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Abstract—We study structural properties of preferential at-
tachment graphs (with parameter m ≥ 1 giving the number of at-
tachment choices that each new vertex makes) which intervene in
two complementary algorithmic/statistical/information-theoretic
problems involving the information shared between a random
graph’s labels and its structure: in structural compression,
we seek to compactly describe a graph’s structure by a bit
string, throwing away its label information; in node arrival
order recovery, we seek to recover node labels, given only a
graph structure. In particular, we study the typical size of
the automorphism group, as well as some shape parameters
(such as the number of linear extensions and height) of the
directed version of the graph, which in turn allows us to estimate
the typical number of admissible labeled representatives of a
given graph structure. Our result on the automorphism group
positively settles a conjecture to the effect that, provided that
m ≥ 3, preferential attachment graphs are asymmetric with high
probability, and completes the characterization of the number of
symmetries for a broad range of parameters of the model (i.e.,
for all fixed m). These results allow us to give an algorithmically
efficient, asymptotically optimal algorithm for compression of
unlabeled preferential attachment graphs. To show the optimality
of our scheme, we also derive new, precise estimates of the
Shannon entropy of both the unlabeled and labeled version of
the model. Our results also imply inapproximability results for
the problem of node arrival order recovery.

Index Terms: graph compression, symmetry, preferential at-
tachment, random graphs

I. INTRODUCTION

The purpose of this paper is to present mathematical results
on structural parameters which are fundamental to statistical
and information-theoretic problems involving the information
shared between the labels and the structure of a random graph.
We first describe two such problems, which are in a sense
complementary – compression of graph structures, wherein
the goal is to remove label information to produce a compact
description of a graph structure, and recovery of node arrival
order in dynamic networks, wherein the goal is to recover
label information by examining a graph structure – and then
explain the structural parameters involved in their analysis,
which form the focus of this work. In a nutshell, we study the
question, how much information about the labels of a random
graph is contained in its structure?

Removing label information – structural compression: For-
mally, the labeled graph compression problem is as follows:
fix a distribution Gn on (multi)graphs on n vertices. We
would like to exhibit an efficiently computable source code [1]
(Cn,Dn) for Gn, where Cn is a function mapping graphs in
the support of Gn to bit strings, in such a way as to minimize
the expected length of the output bit string when the input
is a graph distributed according to Gn, and Dn inverts Cn
and is efficiently computable. A related problem, and one
focus of our paper, seeks to compress graph structures: here,
the encoding function Cn is presented with a multigraph G

isomorphic to a sample from Gn, and Dn(Cn(G)) is only
required to be a labeled multigraph isomorphic to G (that
is, only the structural information is preserved). We again
insist on a source code with the minimum possible expected
code length (which is given by the Shannon entropy of the
distribution on unlabeled graphs induced by Gn; we call this
the structural entropy of the model).

The structural compression problem is motivated by scenar-
ios in which one only cares to transmit or store information
about the isomorphism type of a graph – e.g., its degree
sequence, number of occurrences of certain subgraphs, etc.
In such scenarios, one does not care about labeled graph
information, such as the fact that, say, vertex 2 connects to
vertex 7. Taking advantage of this fact allows for a more
compact description of the relevant information than would
result if we naively encoded the labeled graph.
Inferring label information – node arrival order recovery:
A complementary problem, node arrival order recovery in
a dynamic graph, seeks to recover the labels of nodes of a
random graph, given its structure. The motivation is as follows:
networks in the real world are constructed dynamically, and it
is useful to be able to discover node and edge attributes which
correlate with time. See [2], [3].
Structural properties: A few structural quantities arise in
both of the above problems: as we will see, the structural
entropy for a broad class of graph models involves the size of
the automorphism group of a sampled graph, as well as the
typical number of positive-probability labeled representatives
of a given structure, and the number of positive-probability



re-labelings (i.e., permutations) of a sampled graph. The same
quantities also give lower bounds on the probability of error
and the expected number of inversion errors in the node arrival
order recovery problem.

We will focus on the analysis of these quantities for prefer-
ential attachment graphs [4]. Additional structural properties
will arise in the analysis of an asymptotically optimal struc-
tural compression algorithm which we will give below.
Our contributions: Succinctly, our contributions in this work
are threefold: (i) in the setting of preferential attachment
graphs, we analyze several structural parameters (explained
more precisely below) which arise in both of the motivating
problems above and which may be of independent interest;
(ii) we use our structural results to precisely determine the
entropies of the preferential attachment distributions on both
labeled graphs and their structures, giving the fundamental
limits of labeled and structural compression; (iii) we give
an efficient, asymptotically optimal structural compression
algorithm whose analysis relies on our structural results.

The structural properties include the typical size of the
automorphism group, as well as some structural characteristics
of the directed version of the graph (e.g., the number of
admissible labeled representatives of a given graph structure,
which is related to the number of linear extensions of the
directed version, viewed as a partial order). Our result on the
automorphism group (Theorem 1) positively settles a conjec-
ture in [5] to the effect that preferential attachment graphs
in which each node makes a sufficiently large number of
choices are asymmetric with high probability. This completes
the characterization of the number of symmetries for a broad
range of parameters of the model.

Regarding structural characteristics of the directed version
of the graph (wherein edges are directed from younger nodes
to those older nodes that they choose), we analyze a natural
partitioning of the vertices into layers, which intervenes in
the depth-first search process on the directed graph and in the
estimation of the number of admissible labeled representatives
of the graph (i.e., the number of isomorphic graphs which
could have arisen by preferential attachment): in particular,
we show that the order of growth of the number of layers is
Θ(log n) with high probability (see Theorem 3), and almost
all vertices occur within the first few layers (Theorem 2). The
result on the number of layers is important for our structural
compression algorithm (summarized in Theorem 6). We use
the above results to provide new, precise estimates of the
Shannon entropy of both the labeled and unlabeled models
(Theorems 4 and 5).

Full proofs can be found in the journal version [6] of this
work. In this conference version, we also present new results
on compression algorithms and relevant structural parameters.
Prior work: The general connection between structural com-

pression and the automorphism group of a random graph
was pointed out in [7] in the case of unlabeled Erdős-Rényi
graphs. The relation between the node arrival order recovery
problem, automorphisms, and feasible labeled representatives
was pointed out in [2] (but we connect the latter quantity to
graph compression in the present work).

There has been significant work on compression of labeled
graph and tree models in recent years in both the information
theory and computer science communities [8], [9], [10], [7],
[11], [12]. In the computer science community, the focus
has been on algorithmic complexity, and no attempt seems
to have been made to compare with or derive fundamental
information- theoretic limits. Work in both communities has
largely been restricted to labeled graphs or graphs with strong
edge independence assumptions. As we show, additional com-
plications arise when the goal is graph structure compression.

There have been many extensions of the preferential at-
tachment model (as well as models which adopt completely
different mechanisms) to provide better fits for certain aspects
of real networks: e.g., [13]. It is likely that many of our
techniques and results adapt to certain parameter ranges of
models extending preferential attachment; we restrict to the
plain preferential attachment model (which, in any case, con-
tinues to be studied), since the analysis in even this case is
quite involved.
Technical challenges: Most of the technical challenge in
the entropy derivation and the analysis of the compression
algorithm stems from the necessary analysis of the relevant
combinatorial quantities. In particular, showing asymmetry for
a typical preferential attachment graph requires a detailed
understanding of the probability distribution of individual
vertex degrees – namely, that there is an initial unique degree
region of polynomial size, and that, roughly speaking, all
subsequent vertices behave toward this region in a unique
way (see Theorem 1). Accomplishing this requires left tail
bounds on the degree of a vertex at a given time; as vertex
degrees, properly normalized, are asymptotically exponentially
distributed (and, thus, poorly concentrated), proving these
bounds requires techniques beyond the standard Chernoff,
Hoeffding, Azuma-style approaches.

Regarding counting admissible relabelings, the conceptual
key is tying them (almost) bijectively to linear extensions of
the directed version D of the graph and asymptotically count-
ing these objects. Doing this, in turn, requires identification
of further structure in D, as described above. Results along
the same lines drive the analysis of the asymptotically optimal
compression algorithm.

II. MAIN RESULTS

We now introduce the model that we consider and formulate
the main results. The preferential attachment model PA(m;n)



is a dynamic model of network growth proposed in [4]. For
an integer parameter m ≥ 1 we define the graph PA(m;n)

with vertex set [n] = {1, 2, . . . , n} inductively on n in the
following way: the graph G1 ∼ PA(m; 1) is a single node
with label 1 with m self-edges (these will be the only self-
edges in the graph, and we will only count each such edge
once in the degree of vertex 1). Inductively, to obtain a graph
Gn+1 ∼ PA(m;n+1) from Gn, we add vertex n+1 and make
m random choices (with replacement) v1, ..., vm of neighbors
in Gn as follows: for each vertex w ≤ n (i.e., vertices in Gn),
P(vi = w|Gn, v1, ..., vi−1) = degn(w)

2mn , where throughout the
paper we denote by degn(w) the degree of vertex w ∈ [n] in
the graph Gn (in other words, the degree of w after vertex
n has made all of its choices). Our proof techniques adapt to
tweaks of the model in which multiple edges are not allowed.

For any graph G, we denote by S(G) its unlabeled version
(i.e., the equivalence class of all labeled graphs isomorphic
to G). Our structural compression/entropy results will be
concerned with the unlabeled preferential attachment model,
defined by first generating G ∼ PA(m;n), then taking S(G).

A. Entropy estimates and structural results

Our first concern will be to derive the fundamental lower
bound on the expected code length for compression of unla-
beled preferential attachment graphs, as described above. As
usual, this is given by the Shannon entropy of the distribution
on unlabeled graphs induced by PA(m;n). We are thus
interested in H(S(G)), where G ∼ PA(m;n).

By the chain rule for conditional entropy, H(G) =

H(S(G))+H(G|S(G)). The second term, H(G|S(G)), mea-
sures our uncertainty about the labeled graph if we are given
its structure. We will give a formula for H(G|S(G)) in terms
of the automorphism group |Aut(G)| and another quantity,
defined as follows: suppose that, after generating G, we relabel
G by drawing a permutation π uniformly at random from
Sn, the symmetric group on n letters, and computing π(G).
Then conditioning on π(G) yields a probability distribution
for possible values of π−1 = σ. We can write H(G|S(G))

in terms of H(σ|σ−1(G)) = H(σ|σ(G)) (intuitively, the
amount of uncertainty about the value of the random per-
mutation σ upon seeing the result of its application to G)
and E[log |Aut(G)|] using the chain rule for entropy, resulting
in the following lemma (which is not specific to preferential
attachment models).

Lemma 1 (Structural entropy for preferential attachment
graphs). Let G ∼ PA(m;n) for fixed m ≥ 1, and let σ be a
uniformly random permutation from Sn. Then we have

H(G)−H(S(G)) = H(σ|σ(G))− E[log |Aut(G)|]. (1)

To evaluate H(S(G)) and to analyze our compression
algorithms, we are thus led to evaluate E[log |Aut(G)|],

H(σ|σ(G)), and H(G). The next few results give the struc-
tural properties that we need for this. The term H(σ|σ(G))

has multiple interpretations: defining Γ(G) to be the set of
relabelings of G which produce positive-probability graphs
under preferential attachment, we have (at least asymptoti-
cally) H(σ|σ(G)) = E[log |Γ(G)|]. This, in turn, is related to
the number of linear extensions of the directed version of G,
viewed as a partial order.
Structural results: The proof of Theorem 5 (our expansion of
H(S(G))) below and the analyses of our algorithms depend
on the following structural results.

The next theorem says that with high probability G has no
symmetries when m ≥ 3. As mentioned in the introduction,
this essentially completes the analysis of the precise behavior
of the number of symmetries of PA(m;n) for constant m.
We will mostly focus on the case m ≥ 3, since the behaviors
for m = 1, 2 are qualitatively different (for m = 1, 2,
there are many symmetries with high probability and with
asymptotically positive probability, respectively).

Theorem 1 (Asymmetry for preferential attachment model).
Let G ∼ PA(m;n) for fixed m ≥ 3. Then, with high
probability as n → ∞, |Aut(G)| = 1. More precisely, for
m ≥ 3, P(|Aut(G)| > 1) = O(n−δ), for some fixed δ > 0.

We will also state some results on the directed version of G
(denoted by DAG(G)). This is the directed multigraph defined
on [n], with an edge from w to the older node v < w for each
edge between v and w in G. We can partition the vertices
of DAG(G) into levels inductively as follows: L1 consists
of the vertices with in-degree 0 (i.e., with total degree m).
Inductively, Lj is the set of vertices incident on edges coming
from vertices in Lj−1. Equivalently, a vertex w is an element
of some level ≥ j if and only if there exist vertices v1 < · · · <
vj such with v1 > w and the path vjvj−1 · · · v1w exists in G.
The height of DAG(G) is then defined to be the number of
levels in this partition.

The next result says that almost all of the vertices are con-
centrated within the first few levels. This will be instrumental
in the proof of Theorem 5.

Theorem 2. For any δ = δ(n) > 0, there exists ` = `(δ) for
which the number of vertices that are not in the first ` layers
of DAG(G) is at most δn, with high probability. In particular,
we can take ` ≥ 15m

2δ4 log(3/(2δ2)).

Next, we find the order of growth of the typical height of
DAG(G), which will be useful in the analysis of our structural
compression algorithm.

Theorem 3 (Height of DAG(G)). Consider Gn ∼ PA(m;n)

for fixed m ≥ 1. Then, with probability at least 1−o(n−1), the
height of DAG(Gn) is at most Cm log n, for some absolute



positive constant C.

It is simple to show that with high probability the height is
also lower bounded by Ω(log n).

Using these results, we will be able to connect H(σ|σ(G))

in (1) to a combinatorial parameter of DAG(G) (the number
of linear extensions of DAG(G), viewed as a partial order),
which we will be able to show is estimated by n log n+R(n),
where C1n ≤ |R(n)| ≤ C2n log log n.
Entropy results: We next evaluate H(G).

Theorem 4 (Entropy of preferential attachment graphs). Con-
sider G ∼ PA(m;n) for fixed m ≥ 1. We have

H(G) = mn log n+m (log 2m− 1− logm!−A)n+ o(n),

(2)

where A = A(m) =
∑∞
d=m

log d
(d+1)(d+2) .

This is a more precise analysis than the one given in [14],
which only recovers the first term and the order of the second.

Using the above results, we finally have the following
expression for H(S(G)).

Theorem 5 (Structural entropy of preferential attachment
graphs). Consider G ∼ PA(m;n) for fixed m ≥ 3. We have

H(S(G)) = (m− 1)n log n+R(n), (3)

where R(n) satisfies Cn ≤ |R(n)| ≤ O(n log log n) for some
nonzero constant C = C(m).

Compared with the naive encoding method which sim-
ply stores a labeled representative of the structure us-
ing mn log(mn) bits, the structural entropy is smaller by
n log n(1 + o(1)) bits.

B. Optimal compression algorithms

We now give our results on efficient algorithms for compres-
sion and decompression of unlabeled/labeled samples from
PA(m;n) which asymptotically achieve the entropies.

First, we give an asymptotically optimal algorithm for
compression of unlabeled graphs (see Theorem 6 below): that
is, given an arbitrary labeled representative G isomorphic to
G′ ∼ PA(m;n), we construct a code from which S(G′)

can be efficiently recovered. The algorithm can be run on
general undirected graphs; our optimality guarantee is under
the assumption that the input is generated by PA(m;n).

Structural compression algorithm. We state our algorithm and
analyze it in the case where the model is preferential attach-
ment with m self-loops on the oldest vertex. Only simple
tweaks are needed to generalize to the case where there are no
self-loops (and hence where one cannot necessarily uniquely
identify the oldest vertex).

Our algorithm starts with finding a certain orientation of the
edges of the input graph G to produce a directed, acyclic graph

D. In the case where G is isomorphic to a sample G′ from
PA(m;n) (say, G = π(G′)), we have D = π(DAG(G′)),
and all vertices have out-degree m.

We accomplish this by a peeling procedure: at each step,
consider the set Dmin of minimum-degree nodes in the graph.
We orient the edges incident on those nodes away from them,
and then recurse on the subgraph excluding the nodes in
Dmin. This procedure terminates precisely when there are no
remaining vertices. For a general input graph G, which might
not have arisen by preferential attachment, there may be edges
between vertices in Dmin. We orient edges from nodes with
larger labels to those with smaller ones. In general, this yields
a directed, acyclic graph (aside from self-loops).

That this yields the directed graph D = π(DAG(G′)) when
the input is isomorphic to a preferential attachment graph is
spelled out in detail in Lemma 2 of [3]. Hence, we are free to
apply our structural results (such as Theorem 3) on DAG(G′).
We remark that it is not too hard to generalize our algorithm
to tweaks of the model, since the only thing that is required
is that the height of the resulting directed graph be at most
O(log n); such an orientation of the edges of G exists with
high probability, because of Theorem 3.

With this procedure in hand, the structural compression
algorithm works as follows, on input G:

1) Construct the directed version D = DAG(G) by the
procedure just described.

2) Starting from the “bottom” vertex (i.e., the vertex with
no out-edges except for self-loops), we will do a depth-
first search of D (following edges only from their
destinations to their sources). To the jth vertex in
this traversal, for j = 1, ..., n, we will associate a
backtracking number Bj , which tells us how many steps
to backtrack in the DFS process after visiting the jth
node; e.g., when there is at least one in-edge leading to
an unvisited node (so that we do not backtrack), Bj = 0.
Upon visiting vertex w from vertex v in the DFS, we
do the following:

a) Denote by k the maximum out-degree of D (which
can be determined in a preprocessing step, and
which is equal to m if the input arises from
preferential attachment). Using dlog ke bits, encode
the out-degree dw of w (for preferential attachment,
dw = m, but we encode it for the sake of
generality).
Encode the names of the dw − 1 vertex choices
made by w, excluding one choice to connect to
vertex v. Here, the name of a vertex is the binary
expansion of its index in the DFS, which we can
represent using exactly dlog ne bits. These can be
determined in a preprocessing step, by doing an



initial DFS to label the nodes with their names.
b) We need to know what happens after we visit ver-

tex w: do we go forward in the search, or is there
nowhere left to go along the current route (i.e., do
we need to backtrack)? Suppose w is the jth vertex
to be visited. Then we output an encoding of Bj .
We need to more precisely examine how we encode
these numbers, since it would be suboptimal to
simply encode them in Θ(log n) bits. Lemma 2
below tells us how to more efficiently perform this
encoding.

3) For the purposes of decoding, we store (once, for the
entire graph) the sequence of code words for the code
used for the backtracking numbers. This can be done in
at most O(n log log n) extra bits, at the beginning of the
code. We also store k (the maximum out-degree), which
can be done with at most O(log n) bits.

Lemma 2. The backtracking numbers B1, ..., Bn can be
encoded using a total of O(n log log n) bits on average.

Proof. Consider a random variable X whose distribution is
given by the empirical distribution of the collection B =

{B1, ..., Bn}. That is, PX(x) =
|{j : Bj=x}|

n for each x. Note
that this empirical distribution is itself a random variable. We
will show that E[n ·H(X)] = O(n log log n).

Denote by W the event that the number of levels in D is
upper bounded by O(log n). Under conditioning on this event,
X can take on at most O(log n) values, which implies that
H(X) = O(log log n). Then we have

E[H(X)] ≤ E[H(X)|W ] + (1− P(W ))E[H(X)|¬W ]

≤ E[H(X)|W ] + (1− P(W )) log n = O(log log n),

where we have used Theorem 3 to upper bound 1− P(W ).
We can thus construct a prefix code (once, for the entire

graph) for the observed values of Bi, whose empirical average
length is given by

∑
x : ∃j,Bj=x

`xPX(x) ≤ H(X)+1, where
`x denotes the length of the code word for x. Now, recalling
the definition of PX(x), this implies

E

 ∑
x : ∃j,Bj=x

`x|{j : Bj = x}|


≤ nE[H(X)] + n = O(n log log n).

We can show that the code for S(G) is uniquely decodable.
Furthermore, its expected length is at most (m− 1)n log n+

O(n log log n), which recovers the first term of the structural
entropy and bounds the second. Construction of the Huffman
code for the backtracking numbers takes time O(n log n), and

each step of the DFS takes time at most O(m log n), so the
running time is O(mn log n).

We have thus proven the following:

Theorem 6 (Structural compression). The algorithm given
above, on input a graph G isomorphic to G′ ∼ PA(m;n),
runs in time O(mn log n) and outputs a code of expected
length (m − 1)n log n + O(n log log n) from which we can
recover S(G) in time O(mn log n). If self-loops are removed
from G′ and G (so that the first vertex is hard to identify), then
the same code length can be achieved in time O(mn2 log n).

From Theorem 5, our algorithm is optimal at least up to
the first term of the lower bound, and we explicitly bound the
second term. There is a simple optimal labeled compression
algorithm via arithmetic coding. We omit the details.
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