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Abstract—Recovery of a planted k-densest sub-hypergraph is
a fundamental problem that appears in different contexts, e.g.
community detection, average case complexity, and neuroscience
applications. The underlying hypergraph parameters determine
the geometry of the solution space and the statistical dependency
between solutions. This captures whether the structured signal is
highly localized, naturally suggesting a criterion to determine
the boundary conditions for which the recovery is possible.
In this work, we provide new information-theoretic upper and
lower bounds for the recovery problem. These bounds apply
to the whole spectrum of the hypergraph parameters, ranging
from complex combinatorial search problems with high statistical
dependency between solutions, to an extremely localized solution
space, equivalent to the random energy model. The new bounds
improve significantly prior bounds on most of the interesting
regimes, and also provide the first results on partial recovery.

I. INTRODUCTION

High dimensional inference problems play a key role in
recent machine learning and data analysis applications. Typical
scenarios exhibit problem dimensions that are comparable to
the sample size, hence precluding effective estimation with
no further structure imposed on the underlying signal, such
as low rank or sparsity. Examples of such problems include
sparse mean estimation, compressive sensing, sparse phase
retrieval, low-rank matrix estimation, community detection,
planted clique and densest subgraph recovery problems.

In this work we study the problem of recovering a planted
sparse k-densest sub-hypergraph [1]. In the standard (graph)
setting the problem is closely related to detecting a core
structure in community detection and resembles the well-
known planted clique problem and other community detection
models like the stochastic block model (SBM). Recent work
suggest that this problem is related to long term memory
mechanism in the brain [2]. The hypergraph version introduces
high order interactions between nodes which are rather natural
in a number of real world situations, e.g. in modeling brain
regions [3], [4], [5] and in computer vision applications [6].

Our goal is to understand the information-theoretic limits
for this class of recovery problems, thereby establishing the
regimes in which algorithms have the ability to recover a
hidden structure or signal from noisy measurements and partial
information. The setting is informally defined as follows: For
N being the total number of nodes, the planted solution is
defined by k nodes chosen uniformly at random, and all
hyperedges between nodes of this set have biased weights,

i.e., they are shifted from zero by some value, that defines
the signal strength of our estimation problem. All hyperedge
weights are perturbed by Gaussian noise with zero mean, and
the task consists in recovering the planted set of nodes. The
hardness and the feasibility of the task depends on the signal-
to-noise ratio (SNR), i.e., how strong is the bias compared
to the noise level, denoted by γ throughout this work. We are
interested in the probability of exactly and partially recovering
the planted solutions in the information theoretic limit, hence
we study how much the best possible statistical estimator
of such a solution (the maximum likelihood estimator MLE)
overlaps with the planted solution and whether this estimator
can be calculated efficiently relative to the input size of the
estimation problem.

One should note that the hyperedge cardinality h can
vary between the two extremes h = 1 and h = k of an
interaction spectrum. Analysing these extremes yields insight
on the information structure of the solution space. For h = k
the problem has the highest localization, i.e., there is only
one biased solution and all other solutions are unbiased and
statistically independent (see the Random Energy Model [7]).
At the opposite extreme, for h = 1, in addition to the planted
solution, several other partially overlapping solutions are bi-
ased. In other words, for h = 1, the problem exhibits some sta-
tistical dependencies between solutions, which become more
prominent for large h (e.g., for h = o(N)). A second reason
for investigating different values of h, are algorithmic issues.
Dependencies between solutions and hence the localization
property in the solution space render computationally efficient
algorithms information theoretically possible (in principle). To
illustrate this, consider the following scenarios:

• For h and k very close to each other (h = k − c0 with
c0 being a constant), exhaustive search through all

(
N
k

)
solutions is both efficient and unavoidable since solutions
are localized and (almost) statistically independent: the
input size is

(
N
h

)
, and finding the optimum is equivalent to

search through all these
(
N
h

)
= poly(

(
N
h

)
) edge weights.

• For h = 1, exhaustive search through all
(
N
k

)
solutions is

clearly inefficient, i.e.,
(
N
k

)
is exponentially larger then

the input size
(
N
h

)
= N . Nonetheless the structure of

the solution space is simple and selecting the k nodes
with highest weights is efficient and optimally solves the
problem.



• The intermediate sparse regime for 1 � h � k � N
reveals insights into the information structure of sub-
hypergraph recovery. In this regime the solution space
can be again exponentially larger then the input size. In
this regime, algorithms have to address the information
theoretical localization effect in the solution space. i.e.,
two solutions that do not share any parameter are statis-
tically independent.

II. MAIN RESULTS

A. Setting

We consider h-uniform hypergraphs over N nodes, i.e.
every subset of h nodes is an (hyper)edge. To every hyperedge
we associate a weight that is a Gaussian random variable,
defined according to the following process. Choose uniformly
at random a set Kplanted of k nodes. All hyperedges inside this
set of k nodes have a positive bias, and all other are unbiased1.
Formally:

Definition 1 (PkSH, also 2-hWSBM in [8]). Let N , k, and
h be positive integers, µ and σ two positive numbers. The
couple (Kplanted, E), where Kplanted indicate the planted set
of nodes and E the h tensor of weights, is drawn under
the planted k sub-hypergraph model PkSH(µ, σ,N, k, h) if
|Kplanted|= k, is drawn uniformly at random from all the
N nodes and the weights Ei1i2···ih are random variables
conditional independent given Kplanted and given by:

Ei1i2···ih ∼ µ I{i1i2···ih∈Kplanted} + σN (0, 1)

where I{P} = 1, 0 iff predicate P is true or false.

Definition 2. Exact recovery for the PkSH in Definition 1
is achieved if there exists an algorithm that takes the weight
tensor E as input and outputs K̂ = K̂(E) such that

P[Kplanted = K̂] = 1− oN (1).

A k′-partial recovery is achieved if

P[|Kplanted ∩ K̂|= k′] = 1− oN (1).

Our bounds depend on the scale-normalized SNR γ as

γ :=
µ̂

σ̂
·

√(
k
h

)
k
, µ = µ̂ logN, σ = σ̂

√
logN

2
(1)

The scaling
√

(kh)
k is used to have non-trivial recovery thresh-

olds located at finite values. Every solution consists of a subset
of k nodes; its total weight is the sum of the weights of all

(
k
h

)
hyperedges that it contains. If a solution shares k′ nodes with
the planted solution, it has exactly

(
k′

h

)
biased hyperedges. It

is convenient to partition all solutions according to k′ and let
Sk′ be the set of all solutions which share k′ nodes with the
planted solution. Note that any solution Si is itself a Gaussian

1This model can be seen both as a planted densest sub-hypergraph or a two
communities weighted SBM on hypergraph.

random variable, whose bias depends on the number k′ of
nodes in the planted part as:

Si ∼ N (µk′ , σ
2
k) for all Si ∈ Sk′ ,

where

µk′ =

(
k′

h

)
µ σ2

k =

(
k

h

)
σ2 . (2)

All parameters k, k′, h depend on N , but the dependency is
hidden in the notation for convenience.

B. Results
Let us denote by β0, β

′
0, β
′′
0 ∈ [0, 1] the constants satisfying

respectively

β0 := lim
N

log k

logN
β′0 := lim

N

log(k − k′)
logN

β′′0 := lim
N

log k′

logN
(3)

where k′ is the number of nodes detected in partial recovery.
Note that these constants always exist since k′ < k ≤ N and
that β′′0 ≤ β0. We prove the following result:

Theorem 3 (Main Result). There exist an upper bound γUB
and a lower bound γLB which determine whether recovery is
possible or not possible, respectively:
Upper bound: For γ > γ

(k′)
UB it is possible to perform a (k′+

1)-partial recovery; for γ > γUB := γ
(k−1)
UB it is possible

to perform exact recovery. These thresholds depend on the
problem parameters (N, k, k′, h) as follows:

γ
(k′)
UB :=

√
1 + β0 − 2β′0 + β′′0 +

√
β0 − β′0 + β′′0 (4)

γUB :=
√

1 + 2β0 +
√

2β0 (5)

Lower bound: For γ < γLB , exact recovery is impossible.
Specifically, the lower bound depends on the parameters
(N, k, h) as follows:

γLB := max

{√
1

h
,

√
1− β0 − ε

2

k?
k

}
(6)

for any ε > 0 constant and where k? is any sequence such
that

(
k∗
h

)
/
(
k
h

)
→ 0.

As we discuss below, our results improve prior bounds in
[8] along two directions. First, they provide tighter bounds for
a wide range of parameters, especially when k is not limited to
be logarithmic in N . Second, we consider partial recovery, for
which we provide the first asymptotic bounds for this problem.

Corollary 4 (partial recovery). For any constant ρ0 ∈ (0, 1),
it is possible to perform a k′ = ρ0k-partial recovery if the
SNR satisfies γ > 1 +

√
β0. For α0 := limN

log k′

log k ∈ (0, 1)
constant, then it is sufficient to have a SNR that satisfies γ >√

1− β0 + α0β0 +
√
α0β0.

Proof. It follows from (4) with β′0 = β0 and β′′0 = α0β0.

Intuitively the first condition refers to a partial recovery
of a linear fraction of the k planted nodes, while the second
condition is a weaker partial recovery that aims at detecting
some root of the planted part.



C. Comparison with prior bounds

For convenience here we report prior bounds on exact
recoverability, rewritten according to our notation.

Theorem 5 (Theorem 5, [8]). For any 2 ≤ h ≤ k, exact
recovery is impossible if γ < γ− =

√
1
h and possible if γ >

γ+, where the upper threshold is defined according to the
different k and h regimes as:

γ+ =



√
2

(kh)
k = o(logN)

2

√
(1+log 2+ 1

c )(kh)
k logN

(kh)
k /logN → c, c ∈ R+ ∪ {+∞}

2

√
(1+log 2)(kh)

(1−β0)k logN k / Nβ0 , 0 < β0 < 1

(7)

Tighter bounds then eq. (7) are achieved if γLB > γ− and
γUB < γ+. We note from eq. (6) that the inequality γLB ≥ γ−
is obviously satisfied since γLB := max

{
γ−,

√
1−β0−ε

2
k?
k

}
,

while the strict inequality is obtained whenever k
h = o(k∗),

and the condition for eq. (6), namely
(
k∗
h

)
/
(
k
h

)
→ 0 holds.

This condition can be easily achieved on a wide spectrum of
regimes, e.g. for k∗ = h and k = o(h2), while it is not always
satisfied, e.g. for h constant. Regarding the upper bound, we

can observe that the condition (kh)
k = o(logN) implies β0 = 0

for any 2 ≤ h < k − 1, for which γUB < γ+. In the regimes

h = {k − 1, k} however, the condition (kh)
k = o(logN) is

always satisfied and hence γUB =
√

1 + 2β0 +
√

2β0 <
√

2
whenever β0 <

1
16 . In the second regime for γ+ we can first

observe that the cases h ∈ {k−1, k} are always excluded. For

h < k− 1 two conditions are possible: (i) (kh)
k /logN → +∞,

in which case γUB � γ+, and (ii) (kh)
k /logN → c ∈ R+, in

which case it follows that β0 = 0 and hence γUB < γ+. In the
third regime of eq. (7) k ≈ Nβ0 holds, hence it follow easily
that γUB � γ+. Note also that with β0 = 0, γUB matches
the critical SNR for the problem conjectured in [8].

III. RELATED WORK

High dimensional inference problems have been extensively
studied recently in the statistics and computer science com-
munities for showing interesting statistical and computational
thresholds in the recoverability of a structured planted sig-
nal, where typical examples for structure include low rank
and sparseness. The most widely studied planted model in
literature is the planted clique problem, where a clique of
size k is hidden in a Erdös-Rényi random graph (ER) of
size N . This problem exhibits a statistical-computational gap
[9], such that recover of the planted clique is information-
theoretic possible for size k ≥ 2 log2N , while the best known
polynomial algorithms require k = Ω(N1/2) [10]. It is an
open problem to assess whether the regime k = o(logN) is
indeed intractable. Many variations of this problem have been
introduced, allowing for generic values of the ER parameter,
for random deletion of edges in the planted clique, and for

weighted edges (i.e. planted densest subgraph problem [11]).
Similar statistical and computational thresholds have been

observed also in the problem of sparse principal compo-
nent analysis [12], [13] and in the stochastic block model
(SBM) and its variations. The standard SBM exhibits no
gap, with matching statistical and computational thresholds
that have been found recently for the symmetric [14], [15]
and the non-symmetric [16] model. The SBM extension to
multi-community detection (also known as planted clustering
problem) shows instead statistical-computational gaps [17].
Statistical and computational thresholds are still unknown for
various SBM generalizations, like weighted-SBM (WSBM)
[18], [19], [20] and SBM on (homogeneous) hypergraph
(hSBM) [21], [22], that can model additional information of
the problem that is expressed respectively by edge weights and
higher order node interactions. Information-theoretic results
are given in [23] for the homogeneous WSBM with equally
sized communities, in [22], [24] for the spectral algorithms
respectively on uniform and non-uniform hSBM, in [25]
for the homogeneous equally sized community WSBM on
hypergraphs and in [8] for the non-equally sized communities
WSBM on hypergraphs.

Recent work has been performed with statistical physics
methods to understand the nature of the information-theoretic
and computational thresholds. Planted inference models are
mapped to related disordered physical systems (e.g. spin glass,
Potts and Mattis models [26]) such that the statistical and com-
putational thresholds are mapped to the phase transitions of
these systems [27], [28]. The hard phase of planted inference
problems is conjectured to correspond to the spin-glass phase
of related disorder systems, that is typically characterized by
exponentially many clusters of solutions with close energy val-
ues and large energy walls between them [29], [30], [31], while
the impossible and the easy regimes are mapped respectively
to the paramagnetic and the ferromagnetic phases. This line
of research was inspired by the seminal work done on error
correcting codes using p-spin glass models [32], [33], [34]
and its random energy model (REM) limit [35], [36], [37],
with recent developments focused on recovery conditions for
the spike Wigner model [38], [39], [40], [41], [42], stochastic
block model [43], [44], generalized linear models [45]. These
approaches have been mainly applied to dense scenarios,
with the structure of the measurement imposed by the low
dimensionality of the signal. The extension to sparseness
scenarios have been developed recently in [46]. A review on
the field is given in [47].

IV. RECOVERY VIA CONCENTRATION BOUNDS

To study the recoverability thresholds we analyze the be-
haviour of the maximum likelihood estimator of the planted
set Kplanted, that it can be easily identified as the k-densest
sub-hypergraph (see Theorem 4 [8] for a proof). We consider
the generic k′-partial recover for the MLE estimator. Exact
recovery corresponds to the case k′ = k− 1. In the following
most proofs are omitted and reported in the long version of
the paper.



Lemma 6. Let P
(k′)
recover be the probability that the MLE

recovers at least k′ + 1 nodes from the planted solution, and
P

(k′)
failrecover = 1 − P (k′)

recover the probability that it fails in doing
so. For any m let Sm denote the set of all solutions that share
exactly m nodes with the planted solution Splanted. Denote in
the following for any set A, max(A) := maxx∈A x. Then the
following holds:

P
(k′)
failrecover ≤

k′∑
m=0

P (Splanted ≤ max(Sm)) (8)

Pfailrecover := P
(k−1)
failrecover ≥ P(Splanted < max(Sk′)) (9)

for any k′ ∈ {0, . . . , k − 1}.

Proof. The upper bound in (8) follows since Splanted > S
for all S ∈ S0 ∪ S1 ∪ · · · ∪ Sm. Then the MLE must
return Splanted or some solution in Sm+1 ∪ · · · ∪ Sk, and the
inequality follow from the union bound on the probability
P
(⋃k′

m=0 {Splanted ≤ max(Sm)}
)

. For the lower bound in (9)
we can observe that if Splanted < max(Sk′) for some k′ < k,
then the MLE cannot return Splanted, and thus it fails to exactly
recover the planted solution.

Intuitively speaking, our goal is to distinguish between the
case in which recovery is possible from the one in which it is
impossible, i.e., whether γ is in the regime such that

P(P
(k′)
failrecover)→ 0 or P(P

(k′)
failrecover)→ 1 .

We shall reduce this question to the study of the probabilities
P(Splanted < max(Sm)), so to determine the values of γ for
which

P(Splanted ≤ max(Sm))→ 0 or P(Splanted ≤ max(Sm))→ 1

where in the left scenario (recovery possible) we need these
probabilities to go to zero sufficiently fast to apply the union
bound (eq. (8)) over all different m.

A. Probability tools

We shall use the well-known inequalities on tail distribution
of Gaussians: For any X ∼ N (µ, σ2) and any c > 0, it holds
that (see [48, Section 7.1])

(
1

c
− 1

c2
) · e

−c2/2σ2

√
2π

≤ P(X > µ+ c) ≤ 1

c
· e
−c2/2σ2

√
2π

. (10)

We typically deal with solutions (events) which are dependent,
for which the following Chung-Erdös inequality and the well-
known union bound will be used: Given n events A1, . . . An,
it holds that (see [49])

(
∑n
i=1 P(Ai))

2∑n
i=1 P(Ai) +

∑
i 6=j P (Ai ∩Aj)

≤ P

(
n⋃
i=1

Ai

)
(11)

≤
n∑
i=1

P(Ai) (12)

where the first inequality is the Chung-Erdös bound and the
second is the union bound.

B. Upper bound (approximate or exact recovery is possible)

In this section, we prove the upper bound on the signal-
to-noise ratio in order to guarantee recovery. Recall that we
consider the problem of recovering k′ ≤ k nodes inside the
planted solution. For the purpose of the analysis, we define
the following quantities depending on k′ ∈ {0, . . . , k − 1}:

d(k′) :=

(
k

h

)
−
(
k′

h

)
, Qk′ :=

(
N − k
k − k′

)
,

Mk′ :=

(
k

k′

)(
N − k
k − k′

)
=

(
k

k − k′

)(
N − k
k − k′

)
Note that, for each fixed subset of k′ nodes of the planted
solution, there are Qk′ solutions that share these k′ nodes
with the planted solution. Moreover, there are exactly Mk′

solutions that share k′ nodes with the planted solution. Each
such solution sharing k′ nodes with the planted solution differs
in d(k′) edges with the planted solution. Finally, we let

t∆ = σ
√

∆2 logN . (13)

Lemma 7. Fix an arbitrary subset F ⊂ Kplanted of k′ nodes
of the planted solution, with k′ ∈ {0, . . . , k− 1}, and let S(F )

k′

be the set of all solutions that share exactly this set of k′ nodes
with the planted solution. For any S ∈ S

(F )
k′ let S(−F ) denote

the sum of the weights in the non-common part, that is the
sum of d(k′) =

(
k
h

)
−
(
k′

h

)
edge weights in S and with none

of their nodes contained in F . Denote by S
(−F )
k′ the set of all

the S(−F ). For any ∆ > 0 and any S(−F ) as above, it holds
that

P
(
S(−F ) > t∆

)
≤ pk′,∆ :=

(
1

N

) ∆
d(k′) 1√

π∆ · 2σ̂ logN
.

(14)
Moreover, the following holds:

P
(

max(S
(−F )
k′ ) > t∆

)
≤ Qk′ · pk′,∆ (15)

P
(
S

(−F )
planted < d(k′)µ− t∆

)
≤ pk′,∆ (16)

where
∣∣∣S(−F )
k′

∣∣∣ =
(
N−k
k−k′

)
= Qk′ .

Theorem 8. For every η ≥ 0 and for every k′ ∈ {0, . . . , k −

1}, let γ(k′)
UBη

:=

√
(kh)
kd(k′) · UBη(k′) where

UBη(k′) :=

√
logMk′

logN
+ η +

√
log
(
k
k′

)
logN

+ η . (17)

Then, for any γ > γ
(k′)
UBη

it holds that

P (max(Sk′) > Splanted) ∈ O
(

1

Nη
· 1

σ̂ log k

)
.

Proof Idea. By the union bound over the
(
k
k′

)
possible fixed

subsets F of k′ nodes, we get P (max(Sk′) > Splanted) ≤(
k
k′

)
· P(max(S

(−F )
k′ ) > S

(−F )
planted). Moreover, for any t, we

have P
(

max(S
(−F )
k′ ) > S

(−F )
planted

)
≤ P

(
max(S

(−F )
k′ ) > t

)
+



P
(
t ≥ S(−F )

planted

)
. Calculations show that, since γ > γ

(k′)
UBη

,
there exists a particular t such that Lemma 7 implies that
both these two probabilities go to 0 sufficiently fast. See
Appendix A for the reminder of the proof.

The constants β0 and β′0 in eq. (3) provide bounds on the
fractions in eq. (17). Using the union bound over all m =
{0, . . . , k′} we can set η = β′′0 so that the right hand side of
eq. (8) goes to 0. This leads to the upper bound in theorem 3.

Corollary 9. For any k′ ∈ {1, . . . , k} and for every γ such
that

γ > γ
(k′)
UB :=

√
1 + β0 − 2β′0 + β′′0 +

√
β0 − β′0 + β′′0 .

it holds that
P (k′)
recover → 1 .

C. Lower bound (exact recovery is impossible)

To prove the lower bound on the recovery threshold, we
make use of eq. (11) and of bounds on the number intersecting
solutions at given k′, given in the following:

Lemma 10. For any ρ0 ∈ (0, 1), for any k and any k′ ∈
{0, . . . , k − 1} it holds that

log
(
N−k
k−k′

)
− log

(
(k − k′)

(
k−k′
k′′

)(
N−2k+k′

k−k′−k′′
))

logN
& `(k′′)

where

`(k′′) :=

{
k′′(1− β′0) if k′′ ≤ (k − k′)ρ0

(k − k′)(ρ0 − β′0) if k′′ > (k − k′)ρ0

and k′′ ∈ {1, k− k′ − 1} is the cardinality of the intersection
between non-planted solutions.

Lemma 11. Given the set S
(−F )
k′ as defined in Lemma 7, it

satisfies

P
(

max(S
(−F )
k′ ) > t∆

)
→ 1 (18)

for every ∆ < d(k′) min{LB(k′), (k − k′)(1− β′0)} where

LB(k′) := min
k′′∈I(k′)

`(k′′)

2

D(k′, k′′)

D(k′, k′′)− d(k′)
(19)

where D(k′, k′′) = a(k′′) + d(k′) +
√

8a(k′′)(d(k′)− a(k′′),
a(k′′) =

(
k′+k′′

h

)
−
(
k′

h

)
, and I(k′) = {max(1, h−k′), . . . , k−

k′ − 1}.

Proof Idea. The proof in based on the use of the Chung-Erdös
bound (eq. (11)). For any two solutions Si and Sj in S

(F )
k′ we

consider the corresponding S
(−F )
i and S

(−F )
j in S

(−F )
k′ , that

is, the contribution of the hyperedges that are not in the fixed
part F . We then consider the events P(Ai) := P(S

(−F )
i > t)

for a suitable t for the application of the Chung-Erdös bound.
These S(−F )

i and S
(−F )
j share k′′ nodes outside the planted

part and thus are dependent as long as k′′ ≥ h − k′. In this
case, we consider the common part Cij and the remaining part
Ŝ

(−F )
i and Ŝ(−F )

j as the hyperedges in both S(−F )
i and S(−F )

j ,
and those that are only in one of the two, respectively. Then,

we provide an upper bound on P(Ai ∩ Aj) := P(S
(−F )
i >

t ∩ S(−F )
j > t). In particular, for t = tc + tk′′ we have

P(S
(−F )
i > t ∩ S(−F )

i > t) ≤ P(Cij > tc) + P(Ŝ
(−F )
i >

tk′′ ∩ Ŝ(−F )
j > tk′′). All these three random variables are

Gaussians and Ŝ(−F )
i and Ŝ(−F )

j are independent (as they have
no common nodes). Hence, P(Ŝ

(−F )
i > tk′′ ∩ Ŝ(−F )

j > tk′′) =

P(Ŝ
(−F )
i > tk′′)P(Ŝ

(−F )
j > tk′′), and all these probabilities

can be bounded via the Gaussian tails (eq. (10)). The rest of
the proof is devoted to optimize t and tk′′ , for all possible k′′,
so that the upper bound on P(S

(−F )
i > t∩S(−F )

j > t) allows
the fraction in the Chung-Erdös inequality to converge to 1
as desired. Intuitively, the term

∑
i6=j P(Ai ∩ Aj) is lower

bounded using lemma 10 and is not too big compared to∑
i P(Ai). The full proof is given in Appendix B.

Theorem 12. For any constant ρ0 ∈ (0, 1) and for any γ <

γ
(k′)
LB :=

√
(kh) min{LB(k′),(k−k′)(1−β′0)}

kd(k′) it holds that

P (Splanted > max(Sk′))→ 0 (20)

where LB(k′) is defined as in Lemma 11.

This theorem affirms under which regime the planted so-
lution is “defeated” by some solution in Sk′ . By applying
this result with k′ = 0 we obtain the main result of
theorem 3. The actual proof consists in showing that, for
any k? such that

(
k′+k∗
h

)
/
(
k
h

)
→ 0, Lemma 10 implies

LB(k′) ≥ (1/2) min{k?(1− β0), (k − k′)(ρ0 − β0)} for any
ρ0 ∈ (0, 1).

Corollary 13. For any constant ρ0 ∈ (0, 1) and for any
k? such that

(
k∗
h

)
/
(
k
h

)
→ 0 the following holds: If γ <

max

{√
1
h ,
√

1−β0−ε
2

k?
k

}
, then Precover → 0 .

V. CONCLUSIONS

Information-theoretic thresholds constitute a fruitful bench-
marks for algorithm performance, establishing optimality con-
ditions and impossibility results. Typical example of models
that exhibits non-trivial information-theoretic and computa-
tional properties are high dimensional inference problems with
structured signal, often sparse or low dimensional. Motivated
by this, we study the information-theoretic limit for recov-
ery of a planted k-densest sub-hypergraph. We provide new
upper and lower bounds for exact and partial recovery that
strictly improve on prior known bounds on a wide range of
parameters. As future research directions, we plan to provide
matching recoverability thresholds for the planted k-densest
sub-hypergraph for any regime of hyperedge cardinality h,
alongside an analysis of algorithmic and computational issues
on the same model.
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In both appendices we indicate by γ = µ̂
σ̂ and the relative

thresholds values the unnormalized SNR, in order to avoid
clutter in the proofs. Remember however that the SNR, indi-
cated as γ in the main text, is normalized according to the

scale (kh)
k .

APPENDIX A
PROOF FOR SECTION IV-B

Proof of Lemma 7. Observe that each S(−F ) consists of
d(k′) =

(
k
h

)
−
(
k′

h

)
non-biased edges, and therefore S(−F ) ∼

N (0, d(k′)σ2). Hence, by applying eq. (10) with t = t∆ =
σ
√

∆2 logN we have

P
(
S(−F ) > t∆

) (10)
≤ 1

t∆
· e
−t2∆/2d(k′)σ2

√
2π

(21)

=
e−(∆ logN)/d(k′)

t∆
√

2π
=

N−∆/d(k′)

√
π∆ · 2σ̂ logN

,

which proves eq. (14). By the union bound and eq. (14) we
obtain eq. (15):

P
(

max(S
(−F )
k′ ) > t

)
=P

 ⋃
S(−F )∈S(−F )

k′

S > t

 ≤ Qk′ · pk′,∆ .

Finally, eq. (16) holds by observing that, since all d(k′) edges
of S(−F )

planted are biased, we have S(−F )
planted ∼ N (d(k′)µ, d(k′)σ2).

Therefore, by applying eq. (10) with t = d(k′)µ+ t∆ we get

P
(
S

(−F )
planted < d(k′)µ− t∆

)
= P

(
S

(−F )
planted > d(k′)µ+ t∆

)
(10)
≤ 1

t∆
· e
−t2∆/2d(k′)σ2

√
2π

and the remaining of the proof is as above in eq. (21).

Proof of Theorem 8. For any k′ ∈ {0, . . . k − 1} we have

P (max(Sk′) > Splanted) ≤
(
k

k′

)
P
(

max(S
(F )
k′ ) > Splanted

)
=

(
k

k′

)
P
(

max(S
(−F )
k′ ) > S

(−F )
planted

)
(22)

We show below that γ > γ
(k′)
UBη

implies that there exists t such
that

t∆′ < t < d(k′)µ− t∆′′ (23)

with

∆′

d(k′)
≥ logMk′

logN
+ η and

∆′′

d(k′)
≥

log
(
k
k′

)
logN

+ η . (24)

Since P(X > Y ) ≤ P(X > t) + P(t ≥ Y ) for every t, we
have

P
(

max(S
(−F )
k′ ) > S

(−F )
planted

)
≤ P

(
max(S

(−F )
k′ ) > t

)
+ P

(
t ≥ S(−F )

planted

)
≤ P

(
max(S

(−F )
k′ ) > t∆′

)
+ P

(
d(k′)µ− t∆′′ > S

(−F )
planted

)
≤ Qm · pk′,∆′ + pk′,∆′′ (25)

where the latter inequality follows from eq. (16) and eq. (15).
Combining eq. (22) and eq. (25), we get

P(max(Sk′) > Splanted) ≤

≤
(
k

k′

)
(Qm · pk′,∆′ + pk′,∆′′)

=

(
k

k′

)( 1

N

) ∆′
d(k′) Qm√

π∆′ · 2σ̂ logN


+

(
k

k′

)( 1

N

) ∆′′
d(k′) 1√

π∆′′ · 2σ̂ logN


=

( 1

N

) ∆′
d(k′)−

logM
k′

logN 1√
π∆′ · 2σ̂ logN

+


+

( 1

N

) ∆′′
d(k′)−

log ( kk′)
logN 1√

π∆′′ · 2σ̂ logN


where we used in the first equality eq. (14) and in the last
equality the identity x = N

log x
logN and the fact that

(
k
h

)
Qk′ =(

k
h

)(
N−k
k−k′

)
= Mk′ . Hence, by eq. (24) we can upper bound

this probability as

P(max(Sk′) > Splanted) ≤

≤ 1

Nη

1√
π · 2σ̂ logN

(
1

∆′
+

1

∆′′

)
≤ 1

Nη

1√
π · 2σ̂ · d(k′)

(
1

logMk′
+

1

log
(
k
k′

))
≤ 1

Nη

2√
π · 2σ̂ · log k

where in the last inequality we used d(k′) ≥ 1, for k′ ∈
{0, . . . , k − 1}, and Mk′ ≥

(
k
h

)
≥ k. To conclude the proof

we show that γ > γ
(k′)
UBη

implies that there exists t such that

eq. (23) and eq. (24) hold. We set ∆′ = d(k′)
(

logMk′
logN + η

)
and ∆′′ = d(k′)

(
log ( kk′)
logN + η

)
so that eq. (24) holds. By

plugging this into eq. (23), we can rewrite the inequality t∆′ <
d(k′)µ− t∆′′ as follows:

d(k′)µ > t∆′ + t∆′′

(13)
> σ

√
2 logN(

√
∆′ +

√
∆′′)



hence by the rescaling in eq. (1) we get the condition for the
SNR:

γ >
1

d(k′)
(
√

∆′ +
√

∆′′)

=

√
1

d(k′)

√ logMk′

logN
+ η +

√
log
(
k
k′

)
logN

+ η

 .

Proof of Corollary 9. We first show the following result:

Lemma 14. For every k and k′ ∈ {0, . . . , k − 1}, the
corresponding constants β0 and β′0 in (3) satisfy the following:

γ
(k′)
UBη
≤
(√

1 + β0 − 2β′0 + η +
√
β0 − β′0 + η

)√ k − k′(
k
h

)
−
(
k′

h

)
(26)

≤
(√

1 + β0 − 2β′0 + η +
√
β0 − β′0 + η

)√ k(
k
h

) .
(27)

Proof of Lemma 14. Note that(
k

k′

)
=

(
k

k − k′

)
≤ ek−k

′
(

k

k − k′

)k−k′
.

thus implying

log
(
k
k′

)
logN

≤(k − k′)1 + log k − log(k − k′)
logN

(3)
≈ (k − k′)(β0 − β′0) .

Similarly (
N − k
k − k′

)
≤ ek−k

′
(
N − k
k − k′

)k−k′
thus implying

log
(
N−k
k−k′

)
logN

≤(k − k′)1 + log(N − k)− log(k − k′)
logN

(3)
≈ (k − k′)(1− β′0) .

Hence

logMk′

logN
=

log
((

k
k′

)(
N−k
k−k′

))
logN

. (k − k′)(1 + β0 − 2β′0) .

By plugging this into the definition of UBη(k′) (eq. (17)) we
get

UBη(k′) =

√
logMk′

logN
+ η +

√
log
(
k
k′

)
logN

+ η

≤
√

1 + β0 − 2β′0 + η +
√
β0 − β′0 + η .

and hence, using the definition of γ(k′)
UBη

given in theorem 8,
we can conclude eq. (26). To conclude the proof we show that

k − k′(
k
h

)
−
(
k′

h

) ≤ k(
k
h

) .
Simply observe that this inequality is equivalent to

k − k′

k
≤
(
k
h

)
−
(
k′

h

)(
k
h

) ⇔
(
k′

h

)(
k
h

) ≤ k′

k
. (28)

For k′ < h this inequality is trivially satisfied since
(
k′

h

)
= 0.

Otherwise we can write the previous inequality as

(
k′

h

)(
k
h

) =
k′!

h! (k′ − h)!

h! (k − h)!

k!

=
k′(k′ − 1) · · · (k′ − h+ 1)

k(k − 1) · · · (k − h+ 1)
≤ k′

k

which is satisfied for any k′ ≤ k since all these terms satisfy
k′−i
k−i ≤ 1, for 1 ≤ i ≤ h− 1.

Proof of Corollary 9: The idea is that by taking η0 =
β′′0 + ε0, where log k′

logN . β′′0 , we can apply the union bound
over all m ≤ k′ to get that the right hand side of eq. (8) to
go to 0, hence P (k′)

failrecover → 0 and P
(k′)
recover → 1. Specifically,

for γ satisfying γ > γ
(m)
UBη

for all m = {0, . . . , k′}, we have

P (max(Sm) > Splanted) ∈ O
(

1
Nη ·

1
σ̂ log k

)
thus implying

P
(k′)
failrecover ∈ O

(
k′

Nη
· 1

σ̂ log k

)
.

Since log k′

logN . β′0 we have k′

Nη = 2log k′

2η logN = 2log k′−η logN

with log k′−η logN = logN( log k′

logN −η) ≈ −ε0 logN . Hence,
k′

Nη = o(1) and the probability P (k′)
failrecover tend to 0.

APPENDIX B
PROOF FOR SECTION IV-C

Proof of Lemma 10. Using standard inequalities on the bino-
mial coefficients,

a(log b− log a) ≤ log

(
b

a

)
≤ a(1 + log b− log a) , (29)



and
(
b
a

)
≤ 2b we have:

log

(
N − k
k − k′

)
− log

((
N − 2k + k′

k − k′ − k′′

)
(k − k′)

(
k − k′

k′′

))
≥

log

(
N − k
k − k′

)
− log

((
N − 2k + k′

k − k′ − k′′

)
2(k−k′)2(k−k′)

)
=

log

(
N − k
k − k′

)
− log

(
N − 2k + k′

k − k′ − k′′

)
− 2(k − k′)

(29)
≥ (k − k′)

[
log(N − k)− log(k − k′)

]
− (k − k′ − k′′)

[
1 + log(N − 2k + k′)− log(k − k′ − k′′)

]
− 2(k − k′)

= (k − k′)
[

log(N − k)− log(k − k′)− 3− log(N − 2k + k′)
]

+ (k − k′ − k′′) log(k − k′ − k′′)

+ k′′
[
1 + log(N − 2k + k′)

]
. (30)

= (k − k′)
[

log(N − k)− log(k − k′)− 3− log(N − 2k + k′)
]

+ k′′
[
1 + log(N − 2k + k′)− log(k − k′ − k′′)

]
+

+ (k − k′) log(k − k′ − k′′) . (31)

If k′′ ≤ (k − k′)ρ0 then k − k′ − k′′ ≥ (k − k′)(1− ρ0) and
therefore

log(k − k′ − k′′)
logN

≥ log(k − k′) + log(1− ρ0)

logN

(3)→ β′0

thus implying, together with eq. (31) and with − log(k−k′−
k′′) ≥ − log(k − k′), that

log
(
N−k
k−k′

)
− log

(
(k − k′)

(
k−k′
k′′

)(
N−2k+k′

k−k′−k′′
))

logN
&

(k − k′)(−β′0) + k′′(1− β′0) + (k − k′)(β′0) =

k′′(1− β′0) .

If k′′ > (k − k′)ρ0 then, since k − k′ − k′′ ≥ 1, by eq. (30)
and eq. (3) we have

log
(
N−k
k−k′

)
− log

(
(k − k′)

(
k−k′
k′′

)(
N−2k+k′

k−k′−k′′
))

logN
&

(k − k′)(−β′0) + k′′ > (k − k′)(ρ0 − β′0) .

Proof of Lemma 11. Observe that each S(−F )
i ∈ S

(−F )
k′ is the

contribution of d(k′) =
(
k
h

)
−
(
k′

h

)
hyperedges, all of them

unbiased. Therefore,

S
(−F )
i ∼ N (0, d(k′)σ2) where d(k′) =

(
k

h

)
−
(
k′

h

)
.

For δ =
√

∆ and t = δσ
√

2 logN , by the left hand side of
eq. (10), we have

Pk′ := P(S
(−F )
i > t) ≥

(
1

N

) δ2

d(k′)
(

1

δσ̂ logN
− 1

(δσ̂ logN)2

)
.

We next show that

P(max(S
(−F )
k′ ) > t) = P

 ⋃
S

(−F )
i ∈S(−F )

k′

S
(−F )
i > t

→ 1 .

(32)

We use the Chung-Erdös inequality (eq. (11)) on the Mk′

random variables in S
(−F )
k′ , and our goal is to show the

asymptotics below:

P(max(S
(−F )
k′ ) > t) ≥

(
∑
i P (Ai))

2∑
i P (Ai) +

∑
i6=j P (Ai ∩Aj)

=
(Mk′Pk′)

2

Mk′Pk′ +
∑
i 6=j P (Ai ∩Aj)(

1

Mk′Pk′
+

∑
i 6=j P (Ai ∩Aj)
(Mk′Pk′)

2

)−1

→ 1

(33)

We shall prove below that the hypothesis ∆ < d(k′)(k −
k′)(1 − β′0) implies Mk′Pk′ → ∞. Thus, in order to prove
eq. (32), it is enough to show∑

i 6=j P (Ai ∩Aj)
M2
k′P

2
k′

→ 1 . (34)

Note that∑
i 6=j

P (Ai ∩Aj) ≤Mk′

(
(Mk′ − 1)P 2

k+

+ (P̄
(k′′)
ij − P 2

k )

k−k′−1∑
k′′=max{1,h−k′}

(
k − k′

k′′

)(
N − 2k + k′

k − k′ − k′′

))

where P̄
(k′′)
ij is an upper bound on P (Ai ∩ Aj) when

the corresponding S
(−F )
i and S

(−F )
j share k′′ nodes, for

max{1, h− k′} ≤ k′′ ≤ k − k′ − 1 as:2

P(Ai ∩Aj) := P(S
(−F )
i > t ∩ S(−F )

j > t) ≤ P̄ (k′′)
ij (35)

for all S(−F )
i , S

(−F )
i ∈ S

(−F )
k′ s.t. |N(Ri) ∩ N(Rj)|= k′′,

where N(S
(−F )
i ) and N(S

(−F )
j ) denotes the set of k − k′

nodes of S(−F )
i and S(−F )

j , respectively. Our goal is to show
that

k−k′−1∑
k′′=max{1,h−k′}

(
k − k′

k′′

)(
N − 2k + k′

k − k′ − k′′

)
P̄

(k′′)
ij = o(Mk′P

2
k′) .

(36)
Note that S(−F )

i and S
(−F )
j as above can be seen as the k′′

common nodes plus the remaining r := k − k′ − k′′ nodes
in each of them. For t = tk′′ + tr where tk′′ := βt =
δβσ
√

2 logN and tr := (1 − β)t = δ(1 − β)σ
√

2 logN , we
derive the following type of upper bound:

P̄
(k′′)
ij ≤P̄k′′ + P̄ 2

r

2Note that for s < h the two solutions do not share any (hyper)edge and
thus are independent.



where P̄k′′ and P̄r are given by considering the a(k′′) hy-
peredges in the common part (Cij) and the d(k′) − a(k′′)

remaining ones (both Ŝ(−F )
j and Ŝ(−F )

j ), that is

Cij ∼N (0, σ2
C), for σ2

C = a(k′′)σ2 ,

Ŝ
(−F )
i , Ŝ

(−F )
j

iid∼N (0, σ2
R), for σ2

R = [d(k′)− a(k′′)]σ2 .

Hence, the probabilities P̄r and P̄k′′ are given by

P(Cij > tk′′) ≤
e−t

2
k′′/2σ

2
C

ts
=
e−(δβσ

√
2 logN)2/2a(k′′)σ2

δβσ̂ logN

=

(
1

N

) (δβ)2

a(k′′)

· 1

δβσ̂ logN
=: P̄k′′ ,

P(Ŝ
(−F )
i > tr) ≤

e−t
2
r/2σ

2
R

tr

=
e−(δ(1−β)σ

√
2 logN)2/2[d(k′)−a(k′′)]σ2

δ(1− β)σ̂ logN

=

(
1

N

) (δ(1−β))2

d(k′)−a(k′′)

· 1

δ(1− β)σ̂ logN
=: P̄r .

In order to have P̄k′′ ≈ P̄ 2
r we impose

(
1
N

) (δβ)2

a(k′′) ≈(
1
N

) (δ(1−β))2

d(k′)−a(k′′) by equating the exponents:

(δβ)2

a(k′′)
=

2(δ(1− β))2

d(k′)− a(k′′)
⇔

1

2

(
d(k′)

a(k′′)
− 1

)
=

(
1− β
β

)2

⇔√
1

2

(
d(k′)

a(k′′)
− 1

)
=

(
1

β
− 1

)
⇔

that can be obtained with

β2 =

 1

1 +

√
1
2

(
d(k′)
a(k′′) − 1

)


2

=
1

1
2 (1 + d(k′)

a(k′′) ) + 2

√
1
2

(
d(k′)
a(k′′) − 1

)
=

2a(k′′)

a(k′′) + d(k′) +
√

8a(k′′)[d(k′)− a(k′′)]

and in particular, by also using δ2 = ∆, we have

(δβ)2

a(k′′)
=

2δ2

a(k′′) + d(k′) +
√

8a(k′′)[d(k′)− a(k′′)]

thus implying

P̄ 2
r ≈ P̄k′′ ≈

(
1

N

) 2δ2

D(k′,k′′)

for

D(k′, k′′) := a(k′′) + d(k′) +
√

8a(k′′)[d(k′)− a(k′′)] .

Observe that

Mk′P
2
k′ =

(
N − k
k − k′

)
P 2
k′ ≈

(
1

N

) 2δ2

d(k′)−
log (N−kk−k′)

logN

.

In order to have eq. (36) it is sufficient to have

2δ2

D(k′, k′′)
−

log
(

(k − k′)
(
k−k′
k′′

)(
N−2k+k′

k−k′−k′′
))

logN
>

>
2δ2

d(k′)
−

log
(
N−k
k+k′

)
logN

that is

2δ2
( 1

d(k′)
− 1

D(k′, k′′)

)
<

<
log
(
N−k
k−k′

)
− log

(
(k − k′)

(
k−k′
k′′

)(
N−2k+k′

k−k′−k′′
))

logN
.

Lemma 10 provides a lower bound `(k′′) on the right hand
side, and thus the above inequality holds if the following
inequality holds:

∆ <
`(k′′)

2

d(k′) ·D(k′, k′′)

D(k′, k′′)− d(k′)
,

for all k′′ ∈ I(k′) = {max(1, h − k′), . . . , k − k′ − 1}. To
conclude the proof, we note that Mk′Pk′ →∞ for

δ2

d(k′)
<

log
(
N−k
k−k′

)
logN

(3)
≈ (k − k′)(1− β′0)

which is the assumption ∆ < d(k′)(k − k′)(1 − β′0). This
completes the proof.

Proof of Theorem 12. We show that

P
(
S

(−F )
planted > max(S

(−F )
k′ )

)
→ 0 (37)

where F is an arbitrarily fixed subset of k′ nodes of the planted
solution. Let us first observe that for any ∆′ = Θ

(
d(k′)
logN

)
, it

holds that pk′,∆′ → 0 and therefore

P
(
S

(−F )
planted > d(k′)µ+ σ

√
∆′2 logN

)
≤ pk′,∆′ → 0 .

Also notice that σ
√

∆′2 logN = Θ
(
σ
√

2d(k′)
)

= o(d(k′)µ)

and therefore

d(k′)µ+ σ
√

∆′2 logN = (1 + o(1)) · d(k′)µ .

For any ∆ satifying the condition in Lemma 11, we also have

P
(

max(S
(−F )
k′ ) ≤ σ

√
∆2 logN

)
→ 0 .

In particular, we can take ∆ = d(k′) min{LB(k′), (k−k′)(1−
β′0)− ρ0, where LB(k′) is defined as in Lemma 11 and ρ0 ∈
(0, 1) is a constant. Suppose that, for ∆′ and ∆ as above, there
exists t such that

d(k′)µ+ σ
√

∆′2 logN < t < σ
√

∆2 logN . (38)



Then we get both

P
(
S

(−F )
planted > t

)
≤P
(
S

(−F )
planted > d(k′)µ+ σ

√
∆′2 logN

)
≤pk′,∆′ → 0 .

P
(

max(S
(−F )
k′ ) < t

)
≤ P

(
max(S

(−F )
k′ ) ≤ σ

√
∆2 logN

)
→ 0 .

Using both inequalities above, we have

P
(

max(S
(−F )
k′ ) < S

(−F )
planted

)
≤

P
(
S

(−F )
planted > t

)
+ P

(
max(S

(−F )
k′ ) < t

)
and both quantities tend to 0 using the condition eq. (38)
on t. Finally, we show that γ < γ

(k′)
LB implies that d(k′)µ +

σ
√

∆′2 logN < σ
√

∆2 logN so that we can find some t as
above:

d(k′)µ+ σ
√

∆′2 logN < σ
√

∆2 logN
(1)⇔

γ <

√
∆−

√
∆′

d(k′)
.

Since ∆′ = Θ
(
d(k′)
logN

)
we have

√
∆′

d(k′) ≈ 0, while by the
definition of ∆ we have

√
∆

d(k′)
=

√
d(k′) min{LB(k′), (k − k′)(1− β′0)− ρ0

d(k)2

≈

√
min{LB(k′), (k − k′)(1− β′0)

d(k)
= γ

(k)
LB .

Hence γ < γ
(k′)
LB ≈

√
∆−
√

∆′

d(k′) implies the existence of t as
above. This completes the proof.

Proof of Corollary 13. We first prove the following:

Lemma 15. For every k′ and every k? such that(
k′+k∗
h

)
/
(
k
h

)
→ 0 the following holds. For every ρ0 ∈ (0, 1)

and for every γ <
√

min(k?(1−β0),(k−k′)(ρ0−β0)
2d(k′)

P (Splanted > max(Sk′))→ 0 . (39)

Proof. We prove that

LB(k′) ≥ (1/2) min
(
k?(1− β0), (k − k′)(ρ0 − β0)

)
(40)

and thus γ(k′)
LB ≥

√
min(k?(1−β0),(k−k′)(ρ0−β0)

2d(k′) . For a generic

k′ and k′′ ∈ I(k′), let us consider a := a(k′′) =
(
k′+k′′

h

)
−(

k′

h

)
, d := d(k′) =

(
k
h

)
−
(
k′

h

)
, and D := D(k′, k′′) where

we dropped the dependency on k′, k′′ for convenience. We
show first that, by the hypothesis on k?, for all k′′ ≤ k?
we have a = o(d). Observe that, for all k′′ ≤ k? we have
a(k′′) ≤ a(k?), and thus

a(k′′)

d(k′)
≤ a(k?)

d(k′)
=

(
k+k?
h

)
−
(
k′

h

)(
k
h

)
−
(
k′

h

) ≤
(
k+k?
h

)(
k
h

) → 0 .

This implies

D

D − d
=

a+ d+
√

8a(d− a)

(a+ d+
√

8a(d− a))− d

≥ d

a+
√

8a(d− a)
=

d

o(d)
→ +∞ .

Hence, `(k′′)D
D−d → +∞ for such k′′ since `(k′′) ≥ (ρ0 − β0)

by Lemma 10. For k′′ > k? we instead observe that, again
using Lemma 10,

`(k′′)
D

D − d
≥ `(k?) ≥ min

(
k?(1− β0), (k − k′)(ρ0 − β0)

)
,

which proves (40).

The proof for Corollary 13 follows easily by taking k′ = 0
in Lemma 15.


	Introduction
	Main Results
	Setting
	Results
	Comparison with prior bounds

	Related work
	Recovery via concentration bounds
	Probability tools
	Upper bound (approximate or exact recovery is possible)
	Lower bound (exact recovery is impossible)

	Conclusions
	References
	Appendix A: Proof for IV-B
	Appendix B: Proof for IV-C

