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Abstract—Over decades traditional information theory of
source and channel coding advances toward learning and effective
extraction of information from data. We propose to go one
step further and offer a theoretical foundation for learning
classical patterns from quantum data. However, there are several
roadblocks to lay the groundwork for such a generalization.
First, classical data must be replaced by a density operator
over a Hilbert space. Hence, deviated from problems such as
state tomography, our samples are i.i.d density operators. The
second challenge is even more profound since we must realize
that our only interaction with a quantum state is through a
measurement which – due to no-cloning quantum postulate –
loses information after measuring it. With this in mind, we
present a quantum counterpart of the well-known probably ap-
proximately correct (PAC) framework. Based on that we propose
a quantum analogous of the Empirical Risk Minimization (ERM)
algorithm for learning measurement hypothesis classes. Then,
we establish upper bounds on the quantum sample complexity
quantum concept classes.

I. INTRODUCTION

Over the past few decades, we have been mastering the
ability to learn from data to perform many tasks such as
classification, statistical inference, and pattern recognition.
Recent achievements in quantum information processing to
collect, store and process quantum systems endow us with a
more powerful ability: learning from quantum data.

As research in quantum information theory suggests, funda-
mental concepts in classical settings admits multiple quantum
counter-parts. For example, the task of communicating data
over quantum channels leads to multiple notions of capacity
[1]. The task of “learning” from “quantum data” is not an ex-
ception. Recently, researchers have been developing different
learning frameworks [2]–[6].

From the perspective of quantum statistical learning theory,
which is the view of this work, the learning models can be
grouped into two main categories. The first category, refered
to as state tomography or state discrimination, the objective
is to find an approximate description of an unknown quantum
state or distinguish it from another state using measurements
on multiple copies of the state [7]–[9]. A survey on this
topic is provided in [10]. An operational view of learning
quantum states is introduced by [2]. Another related work in
this line is [11] where the objective is to learn an unknown
measurement E from samples of the form {(ρi, tr{Eρi})}ni=1,
where ρi’s are independent and identically distributed (i.i.d.)
random quantum states. Quantum state classification in this

model then studied under various restrictions on the states
(e.g., pure, mixed) [12], [13]. In the second group of works,
which is refered to as the quantum oracle model, we measure
identical copies of a superposition state to solve a classi-
cal learning problem [5], [14]. Learning using this method
has been explored in several works such as [14]–[17] and
analogous of the well-known agnostic PAC framework was
introduced in [18].

The main departure point of this article from the mentioned
models stems from the the fact that samples are not identical
copies of each other; rather they are i.i.d. quantum states.
Further, we are not required to learn the states rather we need
only to learn a classical attribute to such states. That is we have
an ensemble of quantum states, and associated to each state
we have a classical attribute/label. Or alternatively, one can
think of a quantum system that is measured by an unknown
measurement (nature’s measurement). We have access to the
post-measurement states as well as the classical outcomes. The
objective is to learn this measurement. Applications of this
model has been studied under various settings [19]–[21] such
as classification of entangled and separable quantum states
[22], [23] and integrated quantum photonics [24]. That said,
we propose a different model for learning from quantum data.
As a prototype, consider the following problem:

Suppose that there is a physical device randomly emitting
a sequence of quantum states (e.g, photons), say ρ1, ρ2, ....
Associating to each state is a classical attribute yi ∈ Y , such as
“red” or “blue” as its color. The probability distribution of the
states and the underlying law governing their classical attribute
are unknown. However, we know that the states belong to
a family of parametrized quantum systems. We seek for a
procedure that, given a number of training quantum states with
their labels, learns the device’s coloring/labeling law in order
to predict the label of a new quantum state from this device.

Our problem formulation is motivated by the original/early
questions that led to the theory of statistical learning. Suppose
a computing device is provided with m training samples (xi,
yi) ∈ X × Y : 1 ≤ i ≤ m, can it learn the probabilis-
tic/functional relationship between the label y ∈ Y and the
features x ∈ X . More specifically, under what conditions can
an algorithm pick out a function from its library (hypothesis
class) that best approximates the probabibilistic/functional
relationship? The pursuit of an answer to this question led
to the elegant theory of PAC learning, Vapnik–Chervonenkis



(VC) dimension, Radamacher complexity and such. As we
describe in the sequel, our work formulates this very question
in a quantum setup and we provide an initial set of our
findings.

As our first contribution, we propose a quantum counter
part of the PAC learning framework as developed by [25],
[26]. In our model the samples are pairs (ρi, yi), where ρi’s
are density operators on a Hilbert space HX and yi ∈ Y are
the classical labels. What we therefore seek is a measurement
that will label a quantum state correctly. Hence, the predictors
are measurements modeled as positive operator-valued mea-
sure (POVM). Analogous to the standard PAC, our quantum
algorithm has a library of POVMs modeling the concept class
of candidate predictors. By fixing a loss operator, we are lead
to the analogous fundamental question of PAC learning: What
is the quantum sample complexity for learning a measurement
class?

To answer this question, we propose the quantum analogous
of ERM algorithm and provide a bound on the quantum
sample complexity. We will show that our model subsumes the
classical PAC framework under some orthogonality condition.
Further, our sample complexity bounds matches with classical
ones. As a result, we conclude that the task of learning
from quantum states is harder than classical. In other words,
quantum sample complexity is not smaller than the classical
sample complexity. We further show that the quantum sample
complexity of a quantum concept class depends not only on its
size but on a fundamental property called compatibility of the
measurements in the class [27]. Such intrinsic quantum nature
of the problem precludes a straightforward use of already de-
veloped complexity measures such as VC dimension, covering
number and fat-shattering dimension [28], and Rademacher
complexity from statistical learning theory [29].

As a careful reader will recognize, this learning frame-
work hides several complexities. In what follows, we briefly
highlight some its challenges and differences from previous
models.

First, our only interaction with a quantum state is through
a measurement. This necessitates the learning algorithm to
be implemented via a quantum measurement with possible
classical post-processing. Hence, abiding axioms of quantum
mechanics, we can process the training samples only once,
as they collapses after the measurement. This is a challenge;
because, unlike the mentioned models, we do not have access
to identical copies of the training samples. This difficulty is
exacerbated as the no-cloning principle prohibits making new
copies from the states at hand.

The second challenge arises from the uncertainty princi-
ple. Usually a learning algorithm needs to estimate multiple
parameters via different measurements on the samples (e.g.,
empirical loss of different predictors). Ideally, we would like
to combine these measurements and use one set of samples
for all estimations. However, such measurements might not be
compatible and hence, if we combine them the estimations’
accuracy can drop significantly [27]. Motivated by the notion
of unbiased measurements [30], [31], we propose compatibility

covering in Section III.
Third, the training states are not completely distinguishable

as they are not orthogonal. Hence, the amount of information
we can extract from the samples is limited by the amount of
their overlaps.

In this paper is organized as follows: In Section II, we
formally describe the elements of our model and define a new
quantum analogous of PAC. Then, in Section II-A we argue
that classical learning is subsumed under this model. In section
III we elaborate on the compatibility issue and propose our
sample complexity bound. Lastly, in Section III-A we propose
Quantum ERM (QERM) to prove our results.
Preliminaries Quantum states as usual are density operators,
that are linear operators, self-adjoint, unit-trace and positive
semi-definite. We denote by D(H) the set of all density
operators on H . Any quantum measurement in this paper is
modeled by a POVM. We denote a POVM as M := {Mv,
v ∈ V}, where V ⊂ R is the (finite) set of possible outcomes.
Operators of the measurement satisfy the following conditions:
Mv = M†v ≥ 0,

∑
vMv = I, where I is the identity operator.

For short-hand, we use [n] to denote the set {1, 2, ..., n} for
any n ∈ N.

II. THE PROPOSED QUANTUM LEARNING MODEL

In this section, we formally propose our learning model. We
discuss the differences between this model and the standard
PAC framework. Also we show the classical learning frame-
work is subsumed under our model.

Similar to the PAC framework, our model consists of
multiple components which are defined in the following. Let
X be a finite set. The feature set is a collection of fixed density
operators ρx, x ∈ X , acting on a fixed Hilbert space HX . The
set of possible classical labels is a finite set Y . For example,
in binary classification of qubits HX is a two dimensional
Hilbert space and Y = {0, 1}.

For compactness, we consider an auxiliary quantum
register (pure state) for storing the classical labels. Let
HY denote the Hilbert space of the labels created as
HY = span {|y〉 : y ∈ Y}.With this notation, ρx together
with its label y are represented by the bipartite quantum
state ρx⊗ |y〉〈y|. Hence, the feature-label set is given by
{ρx⊗ |y〉〈y| : x ∈ X , y ∈ Y}.

Consider an unknown, but fixed, probability distribution D
on X × Y . As the training set, we are given n i.i.d. samples
ρxi
⊗ |yi〉〈yi| , i ∈ [n], where (xi, yi) are drawn from D.

With this setup, the training samples are represented by the
tensor product state Sn =

⊗n
i=1

(
ρi⊗ |yi〉〈yi|

)
. Further, the

average density operator of each sample is ρXY =
∑
x,yD(x,

y)ρx⊗ |y〉〈y|.
We seek a procedure that given the training samples,

construct a predictor for the task of classification (statistical
inference). The predictor is given the only feature state ρx
and is tasked to produce a label. Since the features are
quantum states and the labels are classical, the predictors
are quantum measurements.That said, a predictor is a POVM
M := {My : y ∈ Y} acting on the X-system only. To test
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a predictor M, a new sample is drawn according to D. If
ρx⊗ |y〉〈y| is the realization of the test sample, then without
revealing y, we measure ρx with M. The outcome of this
predictor is ŷ with probability tr{Mŷρx}, ŷ ∈ Y . Note that
this is different from the classical settings, where the output
of the predictor is a deterministic function of the samples.
Since our labels are essentially stored in classical registers, we
employ a conventional loss function to measure the accuracy
of the predicted label. Thus, by ` : Y × Y 7→ [0, 1] we
denote the (normalized) loss function. Therefore, the true risk
of a predictor M with respect to the underlying sample’s
distribution D is

LD(M) =∆
∑

(x,y,ŷ)∈X×Y×Y

D(x, y) `(y, ŷ) tr{Mŷρx}.

The concept class in our model is a collection C of
predictors and its minimum loss is denoted by optC =∆

infM∈C LD(M). Before describing the rest of the model, let
us present the following example.

Example 1. Consider electrons with spin pointing in a direc-
tion, represented by a 3−dim unit vector in the Bloch sphere.
Let finite set X = {(θi, φj) = ( iπ20 ,

j2π
20 ) : 0 ≤ i, j ≤ 19}

represent the possible spin axis directions. We have two labels
in Y = {blue, red}. Nature decides to label an electron ‘blue’
if the axis of its spin is orthonormal to a specific orthant.
Otherwise the electron is labeled ‘red’. For this she chooses
a specific orthant O. This establishes a relationship - pY |X
- between the elements (x, y) ∈ X × Y . Going further, she
chooses a distribution pX , samples X wrt this distribution,
endows an electron with the corresponding spin and hands
only the electron to us. Our predictor is aware of X , its
association with the spin directions, i.e the mapping x→ ρx,
and Y . Oblivious to both the nature’s decision and the orthant,
but possessing the prepared electron, a predictor’s task is
to unravel the label. The predictor is a measurement with
two outcomes ‘blue’ and ‘red’. An optimal predictor will be
able to distinguish whether the axis of an electron’s spin is
orthonormal to O or otherwise.

Learning Algorithm as a Quantum Measurement: A quan-
tum learning algorithm is a process that with the training
samples as the input, selects a predictor from the concept
class.1 This process is modeled as a quantum measurement
on the joint space of all training the samples, i.e., H⊗nXY . The
outcome of this measurement is a classical number as the index
of the selected predictor in the concept class.

Definition 1. Let HXY be the feature-label Hilbert space.
Also let C be the concept class whose members are indexed
by a set J . Then, a (proper) quantum learning algorithm is
a sequence of POVMs An := {An,j : j ∈ J } , n ∈ N, acting
on H⊗nXY , the space of n samples, and with outcomes in J .

Unlike the classical settings, even if the samples are fixed,
the algorithm’s output is a random variable on J . That said,

1Our focus is on proper algorithms. Generally, we allow the selected
predictor to be outside of the concept class.

we can write MJ ∈ C as the selected predictor with J being a
random variable on J . With all the components described, we
are ready to define the quantum version of PAC learnability.

Definition 2 (QPAC). Given a concept class C, an algorithm
An, n ∈ N QPAC learns C, if there exists a function nC : (0,
1)2 7→ N such that for every ε, δ ∈ (0, 1) and all n ≥ nC(ε, δ)

sup
D

∑
j∈J

tr
{
An,jρ

⊗n
XY

}
1 {LD(Mj) > optC + ε} ≤ δ,

where ρXY is the average density operator of the samples with
respect to D and Mj ∈ C is the jth predictor in the class.

Our goal is to characterize concept classes that are learnable
and quantify their sample complexity. Before that, let us
discuss the connection to the classical PAC.

A. Classical PAC learning is a special case

We argue that the proposed formulation subsumes the
classical PAC learning framework.

Theorem 1. For a classical PAC learning model with feature-
label set X ×Y , hypothesis class H, loss function l : Y×Y 7→
[0, 1], and algorithm A, there exist a corresponding element
in the quantum learning model such that A is a PAC learning
algorithm with respect to the classical model if and only if
its quantum counter part is a QPAC learning algorithm under
the quantum model.

Proof idea:. We set ρx = |x〉〈x| ,∀x ∈ X , where |x〉’s are
pure orthogonal states. As a result the feature-label density
operators are |x〉〈x| ⊗ |y〉〈y| , x ∈ X , y ∈ Y . As for the
quantum hypothesis class, for any f ∈ H define the POVM
Mf =

{
Mf
y : y ∈ Y

}
where Mf

y =∆
∑
x:f(x)=y |x〉〈x|. Then,

our hypothesis class C is the collection of such POVMs
Mf , f ∈ H. It is not difficult to see that the risk of any
predictor Mf equals LD(Mf ) = ED[l(Y, f(X))] which is
the classical risk of f . Further, since the states are completely
distinguishable, one can show that any classical learning
algorithm can be implemented by a quantum algorithm. As a
result, of these arguments, we can show Definition 2 reduces
to the standard PAC definition and that the classical sample
complexity matches with quantum samples complexity.

Note that in the setting of the above result, beyond possible
computational advantages, the quantum learning does not
benefit statistically. Hence, in this case the quantum sample
complexity matches with the classical one. However, this
might not be the case when the hypothesis class is classical,
but ρx’s are not orthogonal. Similarly in quantum source
coding, when the states are not orthogonal, we get advantage
in compression rates [32], [33].

III. QUANTUM PAC LEARNING RESULTS

In this section, we present our main results which is a
bound on quantum sample complexity. As discussed in the
introduction, our bounds depend on the compatibility structure
of the predictors in the concept class. To present our results, we
need to elaborate on the notion of compatibility. The predictors
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in this paper are assumed to be sharp measurements. Thus,
from Theorem 2.13 of [27] the definition of compatibility is
reduced to the following.

Definition 3. A collection of sharp measurements Mj ={
M j
y : y ∈ Y

}
, j = 1, 2, ..., k, are compatible if their oper-

ators mutually commute, that is M j
yM

`
ỹ = M `

ỹM
j
y for all j,

` ∈ [k] and all y, ỹ ∈ Y .

Consequently, if C is a compatible concept class, then there
exists a basis on which all the predictors are diagonalized. If
C is a general concept class. Then, we group its members into
compatible subclasses.

Definition 4. Given a collection of observables C, a compati-
bility partitioning is a family of distinct subsets C1, C2, ..., Cm
of C such that C =

⋃
rCr and that the observables inside each

Cr are compatible internally with each other.

Note that there always exists a compatibility partitioning as
the single element subsets of C form a valid covering. Further,
note that the compatibility structure is an inherent property of
the concept class which is independent of the samples.

Now with the above definitions, we are ready to present our
main result in the following theorem.

Theorem 2. Any finite hypothesis class C is agnostic QPAC
learnable with quantum sample complexity bounded as

nC(ε, δ) ≤ min
CrComp. partition

m∑
r=1

⌈ 8

ε2
log

2m|Cr|
δ

⌉
,

where the minimization is taken over all compatibility parti-
tionings of C as in Definition 4.

The proof of the theorem is provided in the next subsection.

Remark 1. If C is a compatible concept class, then the sample
complexity bound in Theorem 2 simplifies to

⌈
2
ε2 log |C|δ

⌉
.

A. QERM algorithm and the Proof of the main result

We prove Theorem 2 by proposing our QERM algorithm.
As in the classical ERM, our algorithm is implemented by
measuring the empirical loss for each predictor M ∈ C and
finding the one with the minimum empirical loss. This is done
by applying an appropriately designed quantum measurement
on the samples to output the empirical loss value of each
M∈ C. In what follows, we describe this process. Further, we
propose a concentration analyses for quantum measurements.

We start with the measurement process for computing the
empirical loss of only one predictor. Let ` : Y × Y 7→ [0, 1]
be the loss function and Z be the image set of `. Since Y is
a finite set, then so is Z . With that, the loss value observable
for any predictor M := {Mŷ : ŷ ∈ Y} is given by LM :={
LMz : z ∈ Z

}
, where

LMz =
∑

y,ŷ∈Y:`(y,ŷ)=z

Mŷ ⊗ |y〉〈y| , ∀z ∈ Z. (1)

Therefore, the loss of M for predicting y from a given ρx
is obtained by applying LM on ρx⊗ |y〉〈y|. The result is a

random variable Z = `(y, Ŷ ) taking values from Z as in (1).
Note that, unlike the classical settings, when the predictor and
the samples are fixed the loss value is still a random variable.
In that case, the “conditional” expectation of the loss variable
Z for a fixed sample is given by 〈LM 〉ρx⊗|y〉〈y|, where 〈·〉
is the expectation value of an observable in a quantum state.
Hence, the overall expectation of Z equals E[Z] = 〈LM 〉ρXY

,
where ρXY is the average density operator of the sample.
Further, it is not difficult to see that the true risk of a predictor
M equals to

LD(M) = 〈LM 〉ρXY
= E[Z] =

∑
z∈Z

z tr
{
LMz ρXY

}
.

We compute an empirical loss of M by applying LM on
each sample. Let z(i) be the realization of the loss value
measured on the ith sample. Then, the empirical loss is given
by LD̂(M) =∆ 1

n

∑
i z(i). Next, we provide a quantum sample

complexity analysis. For that, we present a quantum analogous
of Chernoff-Hoeffding inequality.

Lemma 1. Let ρi, i ∈ [n] be i.i.d. random density operators on
a finite dimensional Hilbert space H . Let ρ̄ = E[ρi] be their
average density operator. Let M be a (discrete) observable
on H with outcomes bounded by the interval [a, b], where a,
b ∈ R. If Vi is the outcome of M for measuring ρi, then for
any t ≥ 0

P
{∣∣∣ 1
n

n∑
i=1

Vi − 〈M〉ρ̄]
∣∣∣ ≥ t} ≤ 2 exp

{
− nt2

2(b− a)2

}
,

where 〈M〉ρ̄ is the expectation value of M in state ρ̄.

The proof is omitted as it is a direct consequence of
Theorem A.19 in [34].

We apply Lemma 1 where the measurement is LM and
the random states are our i.i.d. samples with ρ̄ = ρXY as
the average density operator. Hence, by an appropriate choice
of t, given δ ∈ [0, 1], with probability (1 − δ) the following
inequality holds

|LD̂(M)− LD(M)| ≤
√

2

n
log

2

δ
.

As a next step, we would like to measure the empirical
loss for all the predictors in the given hypothesis class.
However, this is not straightforward as in the classical setting.
Because, after measuring the empirical loss of one predictor,
the quantum state of the samples collapses and we might not
be able to “re-use” the samples to measure the loss of another
predictor. Further, the no-cloning principle prohibits creating
multiple copies of the training samples.
Naive Strategy: In this strategy, the training samples are
partitioned into several batches, one for each predictorM∈ C.
Then, the empirical risk of each M is computed on the
corresponding partition. Therefore, it is easy to verify that

sup
M∈C

|LD̂(M)− LD(M)| ≤
√

2|C|
n

log
2

δ
.

Hence, the sample complexity of the naive strategy is
O( |C|ε2 log 1

δ ) that blows up with the size of the hypothesis
class.
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We improve upon this bound by leveraging from the com-
patibility notion.
QERM for Compatible Classes: Suppose the predictors in
the hypothesis class C are compatible. Let index the elements
of C by J = {1, 2, ..., |C|}. For each measurement M, we
have the loss observable LM with operators as in (1). Since
M∈ C are compatible, then so are LM . Hence, we create the
POVM LCQERM :=

{
Lz : z ∈ Z |C|

}
, with operators

LCQERM :=
{
Lz =

∏
j∈JC

LMj
zj : z ∈ Z |C|

}
, (2)

where
{
L
Mj
z : z ∈ Z

}
are the operators of the LMj

.
We compute the empirical loss of all predictors in C by

applying LCQERM on each sample. Let z(i) be the outcome of
LCQERM when measuring the ith sample. By zj(i) denote the
jth coordinate of the vector z(i). Then, the empirical loss of
the jth predictor in C is given by

LD̂(Mj) =
1

n

n∑
i=1

zj(i). (3)

Hence, we can simultaneously measure the empirical loss of
all the predictors without the need for partitioning the training
samples. We then establish the following result on the accuracy
of the empirical loss.

Lemma 2. Let C be a finite hypothesis class consisting of
compatible predictors. Let LD̂(Mj) be the empirical loss of
the jth predictor of C as in (3). Then, for δ ∈ [0, 1], with
probability at least (1− δ), the following inequality holds

max
M∈C

|LD̂(M)− LD(M)| ≤
√

2

n
log

2|C|
δ
.

As a result, we expect that the sample complexity increases
at most logarithmic with the size of the hypothesis class.
Hence, we get a significant improvement over the naive
strategy.
QERM for General Classes: Now we extend our approach
for a general hypothesis class C. The idea is to partition C into
compatible subclasses as in Definition 4.

Class partitioning: Based on Definition 3, we can check if
two measurements are compatible by checking whether their
operators commute. Hence, with an exhaustive search one
can find all possible ways of partitioning C into compatible
subclasses. Note that the compatibility depends only on C and
is independent of the samples. Hence, the partitioning can be
done once as a pre-processing step.

Sample partitioning: With a partitioning, observables in-
side each subclass can be measured simultaneously. However,
each compatible class must be supplied with an exclusive set
of training samples. This is because measurements belonging
to different subclasses may not be compatible. In other words,
the n training samples have to be partitioned into multiple
subsets, one for each subclass. The sample subsets are allowed
to have different sizes. Let nj be the size of the jth subset
corresponding to jth subclass.

We repeat the process described in the previous part on
each subclass with its sample subset. For that we create
measurements LCrQERM as in (2) and compute the empirical
loss of the predictors inside each subclass. We will show how
to chose the batch sizes and the best partitioning of C. With
this approach, we formally propose the QERM algorithm as
presented in Algorithm 1 and establish our theorem.

Algorithm 1: QERM
Input: Concept class C and n training samples.
Output: Index of the selected predictor in C

1 Partition C into a set of compatible subclasses
C1, C2, ..., Cm.

2 Partition the samples into m bathes, one for each
subclass.

3 for r = 1 to m do
4 Construct LCrQERM as in (2) and apply it on each

sample in the rth batch.
5 Let zr(i) be the vector outcome on the ith sample

of batch r.
6 Compute z̄rj = 1

nr

∑
i z
r
j(i), as the empirical loss

of the jth predictor in Cr.
7 return arg minr,j z̄

r
j as the index of the selected

predictor denoted by Mr,j .

As a last step in the proof Theorem 2, we analyze the sample
complexity and find an upper bound on n(δ, ε). The argument
follows from standard steps.

We apply Lemma 2 on each subclass Cr with the rth sample
batch with nr samples. Set nj = d 8

ε2 log 2|Cr|
δ e. As a result,

with probability (1− δ), the inequality maxM∈Cr |LD̂(M)−
LD(M)| ≤ ε

2 holds. Hence, from the union bound, with
probability at (1 − (1 − δ)m) ≈ 1 − mδ, we have that
max1≤r≤m maxM∈Cr |LD̂(M) − LD(M)| ≤ ε

2 . Let M̂ and
M∗ be the predictors minimizing the empirical loss and the
true loss, respectively. Then,

LD(M̂) ≤ LD̂(M̂) +
ε

2
≤ LD̂(M∗) +

ε

2
≤ LD(M∗) + ε.

The left-hand side is the loss of the selected predictor by
QERM and the righ-hand side equals opt+ε. Hence, the proof
is complete by replacing δ with δ/m.

IV. CONCLUSION

We studied learning from quantum data and formulated the
quantum counterpart of PAC framework. Then, we proposed
measurement partitioning to address the challenges such as no-
cloning principle and measurement incompatibility. Based on
that we introduce a quantum risk minimizer algorithm using
which we proved bounds on the quantum sample complexity
of finite concept classes.
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