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Abstract—We consider the problem of designing a database
sanitization mechanism (DSM) that minimizes, in the expected
sense, the L1−distortion between the histograms of original and
sanitized databases, while being θ−differentially private (DP).
The expected L1−distortion of a corresponding optimal θ−DP
DSM provides for an important utility-privacy trade-off. This
problem reduces to a prohibitively complex linear program (LP).
Using tools from Ehrhart theory, analytic combinatorics and LP
theory, we solve this problem and thereby provide a simple closed
form computable expression characterizing this trade-off.

I. INTRODUCTION

Fine-grained and high-dimensional data gathered from sub-
jects regarding their preferences, characteristics is being in-
creasingly mined for socio, economic and scientific benefits.
Correlations, discovered via such querying, among attributes
previously thought unrelated, could lead to significant scien-
tific breakthroughs and/or economic benefits. Consequently,
databases (DBs) are subject to unrestrained querying, and
are also being traded among corporations/agencies to facil-
itate informed policy making. Trading of DBs containing
private information, amongst untrusted agencies, and their
unrestrained querying results in catastrophic loss of subject
privacy. It is imperative that we adopt an architecture for
DB handling, trading and querying that simultaneously (i)
permits unrestrained querying, (ii) provides useful/accurate
responses, while (iii) being secure against privacy breaches.
An information-theoretic study of the privacy-utility trade-off
of such an architecture is the overarching goal of our work.

Motivated by these considerations, we focus on an architec-
ture wherein the original DB is sanitized via a provably secure
mechanism. The original DB is destroyed and further query-
ing/trading is performed of the sanitized DB (Fig. 1). How do
we sanitize a DB and secondly, what is the performance/utility
of this architecture? The need to quantify vulnerability of a DB
sanitizing mechanism (DSM), and more importantly provide
provable upper bounds on the same, leads us to differential
privacy (DP) [1]. DP models a DSM, and more generally a
query-response mechanism, as a randomized algorithm and
quantifies the vulnerability of the latter via its sensitivity to
individual records. Specifically, a mechanism M is θ−DP

for θ ∈ [0, 1], if θ ≤ max
(r,r̂)∈N

max
y∈Y

WM (y|r)
WM (y|r̂)

≤ 1

θ
, (1)

where N is the set of all (ordered) pairs of DBs that differ in
a single record, and WM (y|r) is the probability of M putting
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out y ∈ Y as the response when input with DB r. The reader
will note that larger values of θ correspond to less vulnerable
mechanisms, and the increased robustness is achieved at the
cost of reduced accuracy of the query response. Key properties
of DP - composition and post-processing - justify our choice
of a DP DSM. In particular, the latter states that querying a DB
sanitized via θ−DP DSM is, irrespective of the query and the
querying mechanism, at least as robust as a θ−DP mechanism.
In other words, sanitizing a DB via a DP mechanism provides
for an impermeable firewall against privacy breaches.

The utility/performance of this architecture (Fig. 1) is
governed by accuracy of the responses obtained by querying
the sanitized DB. Our focus being statistical queries, we
consider a fidelity measure on the space of histograms and
quantify (loss of) utility/performance by a fidelity between
the histograms of the original and sanitized DBs. This leads
us to our problem, posed in a (conventional) information-
theoretic framework. Given a privacy budget, in terms of the
DP parameter θ ∈ (0, 1), what is the minimum expected
fidelity of an optimal θ−DP DSM, in the asymptotic regime
of large DBs. Section II contains a mathematical formulation.

Identifying an optimal mechanism reduces to a prohibitively
complex optimization problem (Rem. 1) with an exponential
number of linear constraints. Seeking to identify structure of
the optimal mechanism, we consider the L1 or TV divergence
measure, in which case the objective function is linear, thereby
resulting in a linear program (LP). We are thus posed with the
task of identifying the limit of solutions to a sequence of LPs,
each of which, is subject to exponentially many constraints.
One of our main contributions is a precise characterization of
this limit, and hence the minimum expected L1−fidelity of a
θ−DP DSM in the limit of large DBs. Our solution brings to
light connections between DP and Ehrhart theory [2].

Ehrhart theory concerns integer-point enumeration of poly-
topes. The counts of the number of integer points in the t−th
dilation of a polytope - the Ehrhart polynomial of the polytope
- and the associated generating function - the Ehrhart series



of the polytope - are fundamental constructs in Ehrhart theory.
As we describe below, these constructs will play a central role
in characterizing the limit we seek.

Our crucial first step of visualizing the LP through a graph
paves the way to developing these connections with discrete
geometry. In particular, we relate the objective and constraints
of the LP with the distance distribution of vertices in this
graph. In the limit of large DBs, the distance distribution of
this graph is given by the Ehrhart polynomial of a suitably
defined convex polytope. Our solution has two parts - upper
and lower bound. To characterize an upper bound on the limit
we seek, we identify feasible solutions to the sequence of
LP’s, whose objective values, in the limit is given by a simple
functional of the Ehrhart series of the above mentioned convex
polytope. Sec. III-A provides a descriptive derivation of the
upper bound and Sec. IV, the mathematical steps. We appeal
to weak duality theorem for the lower bound. Note that every
feasible solution to the dual of the above LP evaluates to a
lower bound on the minimum expected fidelity. We therefore
consider the sequence of dual LPs and identify a sequence of
feasible solutions for the same. We prove that these feasible
solutions evaluate to, in the limit, the same functional as
obtained in the upper bound. This enable us conclude that
the Ehrhart series of the above mentioned convex integral
polytope yields the minimum expected L1−fidelity of a θ−DP
DSM, thereby establishing a connection between objects of
fundamental interest of the two disciplines/areas.

While DP [1] has been a subject of intense research (See
[3] and references therein, [4], [5]), much of this is aimed
at studying variants of the geometric/Laplacian mechanism,
leaving the question of their optimality open. Hardt and Talwar
[6] considered ‘continuous extensions’ of the (min-max) prob-
lem and developed novel lower bounding techniques based on
geometric arguments. [6] and [7] are based on a clever use of
the Markov inequality. Geng and Viswanath [8], [9] focus on
noise-adding mechanisms and proved optimality of ’staircase
mechanisms’ for a general class of convex utility functions
by appealing to functional analytic techniques. More recently,
[10] developed lower bounds based on non-existence of certain
fingerprinting codes. All these techniques have been developed
for the minimax setting and as we discuss in Rem. 2, do not
yield a lower bound for the problem studied herein.

II. PROBLEM STATEMENT

We let M : A ⇒ B denote a mechanism (randomized
algorithm) with input set A and output set B. When input
a ∈ A, the mechanism M produces output b ∈ B with prob-
ability WM (b|a).1 WM : A ⇒ B also refers to mechanism
M : A ⇒ B. Consider a DB with n subjects. Each subject
is identified with a record which stores his/her data. We let
R = {a1, · · · , aK} denote the set of possible records. K can
be arbitrary, but will remain fixed throughout our study. We let
r :=(r1, · · · , rn) ∈ Rn denote a generic DB with n records.

Our focus in this article is to design a DB sanitization
mechanism (DSM), i.e., a randomized algorithm that takes a

1In the CS literature, such as in [1], W(b|a) is denoted M(b)a.

DB as input and outputs a DB. Since permutations are irrele-
vant, a DB is equivalently represented through its histogram.
We therefore concern ourselves with designing a histogram
sanitization mechanism (HSM). For a DB r ∈ Rn and a
record ak ∈ R, we let h(r)k =

∑n
i=1 1{ri=ak} denote number

of subjects with record ak, and h(r) : =(h(r)1, · · · ,h(r)K)
denote the histogram corresponding to DB r ∈ Rn. Let
Hn :={(h1, · · · , hK) ∈ ZK : hi ≥ 0,

∑K
k=1 hk = n} denote

the collection of histograms. When K is set to a particular
value, we let HnK denote Hn. In this article, we measure
fidelity between a pair of histograms through its L1−distance.
We employ DP to quantify vulnerability to privacy breaches.
A pair r, r̂ ∈ Rn of DBs are neighboring if r and r̂ differ in
exactly one entry, or equivalently |h(r)− h(r̂)|1 = 2.

Definition 1: A pair h, ĥ ∈ Hn is neighboring if |h− ĥ|1 =
2. A HSM M : Hn ⇒ Hn is θ−DP (0 < θ < 1) if for every
pair h, ĥ ∈ Hn of neighboring histograms and every histogram
g ∈ Hn, we have θ WM (g|h) ≤WM (g|ĥ) ≤ θ−1 WM (g|h).

We formulate the problem of characterizing the minimum
expected fidelity of a θ−DP HSM. Towards that end, we
model a pmf on the space of DBs. For a record ak ∈ R,
let pk > 0 denote the probability that a subject’s record is ak.
Moreover, the n records that make up the DB are IID with
pmf p :=(p1, · · · , pK). The probability that the histogram of
the randomly chosen DB R ∈ Rn is

P
(
h(R) = h

)
=
∑

r∈Rn:h(r)=h

P (R = r) =
∑

r∈Rn:h(r)=h

ph(r) =

(
n

h

)
ph, (2)

where here and henceforth, we let ph : =
∏K
k=1 p

hk

k . (2)
follows from the fact that the number of DBs whose histogram
is h ∈ Hn is the multinomial coefficient

(
n
h

)
: =
(

n
h1···hk

)
. In

passing, we note that the multinomial pmf (2) with a generic
pmf p on the set R, is indeed the most generic pmf on the
space of histograms. Throughout, we make no assumption on
p resulting in a generic study. We now formulate our problem.

Given a privacy budget θ ∈ (0, 1), our goal is to characterize
D∗K(θ) := limn→∞Dn

∗ (θ), where,

Dn
∗ (θ) := min

W(·|·)

∑
h∈Hn

∑
g∈Hn

(
n

h

)
phW(g|h)|h− g|1, subject to(3)

∑
g∈Hn

W(g|h) (4a)
= 1 ∀ h ∈ Hn, W(g|h)− θ W(g|ĥ)

(4b)

≥ 0 (4)

∀(h, ĥ) ∈ Hn×Hn satisfying |h− ĥ|1 = 2 and ∀ g ∈ Hn, (5)
and W(g|h) ≥ 0 for all (g, h) ∈ Hn×Hn. (6)

Remark 1: It can be verified that the optimization problem
(3) has (n + 1)2K decision variables and O(K2|Hn|2) =
O(K2(n+1)2(K−1)) constraints of the form (4)(b). Owing to
its complexity, we are unaware of its solution even for K = 2.

Remark 2: One may replace the | · |1 distance with a
generic fidelity measure F(·, ·) on Hn and recover problem
formulations studied in [4], [11], among others. In particular
Ghosh, Roughgarden and Sundararajan [11] study the K = 2
case for a fairly generic fidelity measure, and prove structural
properties of an optimal mechanism. While these hold for



each n, they do not pin down an optimal mechanism, leaving
D∗2(θ) unknown. On the one hand, [6] studies a min-max
problem setting. Secondly, their continuous extension results
in a larger constraint set, lending the lower bounds developed
therein invalid for the original discrete problem setting.

III. PRECISE CHARACTERIZATION OF D∗K(θ)

One of our main contributions is a simple computable
expression for D∗K(θ). Thm. 1 provides one such expression
- a hyper-geometric series. The latter encapsulates the entire
information from a power series. In Sec. III-A, we identify
this power series and elaborate on how and why it is related
to D∗K(θ).

Theorem 1: (i) When K = 2, the limit D∗2(θ) =
limn→∞Dn

∗ (θ) = 4θ
1−θ2 . (ii) In general, the minimum ex-

pected L1−fidelity of a θ−DP HSM is given by

D∗K(θ) = 2θ
{
K−1
1−θ +

S′K−1(θ)

SK−1(θ)

}
, where

S′K−1(θ) :=
dSK−1(θ)

dθ , SK−1(θ) =

K−1∑
j=0

θj
[(
K − 1

j

)]2 (7)

with S′K−1(θ) : = d
dθSK−1(θ). An optimal HSM is ob-

tained as a truncation of a geometric mechanism W∗(g|h) =
1

EP,f (θ)
θ
|g−h|1

2 , where EP,f (θ) is the normalizing constant
related to the Ehrhart series shown in (8).
Below, we express D∗K(θ) in terms of another important
construct in analysis - the Legendre polynomial. We note that
SK−1(θ) = (1 − θ)K−1LK−1(

1+θ
1−θ ) [12, Prob. 85], where

Ln(x) : = 1
2nn!

dn

dxn (x
2 − 1)n is the Legendre polynomial of

degree n. This leads to the following.
Corollary 1: We have

D∗K(θ) = K

{
1 + 4θ − θ2

1− θ
+

LK(y)

LK−1(y)

}
, where y =

1 + θ

1− θ
.

Proof: Substitute SK−1(θ) = (1 − θ)K−1LK−1(y) and
use the defn of Ln(x) := 1

2nn!
dn

dxn (x
2−1)n [12, Prob. 86].

Characterization for D∗K(θ) provided in (7) hints at deeper
connections between Ehrhart theory and DP. We prove that

D∗K(θ) = 2θ
EP,f (θ)

dEP,f (θ)
dθ , where

EP,f (θ)
(b)
= (1− θ)EhrP(θ)

(c)
= 1 +

∑∞
d=1 Ndθ

d,
(8)

Nd is the number of integer points on the face of the convex
polytope

Pd = {(x1, · · · , xK) ∈ RK :

K∑
k=1

xk = 0,

K∑
k=1

|xk| ≤ 2d}. (9)

and EhrP(θ) is the Ehrhart series of this polytope. (7) is
a culmination of leveraging tools from discrete geometry,
combinatorics (Ehrhart theory) and analytic methods. In the
following, we introduce these tools. We refer the reader to [2]
for a beautiful exposition of Ehrhart theory.

A. Excursions into Ehrhart theory and Linear programming

D∗K(θ) is the limit of solutions to a sequence of LPs (3).
We begin with the privacy-constraint (PC) graph which greatly
aids in visualizing the same and naturally leads us into Ehrhart
theory. Consider a graph G = (V,E) with vertex set V = Hn

and an edge set E =
{
(h, ĥ) ∈ Hn ×Hn : |h− ĥ|1 = 2

}
.

For every vertex h ∈ V , visualize the sub-collection (W(g|h) :
g ∈ Hn) of decision variables as a function of V , i.e., as values
lying on V , corresponding to h ∈ V (See Fig. 2). The values
(W(g|h) : g ∈ Hn) and (W(g|ĥ) : g ∈ Hn) corresponding to
two neighboring vertices h, ĥ have to be within θ and 1

θ of each
other everywhere, i.e., at every g (See Fig. 2). In addition, the
values corresponding to any node must be non-negative and
sum to 1. The PC graph also provides a visualization of the
objective function. |g − h|1 is exactly twice dG(g, h), where
the latter denotes the length of a shortest path from g ∈ V to
h ∈ V . (Proof in [13, Appendix 7]). Two useful consequences
follow. Firstly, the values corresponding to a node, say h, that
are equidistant from h are multiplied by identical coefficients
in the objective function. Formally,

(
n
h

)
|g̃−h|1 =

(
n
h

)
|g−h|1

iff dG(g̃, h) = dG(g, h). Secondly, coefficients associated with
the values increase with their distance from h. Formally, if
dG(g̃, h) > dG(g, h), then

(
n
h

)
|g̃ − h|1 >

(
n
h

)
|g − h|1. These

observations lets us restate our objective function (3) as

Dn
H(W)

(a)
=
∑
h∈Hn

n∑
d=1

∑
g∈Hn:|g−h|1=2d

(
n

h

)
phW(g|h)2d (10)

=
∑
h∈Hn

(
n

h

)
ph

n∑
d=1

2d
∑

g∈Hn:dG(g,h)=d

W(g|h). (11)

In arriving at (10)(a), we used the fact that for any g, h ∈ Hn,

(2,0,0) (1,1,0) (0,2,0)

(0,0,2)

(1,0,1) (0,1,1)

W((0,0,2)|(1,0,1))

W((0,1,1)|(1,0,1))W((1,0,1)|(1,0,1))

W((2,0,0)|(1,0,1)) W((1,1,0)|(1,0,1)) W((0,2,0)|(1,0,1))

(2,0,0) (1,1,0) (0,2,0)

(0,0,2)

(1,0,1) (0,1,1)

W((0,0,2)|(1,1,0))

W((0,1,1)|(1,1,0))
W((1,0,1)|(1,1,0))

W((2,0,0)|(1,1,0)) W((1,1,0)|(1,1,0)) W((0,2,0)|(1,1,0))

Fig. 2. The PC graphs for K = 3, N = 2 are depicted. (W(g|(1, 0, 1)) : g ∈
H2

3), (W(g|(1, 1, 0)) : g ∈ H2
3) are associated with the nodes of the graph

on the left and right respectively. Since (1, 1, 0) and (1, 0, 1) are neighbors,
at every node, the two values have to be within θ and 1

θ
of each other.

we have |g−h|1 is an even integer and at most 2n. Proof is in
[13, Appendix 7]. Consider a HSM M : Hn ⇒ Hn for which
W(g|h) = f(h, |g − h|1) is a function only of the distance
between the vertices. In the sequel, we will prove this sub-
collection contains a mechanism that is optimal in the limit
n→∞. For such a HSM, (11) reduces to

Dn
H(W) =

∑
h∈Hn

(
n

h

)
ph

n∑
d=1

2dNd(h)f(h, 2d),

where Nd(h) = |
{
g ∈ Hn : dG(g, h) = d

}
| (12)



is the number of vertices at graph distance d from h.
To evaluate the RHS of Dn

H(W) above, we will need to
characterize the sum

∑n
d=1 dNd(h)f(h, d). Let us consider the

sequence N1(h), N2(h), · · · , Nn(h) which may be regarded
as the distance distribution of the vertex h ∈ V = Hn.
Consider Fig. 3 and two sequences (Nd(h) : d = 1, 2, · · · )
and (Nd(h̃) : d = 1, 2, · · · ) for any pair h, h̃ ∈ V within
the dotted circle. These sequences agree on the initial few
terms, henceforth referred to as the head, and disagree in a
few subsequent terms due to the presence of the boundary.
As the boundary recedes (i.e. n → ∞), the first term of
disagreement recedes, and the head elongates. Alternatively
stated, the heads of the sequences (Nd(h) : d = 1, 2, · · · ) for
h within the dotted circle become invariant with h. Formally,
there exists a distance r ∈ N such that, for every h in the
dotted circle, Nd(h) → Nd for all d = 1, 2, · · · , r − 1.
Moreover r → ∞ as the boundary recedes, i.e., n → ∞.
We characterize Nd by considering c : = np. Observe that
Nd(c) = |

{
g ∈ Hn : dG(g, c) = d

}
| =

= |
{
z ∈ ZK : c+ z ∈ Hn, |z|1 = 2d

}
|

= |{z ∈ ZK: zi ≥ −npi, z1 + · · ·+ zK = 0, |z|1 = 2d}|.

As n→∞, the lower bound on zi vanishes, and we have

Nd(c)→ Nd :=|{z ∈ Zk :
∑K
k=1 zk = 0, |z|1 = 2d}|. (13)

Nd is the number of integer points on the face of the integral
convex polytope (9).

Indeed, if LP(d) :=|ZK ∩Pd|, then Nd = LP(d)−LP(d−
1). Notice that LP(d) is the number of integral points in the
d−th dilation of the integral convex polytope P :=P1. LP(d)
and its generating function plays a central role in this article.
Ehrhart theory concerns the enumeration of integer points in a
integral convex polytope and the objects associated with these
counts. We present the foundational results in Ehrhart theory
that we will have opportunity to use in our study.

A convex l−polytope is a convex polytope of dimension l. A
convex l−polytope whose vertices have integral co-ordinates is
an integral convex l−polytope. LP(d) is the number of integral
points in the d−th dilation of the integral convex l−polytope.
Our pursuit of LP(d) and the associated objects is aided by the
following fundamental fact due to Eugène Ehrhart. Ehrhart’s
theorem states that if P is an integral convex l−polytope,
then LP(d) is a polynomial in d of degree l. We refer to
LP(d) as Ehrhart’s polynomial. We will identify Nd, and
hence LP(d), precisely in our proof. As evidenced by (8),
we will have opportunity to study the generating function of
the counts LP(d) : d ∈ N. We refer to the formal power series
EhrP(z) = 1+

∑∞
d=1 LP(d)z

d as the Ehrhart series of P , and
let EP,f (z) :=(1−z)Ehr(z). Since Nd = LP(d)−LP(d−1),
(8)(b) and (c) can be verified. We now partially explain,
through a heuristic albeit imprecise limiting argument, the
occurrence of EP,f (θ) in (8).

Suppose one were to consider the popular
Laplace/geometric mechanism G : Hn ⇒ Hn and characterize
its fidelity. In that case, WG (g|h) ∝ θ

|g−h|1
2 , and hence

WG (g|h) =
θdG(g,h)

Eh(θ)
, where Eh(θ) = 1 +

n∑
d=1

Nd(h)θ
d (14)

is a normalizing constant chosen to ensure∑
g∈Hn WG (g|h) = 1. It will be apparent that WG (·|h) is

θ−DP only if Eh(θ) is invariant with h. For any (finite)
n ∈ N, this is not true, leading to obstacles in defining a
feasible θ−DP HSM analog to the geometric mechanism.
Reserving these elements to the proof, we put forth a heuristic
limiting argument. As n → ∞, we noted that Nd(h) → Nd
and becomes invariant with h, and hence it is plausible that
Eh(θ)→ EP,f (θ) and WG (g|h)→ (EP,f (θ))−1θ

dG(g,h). We
substitute this in the RHS of (10), to obtain

lim
n→∞

Dn
H(WG ) = lim

n→∞

∑
h∈Hn

(
n

h

)
ph
∑
d≥1

2d
∑
g∈Hn:

dG(g,h)=d

θdG(g,h)

EP,f (θ)
=

lim
n→∞

∑
h∈Hn

(
n

h

)
ph
∑
d≥1 2dNdθ

d

EP,f (θ)
= lim
n→∞

2θ

EP,f (θ)

dEP,f (θ)

dθ
,(15)

and the latter quantity is invariant with n, enabling us conclude
limn→∞Dn

H(WG ) =
2θ

EP,f (θ)
dEP,f (θ)

dθ . In arriving at (15), we

used the fact that dEP,f (θ)
dθ =

∑
d≥1 dNdθ

d−1. These informal
arguments provide a heuristic explanation for (8) and leaves
certain interesting and non-trivial elements, that are addressed
in Sec. IV.

IV. PROOF OF THM 1
We identify a sequence of (i) upper bounds Du

n(θ)≥Dn
∗ (θ) :

n ∈ N and (ii) lower bounds Dl
n(θ)≤Dn

∗ (θ) : n ∈ N, such
that limn→∞Du

n(θ) = limn→∞Dl
n(θ), and characterize the

corresponding limit to obtain D∗K(θ). For the upper bounds,
we identify a sequence Wn : Hn ⇒ Hn : n ∈ N of θ−DP
HSMs and let Du

n(θ) : =D
n
H(Wn). For the lower bound, we

identify feasible solutions to the dual of the LP (3) and evaluate
its objective value. In the interest of brevity, we only derive
the upper bound in this conference article. The lower bound
is derived in [13].

We propose Wn : Hn ⇒ Hn be a cascade of mecha-
nisms/channels Un : Hn ⇒ Hnext and Vn : Hnext ⇒ Hn. Un
is a geometric mechanism and outputs ‘histograms’ from an
‘enlarged set of histograms’. Vn takes as input only the output
of Un, and remaps Hnext to Hn. More importantly, it shapes
the joint distribution to minimize the expected fidelity. Since
a geometric mechanism is, in general, optimal in most DP
settings, and Vn is carefully shaped, we obtain a reasonably
good sequence Wn of mechanisms that is, in the limit, optimal.

Our derivation of the upper bound involves two parts. In
the first part, we specify mechanisms Un, Vn and relate
DH(Wn)(= Du

n(θ)) to D(Un) - the fidelity of U. In the
second part, we characterize D(Un).

First part : We take a clue from (14). The normalizing
terms Eh(θ), Eh̃(θ) differ because the tails of the sequences
Nd(h) : d ≥ 1 and Nd(h̃) : d ≥ 1 differ. The latter is due
to the presence of the boundary of Hn (or the PC graph).
We enlarge Hn to eliminate the boundary. This we do by



getting rid of the non-negativity constraint in the definition
of Hn. The enlarged ‘set of histograms’ is therefore Hnext :
={(h1, · · · , hK) ∈ ZK :

∑K
k=1 hk = n}. Hnext is isomorphic

to {z ∈ ZK :
∑K
k=1 zk = 0} and Nd defined in (13) is the

number of ‘extended histograms’ at an L1 distance of 2d from
any element in Hnext. Nd being invariant with h, we define a
θ−DP mechanism Un : Hn ⇒ Hnext analogous to the geometric
mechanism in (14) as Un(g|h) := (EP,f (θ))

−1
θ
|g−h|1

2 , where
P corresponds to the convex polytope defined in (9). It can
be verified that Un is θ−DP. By the post-processing theorem
of DP, so long as Vn : Hnext ⇒ Hn takes only the output of
Un, as input, the cascade mechanism Wn is θ−DP.

The choice of Vn is based on the fact that the DBs whose
histograms differ widely from the mean histogram np con-
tribute an exponentially (in n) small amount to the expected
value. Vn maps the histogram outside the L1−ball of radius
Rn

2
3 centered at np to the histogram np. The histograms

within radius Rn
2
3 of np remain unchanged. Formally, let

Vn(g|h) = 1 if g = h, |h−np|1 ≤ Rn
2
3 , Vn(g|h) = 1 if g =

np, |h− np|1 > Rn
2
3 , and Vn(g|h) = 0 otherwise. For com-

pleteness, we also note Wn(g|h) =
∑
b∈Hn

ext
Vn(g|b)Un(b|h).

Does Vn output a histogram in Hn? The output of Vn is
contained within a L1−ball of radius αn = Rn

2
3 centered at

np ∈ Hn. The boundary of Hn is at a L1−distance of at least
βn = mink=1,··· ,K npk from np ∈ Hn. Since pk > 0 for all
k ∈ {1, · · · ,K}, as n→∞, αn ≤ βn, and the range of Vn is
contained within Hn. The output of mechanism Vn is indeed
a histogram. A formal proof is provided in [13, Appendix 10].

We now prove that limn→∞D(Wn) ≤ limn→∞D(Un).
We describe the main line of our argument. A formal
proof is provided in [13, Appendix 11]. Let D(Wn, h) =∑
g∈Hn Wn(g|h)|g − h|1, D(Un, h) =

∑
g∈Hn

ext
Un(g|h)|g −

h|1 denote (unweighted) contributions of h to Dn
H(Wn) and

D(Un) respectively. Let B( 12 ) and B(1) be the L1−balls
centered at np of radii R

2 n
2
3 and Rn

2
3 respectively. Let

Bc(1) := Hnext \ B(1). For each h ∈ B( 12 ), the mechanism
Vn has the effect of decreasing h’s contribution. In other
words, for any h ∈ B( 12 ), D(Wn, h) ≤ D(Un, h). This
is because (i) Vn transfers mass placed on g̃ ∈ Bc(1) -
an element farther from np - to np, and (ii) Vn does not
alter the mass placed on elements g ∈ B(1) (other than
np). This is made precise in the sequence of steps [13,
(21) - (23)] and can be followed ignoring the earlier steps
therein. What about for h ∈ Bc( 12 )? The weights

(
n
h

)
ph

associated with these elements, when summed up, contribute
an exponentially small amount. Formally,

∑
h∈Bc( 1

2 )

(
n
h

)
ph ≤

exp{−nα} for some α > 0. Since |g − h|1 ≤ 2n whenever
h, g inHn, we have D(Wn, h) ≤ 2n exp{−αn} and hence∑
h∈Bc( 1

2 )

(
n
h

)
phD(Wn, h)→ 0 as n→ 0.

Second Part : From the definition of Un(·|·) and (8), we note
2θ ddθEP,f (θ) =

∑∞
d=1 2dNdθ

d. With these, we have

D(Un) =
∑
h∈Hn

∑
g∈Hn

ext

(
n

h

)
phUn(g|h)|g − h|1

=
∑
h∈Hn

(
n

h

)
ph

∑
g∈Hn

ext

1

EP,f (θ)
θ
|g−h|1

2 |g − h|1

=
∑
h∈Hn

(
n

h

)
ph

1

EP,f (θ)
2θ
dEP,f (θ)

dθ
=

2θ

EP,f (θ)

dEP,f (θ)

dθ
,(16)

where the first equality in (16) follows from∑
g∈Hn

ext
θ
|g−h|1

2 |g − h|1 =
∑∞
d=1 2dNdθ

d (rearrange
sum as in (11)). In the sequel, we let DK(θ) denote the RHS
of (16). From (16), (8) it suffices to characterize either the
Ehrhart series EhrP(θ) or EP,f (θ), of P = P1, where Pd is
the polytope characterized in (9). In the interest of brevity,
we refer to [14], wherein it is stated EP,f (θ)

(a)
= SK−1(θ)

(1−θ)K−1 .
The proof [15, Thm 3.1, Eqn (3.7)] is via contour integration.
We shall provide in a subsequent version of this article, an
alternate proof via a simple counting principle, Ehrhart theory
and analytic methods. Substituting this in (16), verify that
D(Un) = DK(θ) = 2θ

{
K−1
1−θ +

S′K−1(θ)

SK−1(θ)

}
. This concludes

our second step.
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Fig. 3. Consider distance distribution of nodes within the dotted circle.
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