
Temporal Ordered Clustering in Dynamic Networks
Krzysztof Turowski∗

Jagiellonian University, Poland
Email: krzysztof.szymon.turowski@gmail.com

Jithin K. Sreedharan∗
Purdue University, U.S.A.

Email: jithinks@purdue.edu

Wojciech Szpankowski
Purdue University, U.S.A.
Email: szpan@purdue.edu

Abstract—Given a single snapshot of a dynamic network in
which nodes arrived at distinct time instants along with edges,
we aim at inferring a partial order σ between the node pairs
such that u <σ v indicates node u arrived earlier than node
v in the graph. The inferred partial order can be deduced to a
natural clustering of the nodes into K ordered clusters C1 ≺ · · · ≺
CK such that for i < j, nodes in cluster Ci joined the network
before nodes in cluster Cj , with K being a data-driven parameter
and not known upfront. We first formulate our problem for a
general dynamic graph, and propose an integer programming
framework that finds the optimal partial order, achieving the
best precision (i.e., fraction of successfully ordered node pairs)
for a fixed density (i.e., fraction of comparable node pairs). We
then design algorithms to find temporal ordered clusters that
efficiently approximate the optimal solution. To illustrate our
techniques, we apply our methods to the vertex copying model
(also known as the duplication-divergence model).

I. INTRODUCTION

Dynamic networks grow over time with nodes or edges
getting added or deleted. Understanding temporal characteris-
tics of such networks is significant in practice since it helps us
to study the existence of certain network structures and their
future behaviour. One approach to reason about the history of
dynamic networks is guided by the problem of node labeling
according to their arrival order when only the structure of the
final snapshot of the network is provided. The availability of
merely structure means that either we are given an unlabeled
graph or the current node labels do not present any historical
information. As it turns out, in many real-world networks and
graph models, it is impossible to find a complete order of
arrival of nodes due to a large number of symmetries inherent
in the graph [1], [2]. In such cases, we can find a partial order
σ between the node pairs such that u <σ v indicates node u
arrived earlier than node v in the graph. Such a partial order
naturally translates into clusters of nodes {Ci} and introduces
an order among the clusters as C1 ≺ C2 ≺ · · · so that for any
i < j, all the nodes in the cluster Ci are estimated to be arrived
earlier than all the nodes in the cluster Cj , and all the nodes
inside each cluster are considered to be identical in arrival
order. We call such a clustering scheme as temporal ordered
clustering.

Temporal ordered clustering or partial order is related to
many applications in practice. For example in online social
networks, it can be useful to disseminate specific information
or advertisements targeted at nodes that arrived around the
same time. In biological networks, it identifies the evolution
∗These authors contributed equally to this work.

of biomolecules in the network and helps in predicting early
proteins that are known to be preferentially implicated in
cancers and other diseases [3]. In rumor or epidemic net-
works, temporal ordered clustering can assist in identifying
the sources and carriers of false information.

Our contributions.

• We provide a general framework and derive an optimization
problem for finding partial order of nodes (according to their
arrival order) in dynamic networks when only the final snap-
shot of its evolution is provided. The optimization problem
depends on the knowledge of the probabilistic evolution of
the graph model and the probability that any node u is older
than any other node v, denoted as puv . We then design a
sequential importance sampling algorithm to estimate puv
for any general graph model, and prove its convergence. The
solution to a linear programming relaxation of the original
optimization problem, with coefficients as estimated puv ,
presents an upper bound on the clustering quality.

• In the second part of the paper, as an application of
the proposed general technique, we focus on duplication-
divergence or vertex copying dynamic network model (DD-
model) in which, informally, a new node copies the edges
of a randomly selected existing node and retains them with
a certain probability, and also makes random connections
to the remaining nodes (see Section V for details). The
DD-model poses unique challenges for temporal ordered
clustering in comparison with other graph models, because
of the features listed below:
– Non-equiprobable large number of permutations: In many

of the graph models including the preferential attachment
and Erdős-Rényi graph models, all the feasible permuta-
tions of the same structure representing node arrival order
are equally likely [1]. This is not the case in the DD-
model (a counter example is given in the extended version
of this paper [4] due to space limitations). In other words,
unlike in our previous work [5], we do not assume the
isomorphic graphs that have positive probability under
graph model have the same probability. Moreover, in
the DD-model, all permutations on n letters are valid
unlike some models like preferential attachment model
and hence the effective space of total orderings is n!.

– Large number of symmetry: A duplication-divergence
graph contains a large number of automorphisms (see
Fig. 4 in the extended version [4]), whereas it is known
that Erdős-Rényi and preferential attachment graphs are

asymmetric with high probability [6], [1].
– Ineffectiveness of degree-based techniques: In some mod-

els (including preferential attachment model), the oldest
nodes have larger expected degrees than the youngest
nodes over time, with high larger expected degrees than
the youngest nodes over time, with high probability. But
it is known that in the DD-model the average degree
does not exhibit such a consistent trend [4], [7]. Thus
any method based on degrees is bound to fail here.

Prior related work. Many of the clustering techniques on
static graphs have been extended to dynamic graphs, where
primarily the aim was to study the evolution of fitness or
similarity based clusters [8], [9], [10], [11]. The temporal
ordered clustering or partial order inference considered in this
paper poses a very different problem in contrast to the classical
formulation. The optimization criterion for temporal ordered
clustering introduces a fresh look taking into account the graph
model and its temporal behavior (see Section III). Incidentally,
the main aim of our clustering is to characterize the inherent
limits of recovering the history of a dynamic network. The
nodes inside our clusters are indistinguishable in terms of their
arrival order due to symmetries in the input graph and there
exists a hierarchy or order among the clusters with respect to
graph evolution.

Node arrival order in the DD-model has been studied in
[12] and [13], and the references therein. Most of the prior
works focus on getting the complete arrival order of nodes
(total order), but it turns out that it becomes nearly impossible
due to their symmetries [1], [2]. Instead of total order, in this
work we focus on deriving an optimal partial order of nodes
of nodes (see Section II). Our methods are general and are
applicable to a wide class of graph models, unlike our recent
work [5] where the methods were specific to the preferential
attachment model and not extendable.

II. PROBLEM FORMULATION

Let Hn be the observed undirected and unweighted graph
of n nodes with V(Hn) being the set of vertices and E(Hn)
being the set of edges. The graph Hn is a result of evolution
over time, starting from a seed graph Hn0 with n0 nodes. At a
time instant k, when a new node appears, a set of new edges
adjacent to the new node is added, and the graph Hk will
evolve into Hk+1. Since the change in graph structure occurs
only when a new node is added, assuming the addition of a
node as a time epoch, Hn also represents graph at time epoch
n. The time epoch n0 denotes the creation of the seed graph
Gn0 .

Given only the snapshot of the dynamic graph Hn at time n,
we usually do not know the time or order of arrivals of nodes.
Essentially, our goal is to label each node with a number i, 1 ≤
i ≤ K , such that all the nodes labeled by i arrived before nodes
with labels j where j > i. The number of labels (clusters)
K is unknown before and is a part of the optimal clustering
formulation. The arrival of a new node and the strategy it
uses to choose the existing nodes to make connections depend

on the graph generation model. We thus express the above
problem in the following way. Let Gn be a graph drawn from a
dynamic random graph model Gn on n vertices in which nodes
are labeled 1,2, . . . ,n according to their arrival, i.e., node j
was the jth node to arrive. Let Gn evolve from the seed graph
Gn0 . To model the lack of knowledge of the original labels,
we subject the nodes to a permutation π drawn uniformly at
random from the symmetric group on n letters Sn, and we are
given the graph Hn := π(Gn); that is, the nodes of Gn are
randomly relabeled. We also use the notation Hn to denote
the random graph behind Hn. Our original goal is to infer the
arrival order in Gn after observing Hn, i.e., to find π−1. The
permutation π−1 gives the true arrival order of the nodes of
the given graph.

Instead of putting a constraint on recovering the whole
permutation π−1 or equivalently K = n labels, we resort
to strict (irreflexive) partial orders. For a partial order σ, a
relation u <σ v means that node u is older than node v

according to the ordering σ..

Relation between temporal ordered clusters and partial
order set. Every partially ordered set can be represented by a
clustering ({Ci}) as follows. A strict partially ordered set can
be represented initially by a directed acyclic graph (DAG) with
nodes as the nodes in the graph Hn and directed edges as given
by the partial order σ: an edge from v to u exists when u <σ v.
Then taking the transitive closure of this DAG will result in
the DAG of the partial order set σ. Now, all the nodes with
in-degree 0 in the DAG will be part of cluster CK and the set
of nodes with all the in-edges coming from nodes in CK will
form cluster CK−1. This process repeats until we get C1. The
number of clusters K is not defined before but found from the
DAG structure. Unlike the classical clustering, these clusters
are ordered such that C1 ≺ C2 . . . ≺ CK , where the relation
Ci ≺ Cj, i < j is defined as all the nodes inside the cluster
Ci are estimated to be arrived earlier than all the nodes in the
cluster Cj , and all the nodes inside each cluster are considered
to be identical in arrival order. We note here that not all partial
orders result in a DAG that is weakly connected. If there are
multiple components in the DAG corresponding to a partial
order, each of them will give independent clustering. It might
be due to the nodes in these separate components of the DAG
are developed independently during evolution. Moreover, if
there are nodes that are not part of any comparison in the
partial order, we label them as unclassified.

We define an estimator φ of the temporal ordered clustering
as a function φ : Gn → Sn, where Gn is the set of all graphs
on n vertices and Sn is the set of all partial orders on nodes
1, . . . ,n.

Measures for evaluating partial order. For a partial order σ,
let K(σ) denote the number of pairs (u, v) that are comparable
under σ: i.e., K(σ) = |{(u, v) : u <σ v}|, where |K(σ)|≤

(n
2
)
.

Density: the density of a partial order σ is simply the number
of comparable pairs, normalized by the total possible number,(n

2
)
. That is, δ(σ) = K(σ)/

(n
2
)
. Note that δ(σ) ∈ [0,1]. Then

the density of a partial order estimator φ is simply its minimum

possible density δ(φ) = minHn [δ(φ(Hn))].
Precision: it measures the expected fraction of correct pairs
out of all pairs that are guessed by the partial order. That is

θ(σ) = E
[

1
K(σ)

|{u, v ∈ [n]: u <σ v,π−1(u) < π−1(v)}|
]
.

For an estimator φ, we also denote by θ(φ) the quantity
E[θ(φ(π(Gn)))].

III. SOLVING THE OPTIMIZATION PROBLEM

The precision of a given estimator φ can be written in the
form of a sum over all graphs H:

θ(φ) =
∑
Hn

Pr[π(Gn) = Hn]
1

K(φ(Hn))

× E
[
|{u, v ∈ [n]: u <φ(Hn) v,π−1(u) < π−1(v)}|

���π(Gn) = Hn

]
.

Here π and Gn are the random quantities in the conditional
expectation. We formulate the optimal estimator as the one
that gives maximum precision for a given minimum density.
For an estimator to be optimal, it is then sufficient to choose,
for each Hn, a partial order φ(Hn) that maximizes

Jε(φ) := K(φ(Hn))−1

× E
[
|{u, v ∈ [n]: u <φ(Hn) v,π−1(u) < π−1(v)}|

���π(Gn) = Hn

]
.

subject to the density constraint δ(φ(Hn)) = K(φ(Hn))/
(n
2
)
≥ ε.

A. Integer programming formulation

In this subsection we extend some results from our recent
work in [5]. We now represent the optimization problem with
Jε(φ) as an integer program (IP). For an estimator φ, we
define a binary variable xu,v for each ordered pair (u, v) as
xu,v = 1 when u <φ(Hn) v. Note that xu,v = 0 means either
u >φ(Hn) v or the pair (u, v) is incomparable in the partial order
φ(Hn). Let pu,v(Hn) = Pr[π−1(u) < π−1(v)|π(Gn) = Hn] is
the probability that u arrived before v given the relabeled graph
Hn.

In the following, we write the optimization in two forms:
the original integer program (left) and the linear program-
ming approximation (right). The objective functions of both
the formulations are equivalent to Jε(φ). The constraints of
the optimizations correspond to domain restriction, minimum
density, and partial order constraints – antisymmetry and
transitivity respectively. To use a linear programming (LP)
approximation, we first convert the rational integer program
into an equivalent truly integer program. With the substitution
s = 1/∑1≤u 6=v≤n xu,v , and yu,v = sxu,v , the objective function
is rewritten as a linear function of the normalized variables.
These programs are equivalent if yu,v ∈ {0, s}, s = 1/ε

(n
2
)
. For

the LP relaxation, we assume yu,v as [0, s].
The next lemma bounds the effect of approximating the

coefficients puv on the optimal value of the integer program.

Lemma 1. Consider the integer program whose objective
function is given by Ĵε,λ(φ) =

∑
1≤u<v≤n p̂u ,v (Hn)xu ,v∑

1≤u 6=v≤n xu ,v
, with the

same constraints as in the original IP. Assume pu,v(Hn) can

Original integer program LP approximation

max
x

∑
1≤u 6=v≤n pu,v(Hn)xu,v∑

1≤u 6=v≤n xu,v
max
y

∑
1≤u 6=v≤n

pu,v(Hn)yu,v

subject to subject to (let s := 1/ε
(n
2
)
)

xu,v ∈ {0,1}, ∀u, v ∈ [n] yu,v ∈ [0, s], ∀u, v ∈ [n]∑
1≤u 6=v≤n

xu,v ≥ ε
(
n
2

) ∑
1≤u 6=v≤n

yu,v = 1

xu,v + xv,u ≤ 1, ∀u, v ∈ [n] yu,v + yv,u ≤ s, ∀u, v ∈ [n]
xu,w ≥ xu,v + xv,w − 1, yu,v + yv,w − yu,w ≤ s,

∀u, v,w ∈ [n]. ∀u, v,w ∈ [n].

be approximated with | p̂u,v(Hn) − pu,v(Hn)|≤ λ uniformly
for all u, v. Let φ∗ and φ̂∗ denote optimal points for the
original and modified integer programs, respectively. Then
| Ĵε,λ(φ̂∗) − Jε(φ∗)|≤ 3λ, for arbitrary λ > 0.

The proof of the above lemma is an extension of [5, Lemma
5.1, Supplementary Material] – we require a weaker assump-
tion | p̂u,v(Hn)− pu,v(Hn)|≤ λ instead of | p̂u,v(Hn)/pu,v(Hn)−
1|≤ λ in [5].

B. Estimating coefficients with importance sampling

We now discuss the importance sampling approach to
estimate puv that is needed to solve the optimization problem.
The following approach to estimate puv is applicable to any
general graph model with Markovian evolution (conditioned
on the present state of the graph, the new state is independent
of the past state) unlike our previous work in [5] which is
specific to preferential attachment graphs.

Let Γ(Hn) be the set of all permutations σ which has
a positive probability for σ(Hn) under the graph generation
model. We have, for puv := P(π−1(u) < π−1(v)|π(Gn) = Hn),

pu,v =
∑

σ : σ−1∈Γ(H)
σ−1(u)<σ−1(v)

P(π = σ |π(Gn) = Hn)

=

∑
σ : σ−1∈Γ(Hn)
σ−1(u)<σ−1(v)

P[Gn = σ−1(Hn)]∑
σ−1∈Γ(Hn) P[Gn = σ−1(Hn)]

. (1)

With a way to approximate the numerator and denominator
of (1), we now derive an estimator pu,v . The basic idea is
to sample feasible permutations from the structure of Hn.
But since sampling from actual graph distribution incurs huge
complexity, in what follows, we provide a method to use
any sampling distribution that satisfies certain constraints. Let
RHn ⊆ V(Hn) denote the set of candidates for youngest nodes
at time n, and let PHn (v), represents possible parents of v

in Hn, i.e., the nodes v may select for duplication. The set
RHn depends on the graph model. For example, in case of
preferential attachment model, in which a new node attaches
m edges to the existing nodes with a probability distribution
proportional to the degree of the existing node, RHn is the
set of m-degree nodes. We consider only permutations that do
not change the initial graph Gn0 labels. Thus we define Hn0

as Gn0 itself. Since we assume Hn0 is known, pu,v expression
in (1) has an additional conditioning of Hn0 .

Let δ(Hn, vn) represent the graph in which node vn is
deleted from Hn, where vn ∈ RHn . Then the graph sequence

Hn = Hn,Hn−1 = δ(Hn, vn), . . . ,Hn0 = Hn0 forms a non-
homogeneous Markov chain – nonhomogeneous because the
state space {Hs}s≤t changes with s and thus the transition
probabilities too. Similarly Gn,Gn−1,Gn0 also make a Markov
chain, and for a fixed permutation σ, σ(Gn) = Hn, both the
above Markov chains have same transition probabilities. Let
us also define the posterior probability of producing Hn from
δ(Hn, vn) as w(δ(Hn, vn),Hn) := P[Hn = Hn |Ht−1 = δ(Hn, vn)]

The following theorem characterizes our estimator. See
[4] for the proof. For a Markov chain, let Ex denote the
expectation with starting state x.

Theorem 1 (Sequential importance sampling). Consider a
time-nonhomogeneous Markov chain Hn = Hn,Hn−1 =
δ(Hn,vn), . . ., where vn ∈ RHn ,vn−1 ∈ RHn−1, . . . be the
nodes removed randomly by the Markov chain and let its
transition probability matrices be {Qs = [qs(F ′,F ′′)]}s≤t for
any two graphs F ′ ∈ Gs and F ′′ ∈ Gs−1. Then we have∑
σ−1∈Γ(Hn)

P[Gn = σ−1(Hn)|Hn0] = EHn=Hn

[
n0+1∏
s≤n

w(δ(Hs,vs),Hs)
qs(Hs, δ(Hs,vs))

]
.

Note that unlike qs(Hs, δ(Hs, vs)), which is under our control
to design a Markov chain, w(δ(Hs, vs),Hs) is a well-defined
fixed quantity (see (3)). The only constraint for the transition
probability matrices {Qs}s≤n is that it should be chosen to be
in agreement with the graph evolution such that the choices
of jumps from Hs to Hs−1 restricts to removing nodes from
RHs .

puv estimator. Now we can form the estimator for pst for a
node pair (s, t) as follows. Let v(k) be the vector denoting
the sampled node sequence of the kth run of the Markov
chain. It can either represent a vector notation as v(k) =
(v(k)

n , v(k)
n−1, . . . , v

(k)
n0+1) or take a function form v(k)(s) denoting

the new label of a vertex s in Hn. The estimator p̂(k)
s,t is now,

for all s, t ∈ Hn

p̂(k)
s,t =

∑k
i=1 1{v(i)(s)<v(i)(t)}

∏n0+1
s≤n

w(δ(Hs ,v
(i)
s),Hs)

qs (Hs ,δ(Hs ,v
(i)
s))∑k

i=1
∏n0+1

s≤n
w(δ(Hs ,v

(i)
s),Hs)

qs (Hs ,δ(Hs ,v
(i)
s))

. (2)

Since the Markov sample paths are independent, using Theo-
rem 1, strong law of large numbers and continuous mapping
theorem, we can prove that p̂(k)

s,t → ps,t a.s. as k →∞.

IV. APPROXIMATING OPTIMAL SOLUTION

Algorithms for sampling the Markov chain. Finding the
whole set of permutations and calculating the exact puv
according to (1) is of exponential complexity. With Theorem 1
and eq. (2), we can approximate puv as the empirical average
of Markov chain based sample paths. We try two different
importance sampling distributions {Qs}s≤t :

• local-unif-sampling with transition probabilities
qs(Hs, δ(Hs, vs)) = 1/|RHs |.

• high-prob-sampling forms the Markov chain with
qs(Hs, δ(Hs, vs)) = w(δ(Hs, vs),Hs)/

∑
u∈RHs

w(δ(Hs,u),Hs).

The above transition probability corresponds to choosing the
high probability paths.

Though the high-prob-sampling looks like the right
approach to follow, as we show later in Section VI, it has much
slower rate of convergence than local-unif-sampling.
Moreover at each step s, high-prob-sampling requires
O(n2) computations, while local-unif-sampling re-
quires only O(n).

The local-unif-sampling can be further improved
with the acceptance-rejection sampling technique: at a step n,
randomly sample a node u from V(Hn) (instead of sampling
from RHn). Then calculate the probability that the node u be
the youngest node in the graph. If this probability is positive,
we accept u as Vn and if it is zero, we randomly sample again
from V(Hn).

We propose the following algorithms for finding the partial
order based on the estimates of puv .

sort-by-puv-sum algorithm. We first construct a new
complete graph with the node set same as that of Hn and
edge weights as puv . Let us now define pu := ∑

v∈V (Hn) puv
for every node u of Hn. Since puv denotes the probability that
node u is older than node v, pu would give a high score when
a node u becomes the oldest node. Our ranking is then sorted
order of the pu values. Instead of total order, a partial order
can be found by a simple binning over pu values: fix the bin
size |C| and group |C| nodes in the sorted pu values into a
cluster, and the process repeats for other clusters.

puv-threshold algorithm. Here, each of the estimated
puv’s is compared against a threshold τ. Only the node pairs
that are strictly greater than this condition are placed into the
output partial order. Note that if τ = 0.5, we get a total order.

V. DUPLICATION-DIVERGENCE MODEL

We consider Pastor-Satorras et al. definition of the DD-
model [14]. It proceeds as follows. Given an undirected, simple
seed graph Gn0 on n0 nodes and target number of nodes
n, the graph Gk+1 with k + 1 nodes evolves from the Gk

as follows: first, a new vertex v is added to Gk . Then the
following steps are carried out: (i) Duplication – Select an
node u from Gk uniformly at random. The node v then makes
connections to N (u), the neighbor set of u. (ii) Divergence
– Each of the newly made connections from v to N (u) are
deleted with probability 1 − p. Furthermore, for all the nodes
in Gk to which v is not connected, create an edge from it
to v independently with probability r

k . The above process is
repeated until the number of nodes in the graph is equal to
n. We denote the graph Gn generated from the DD-model
with parameters p and r , starting from seed graph Gn0 , by
Gn ∼ DD-model(n, p,r,Gn0).

The posterior probability w needed for the importance
sampling can be computed as follows. For a node vn ∈ V(Hn),
the probability of having the node u as its parent in the above
model is defined as

w(δ(Hn, vn),u,Hn) =
1

n − 1
p |N(vn)∩N(u) |(1 − p) |N(u)\N(vn) |

×

(r
n − 1

) |N(vn)\N(u) | (
1 −

r
n − 1

) (n−1)−|N(vn)∪N(u) |
. (3)

Then w(δ(Hn, vn),Hn) = ∑
u∈PHn (vn) w(δ(Hn, vn),u,Hn).

Since all permutations have positive probability in this
version of the model, we have RHn = V(Hn) and Γ(Hn) = n!.

A. Greedy algorithms for the DD-model

To form a comparison with algorithms proposed in Sec-
tion IV, we propose the following greedy algorithms for
temporal ordered clustering (partial node arrival orders).

sort-by-degree. The nodes are sorted by the degree and
arranged into clusters {Ci}i≥1. Cluster C1 contains nodes with
the largest degree.

peel-by-degree. The nodes with the lowest degree are
first collected and put in the highest cluster. Then they are
removed from the graph, and the nodes with the lowest degree
in the remaining graph are found and the process repeats.

sort-by-neighborhood. This algorithm will output a
partial order with all ordered pairs (u ≺ v) such that N (u)
contains N (v). This condition holds when r = 0. When r > 0,
we consider |N (v)\N(u)|≤ r as r is the average number
of extra connections a node makes apart from duplication
process. In most real-world data, we estimate r as smaller
than 1, and hence the original check is sufficient.

peel-by-neighborhood. Here, we find the set {u :
�v |N (v)\N (u)|≤ r} (as mentioned before, it is sufficient to
check N (v) ⊂ N (u) in many practical cases) and mark it as
the youngest cluster. These nodes are removed from the graph,
and the process is repeated until it hits G0. This algorithm
makes use of the DAG of the neighborhood relationship and
includes isolated nodes into the bins.

VI. EXPERIMENTS

In this section, we evaluate our methods on synthetic data
(real-data results are available in [4]). We made publicly
available all the code and data of this project at [15]. For
deriving total order, a natural solution will be the maximum
likelihood estimator (MLE). But we do not consider MLE
explicitly here because it is known that many networks exhibit
large number of symmetries (see [4] for details), and thus
there will be large number of total orders that achieves the
MLE criterion with low value of precision. In fact, our optimal
formulation in Section III already captures the MLE solutions
and outputs it if it achieves high precision.

In Figure 1 we provide the linear programming (LP) optimal
curve and approximations to it by our sampling methods. It
shows the convergence of the approximated curve obtained
through different sampling methods to the exact LP optimal
curve. The LP optimal curve (with red color) is given by the
optimal precision values computed from the relaxed LP for-
mulation and exact puv values for various ε – minimum value
of density (see Section III-A). Here, σtries denote the number
of Markov chain sample paths used for estimating puv . We ob-
serve that while local-unif-sampling method requires
only 100 samples for convergence, high-prob-sampling

is still visibly far away from LP optimal curve even for
1000 samples. Thus, along with the computational reasons
stated in Section IV, we use local-unif-sampling in
the subsequent experiments. We consider a small size example
here since the total possible number of orderings that is needed
for the exact calculation of puv is n!.

In Figure 2, we present results of the puv-based algorithms
and its comparison with the estimated optimal curve via
local-unif-sampling. It turns out that greedy algo-
rithms perform reasonably well for small p (see [4], but their
performance deteriorates for higher values of p. On the other
hand, puv-based algorithms (sort-by-puv-sum and puv-
threshold) offer consistent, close to the theoretical bound,
behavior for the whole range of p. Moreover, both bin size
in sort-by-puv-sum and threshold in puv-threshold
algorithm offer a trade-off between higher precision and higher
density – large bin size or the high threshold leads to a
decrease in the density, but increase in the precision.

0.0 0.2 0.4 0.6 0.8 1.0

ε

0.5

0.6

0.7

0.8

0.9

1.0

θ

exact

local-unif-sampling (σtries = 10)

local-unif-sampling (σtries = 100)

local-unif-sampling (σtries = 1000)

high-prob-sampling (σtries = 10)

high-prob-sampling (σtries = 100)

high-prob-sampling (σtries = 1000)

Fig. 1: Comparison of puv estimation algorithms with LP
solution: Gn ∼ DD-model(13,0.3,1.0,Gn0), averaged over
100 graphs. Gn0 is Erdős-Renyi graph with n0 = 4 & p0 = 0.6.

0.0 0.2 0.4 0.6 0.8 1.0

ε

0.5

0.6

0.7

0.8

0.9

1.0

θ

sort-by-degree

peel-by-degree

sort-by-neighborhood

peel-by-neighborhood

puv-threshold, τ = 0.5

puv-threshold, τ = 0.6

puv-threshold, τ = 0.7

puv-threshold, τ = 0.8

sort-by-puv-sum, |C| = 1

sort-by-puv-sum, |C| = 5

sort-by-puv-sum, |C| = 10

Fig. 2: Comparison of greedy and puv-based algorithms: Gn ∼

DD-model(50,0.6,1.0,Gn0) averaged over 100 graphs. puv-
based algorithms use σtries = 100,000. Gn0 is generated from
Erdős-Renyi model with n0 = 10 and p0 = 0.6. The theoretical
curve is estimated via local-unif-sampling.

ACKNOWLEDGEMENT

This work was supported by NSF Center for Science of
Information (CSoI) Grant CCF-0939370, and in addition by
NSF Grant CCF-1524312, and National Science Center Grant
UMO-2016/21/B/ST6/03146.

REFERENCES

[1] T. Łuczak, A. Magner, and W. Szpankowski, “Asymme-
try and structural information in preferential attachment
graphs,” Random Structures and Algorithms, pp. 1–23,
2019.

[2] K. Turowski, A. Magner, and W. Szpankowski, “Com-
pression of Dynamic Graphs Generated by a Duplica-
tion Model,” in 56th Annual Allerton Conference on
Communication, Control, and Computing, Allerton 2018,
Monticello, IL, USA, October 2-5, 2018, 2018, pp. 1089–
1096.

[3] M. Srivastava, O. Simakov, J. Chapman, B. Fahey,
M. E. Gauthier, T. Mitros, G. S. Richards, C. Conaco,
M. Dacre, U. Hellsten et al., “The amphimedon queens-
landica genome and the evolution of animal complexity,”
Nature, vol. 466, no. 7307, p. 720, 2010.

[4] K. Turowski, J. K. Sreedharan, and W. Szpankowski,
“Temporal ordered clustering in dynamic
networks,” Extended version. Available at
https://www.cs.purdue.edu/homes/jithinks/files/
publications/temporal_ordered_clustering_extended.pdf.

[5] J. K. Sreedharan, A. Magner, A. Grama, and W. Sz-
pankowski, “Inferring temporal information from a snap-
shot of a dynamic network,” Scientific Reports, vol. 9,
no. 1, p. 3057, 2019.

[6] J. H. Kim, B. Sudakov, and V. Vu, “On the asymmetry
of random regular graphs and random graphs,” Random
Structures & Algorithms, vol. 21, no. 3-4, pp. 216–224,
2002.

[7] K. Turowski and W. Szpankowski, “Towards degree
distribution of duplication graph models,” 2019, https:
//www.cs.purdue.edu/homes/spa/papers/random19.pdf.

[8] A. Loukas and P. Vandergheynst, “Spectrally approximat-
ing large graphs with smaller graphs,” in International
Conference on Machine Learning, Stockholm, Sweden,
2018, pp. 3243–3252.

[9] F. Liu, D. Choi, L. Xie, and K. Roeder, “Global spectral
clustering in dynamic networks,” Proceedings of the
National Academy of Sciences, vol. 115, no. 5, pp. 927–
932, 2018.

[10] R. Görke, P. Maillard, C. Staudt, and D. Wagner,
“Modularity-driven clustering of dynamic graphs,” in
International Symposium on Experimental Algorithms.
Berlin, Heidelberg: Springer, 2010, pp. 436–448.

[11] D. Greene, D. Doyle, and P. Cunningham, “Tracking the
evolution of communities in dynamic social networks,”
in 2010 International Conference on Advances in Social
Networks Analysis and Mining. Washington, DC, USA:
IEEE, 2010, pp. 176–183.

[12] S. Li, K. P. Choi, T. Wu, and L. Zhang, “Maximum
likelihood inference of the evolutionary history of a ppi
network from the duplication history of its proteins,”
IEEE/ACM Transactions on Computational Biology and

Bioinformatics (TCBB), vol. 10, no. 6, pp. 1412–1421,
2013.

[13] S. Navlakha and C. Kingsford, “Network archaeology:
uncovering ancient networks from present-day interac-
tions,” PLoS Computational Biology, vol. 7, no. 4, p.
e1001119, 2011.

[14] R. Pastor-Satorras, E. Smith, and R. V. Solé, “Evolving
protein interaction networks through gene duplication,”
Journal of Theoretical Biology, vol. 222, no. 2, pp. 199–
210, 2003.

[15] Code and data of this submission, available at https://
github.com/krzysztof-turowski/duplication-divergence.

 https://www.cs.purdue.edu/homes/jithinks/files/publications/temporal_ordered_clustering_extended.pdf
 https://www.cs.purdue.edu/homes/jithinks/files/publications/temporal_ordered_clustering_extended.pdf
https://www.cs.purdue.edu/homes/spa/papers/random19.pdf
https://www.cs.purdue.edu/homes/spa/papers/random19.pdf
 https://github.com/krzysztof-turowski/duplication-divergence
 https://github.com/krzysztof-turowski/duplication-divergence

	Introduction
	Problem Formulation
	Solving the Optimization Problem
	Integer programming formulation
	Estimating coefficients with importance sampling

	Approximating optimal solution
	Duplication-Divergence Model
	Greedy algorithms for the DD-model

	Experiments
	References

