

(
3LT 2/d

)d
since the covering number is upper

bounded by packing number of half radius. For any given
x1, · · · ,xT and w ∈ Bd

2 , we can define a probability measure
pw on {0, 1}T such that

pw(yT |xT ) =

T∏
i=1

f(⟨w,xi⟩)yi(1− f(⟨w,xi⟩))1−yi .

We drop the dependence of pw on xT for notation convenience.
Define P be the class of probability measures pw induced by
parameters w ∈ G. We define another class P ′ such that we
replace any pw ∈ P with pw(yi) < 1/T or > 1− 1/T with
pw(yi) = 1/T or pw(yi) = 1 − 1/T respectively. We claim
that for any w ∈ Bd

2 there exist p ∈ P ′ such that

sup
yT∈{0,1}

pw(yT )/p(yT ) ≤ ed. (10)

To see this, we choose w′ ∈ G that is d/LT 2 close to w under
ℓ2 distance. Let p be the probability measure in P ′ that is
associated with pw′ , i.e, p is the truncated distribution of pw′ .
We show that p is the desired distribution in (10). For any
i ∈ [T ], if pw(yi) > 1− 1

T , we have p(yi) ≥ 1− 1
T − d/T 2

(since by Lipschitz condition if pw(yi) ≥ 1 − 1/T + d/T 2

we have p(yi) = 1 − 1/T else we have p(yi) ≥ pw(yi) −
d/T 2 ≥ 1 − 1/T − d/T 2.), which implies that (for d ≤ T )
we have pw(yi)/p(yi) ≤ 1+ 1/(T − 2). As p(yi) ≥ 1/T and
|p(yi)−pw(yi)| ≤ d/T 2 (by Lipschitz condition and definition
of G,P ′), for any pw(yi) ≤ 1− 1

T , we have

pw(yi)

p(yi)
≤ p(yi) + d/T 2

p(yi)
≤ 1 + d/T. (11)

Putting everything together, we obtain the inequality pw(yT )
p(yT )

≤
(1 + d/T )T ≤ ed. Now, we observe that∑

yT

sup
w∈Bd

2

pw(yT ) ≤
∑
yT

ed ∗ p(yT ) ≤ ed
∑
yT

sup
p∈P′

p(yT ).

Since the Shtarkov sum of a finite set is upper bounded by its
size. We have

r∗T (Hf,w) ≤ log |G|+ d = 2d log T − d log d+O(d),

where the constant in BigOh is independent of T, d.
Next, we prove the bounds for raT as well. The lower bound

is straightforward as raT ≥ r∗T (Theorem 1). In what follows,
we prove the upper bound on raT via the achievability argument.
For that, we use the Bayesian scheme introduced in [21], and
analyze its regret. We start with the description of this approach.
Let P be a class of functions that map X t×Yt−1 → ∆(Y) for
all t ∈ N, where ∆(Y) is the set of all probability measures
on Y . We assume that the functions in P are indexed by Θ.
For any θ ∈ Θ, we denote

p(yT |xT , θ) =

T∏
t=1

qθ(yt|xt, yt−1), (12)

where qθ is the probability measure in P indexed by θ with
input (xt, yt−1). Let p0 be some probability measure on Θ.
We denote

p(yT |xT ) =

∫
p(yT |xT , θ)p0(θ)dθ. (13)

The Bayesian prediction rule at time t is given by

p̂(yt|xt, yt−1) =
p(yt|xt)

p(yt−1|xt−1)
. (14)

Clearly, this is a valid prediction rule since p(yt|xt) can be
evaluated with only the observation of (xt, yt−1). Moreover,
for any xT , the probability assigned on yT by the Bayesian
rule is exactly p(yT |xT ). The following lemma was proved
in [21, Lemma 2.1] (see also [22, Theorem 1]). (Note that the
lemma we present below is slightly stronger than [21] since
we allow the functions in P to be dependent on past xt, yts,
while the proof is exactly the same.)

Lemma 4. Let Q be any distribution over Θ, and define

LQ(y
T |xT ) =

∫
log(1/p(yT |xT , θ))Q(θ)dθ.

Then for any xT , yT , we have

log(1/p(yT |xT )) ≤ LQ(y
T |xT ) + KL(Q||p0).

Corollary 1. Suppose Θ is finite, and p0 is the uniform
distribution over Θ. Then for any xT , yT

log(1/p(yT |xT ))−min
θ∈Θ

log(1/p(yT |xT , θ)) ≤ log |Θ|.

This implies raT (P) ≤ log |Θ| under log-loss.

Proof: Let θ∗ be the minimizer of minθ log(1/p(y
T |xT ,

θ)). Let Q be the distribution that assigns probability 1 on θ∗.
By Lemma 4, we only need to show that KL(Q||p0) ≤ log |Θ|
which follows trivially.

Now, we are ready to prove the upper bound on raT . We
consider the same covering set G as in the proof of Theorem 2
for r∗T . Note that, the selection of the G does not depend on the
realization of xT , yT . Moreover, the truncation for probabilities
f(⟨w,xi⟩) > 1 − 1/T or < 1/T does not depend on future
samples. We can run the Bayesian approach with uniform prior
over G. By Corollary 1, we have raT (G) ≤ log |G|. Moreover,
since for any samples xT , yT and w ∈ Bd

2 there exists some
p ∈ P ′ (where P ′s is defined as in the proof of Theorem 2
for r∗T ) so that pw(yT |xT )/p(yT |xT ) ≤ ed. We have

inf
w∈Bd

2

log(1/pw(yT |xT )) ≥ inf
p∈P′

log(1/p(yT |xT ))− d.

Therefore, raT (Hf,w) ≤ 2d log T − d log d+O(d).
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