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Abstract—The von Neumann entropy, named after John von
Neumann, is the extension of classical entropy concepts to the
field of quantum mechanics and, from a numerical perspective,
can be computed simply by computing all the eigenvalues of a
density matrix, an operation that could be prohibitively expensive
for large-scale density matrices. We present and analyze two
randomized algorithms to approximate the von Neumann entropy
of density matrices: our algorithms leverage recent developments
in the Randomized Numerical Linear Algebra (RandNLA) liter-
ature, such as randomized trace estimators, provable bounds for
the power method, and the use of Taylor series and Chebyschev
polynomials to approximate matrix functions. Both algorithms
come with provable accuracy guarantees and our experimental
evaluations support our theoretical findings showing considerable
speedup with small accuracy loss.

I. INTRODUCTION

Entropy is a fundamental quantity in many areas of science
and engineering. The von Neumann entropy, named after John
von Neumann, is the extension of classical entropy concepts
to the field of quantum mechanics, and its foundations can be
traced to von Neumann’s work on Mathematische Grundlagen
der Quantenmechanik1. In his work, Von Neumann introduced
the notion of the density matrix, which facilitated the extension
of the tools of classical statistical mechanics to the quantum
domain in order to develop a theory of quantum measurements.

From a mathematical perspective (see Section I-A for de-
tails) the density matrix R is a symmetric positive semidefinite
matrix in Rn×n with unit trace. Let pi, i = 1 . . . n be the
eigenvalues of R, in decreasing order; then, the entropy of R
is defined as

H(R) = −
n∑
i=1

pi ln pi. (1)

The above definition is a proper extension of both the Gibbs
entropy and the Shannon entropy to the quantum case and
implies an obvious algorithm to compute H(R) by first
computing the eigendecomposition of R; known algorithms
for this task necessitate O(n3) time [1]. Clearly, as n grows,
such running times are impractical. For example, [2] describes
an entangled two-photon state generated by spontaneous para-
metric down-conversion, which can result in a density matrix
with n ≈ 108.

1Originally published in German in 1932; published in English under the
title Mathematical Foundations of Quantum Mechanics in 1955.

Motivated by the above discussion, we seek numerical
algorithms that approximate the von Neumann entropy of large
density matrices, e.g., symmetric positive definite matrices
with unit trace, faster than the trivial O(n3) approach. Our
algorithms build upon recent developments in the field of
Randomized Numerical Linear Algebra (RandNLA), an in-
terdisciplinary research area that exploits randomization as a
computational resource to develop improved algorithms for
large-scale linear algebra problems. Indeed, our work here
focuses at the intersection of RandNLA and information
theory, delivering novel randomized linear algebra algorithms
and related quality-of-approximation results for a fundamental
information-theoretic metric.

A. Background

We will focus on finite-dimensional function (state) spaces.
In this setting, the density matrix R represents the statistical
mixture of pure states, and from a linear algebraic perspective
can be written as

R = ΨΣpΨ
T ∈ Rn×n, (2)

where Ψ ∈ Rn×k is the orthonormal matrix whose columns
are the k pure states and Σp ∈ Rk×k is a diagonal matrix
whose entries are the (positive) pi’s. Let h(x) = x lnx for
any x > 0 and let h(0) = 0. Then, using the cyclical property
of the trace and the definition of h(x) eqn. (1) becomes

−
∑

i,pi>0

pi ln pi = −tr
(
Ψh(Σp)Ψ

T
)
= −tr (h(R)) = −tr (R lnR) .

(3)
The second equality follows from the definition of matrix

functions [3].
We conclude the section by noting that our algorithms will

use two tools that appeared in prior work. The first tool is
the power method, with a provable analysis that first appeared
in [4]. The second tool is a provably accurate trace estimation
algorithm for symmetric positive semidefinite matrices that
appeared in [5].

B. Our contributions

We present and analyze two randomized algorithms to ap-
proximate the von Neumann entropy of density matrices, lever-
aging two different polynomial approximations of the matrix
function H(R) = −tr (R ln R): the first approximation uses a



Taylor series expansion while the second approximation uses
Chebyschev polynomials. Both algorithms return, with high
probability, relative-error approximations to the true entropy
of the input density matrix, under certain assumptions. More
specifically, in both cases, we need to assume that the input
density matrix has n non-zero eigenvalues, or, equivalently,
that the probabilities pi, i = 1 . . . n, corresponding to the
underlying n pure states are non-zero. The running time of
both algorithms is proportional to the sparsity of the input
density matrix and depends (see Theorems 1 and 3 for precise
statements) on, roughly, the ratio of the largest to the smallest
probability p1/pn, as well as the desired accuracy.

From a technical perspective, the theoretical analysis of both
algorithms proceeds by combining the power of polynomial
approximations, either using Taylor series or Chebyschev
polynomials, to matrix functions, combined with randomized
trace estimators. A provably accurate variant of the power
method is used to estimate the largest probability p1. If this
estimate is significantly smaller than one, it can improve the
running times of the proposed algorithms (see discussion after
Theorem 1). We note that while the power method introduces
an additional nnz(R) log(n) term in the running time, in
practice, its computational overhead is negligible.

Finally, in Section IV, we present a highlight of our
experimental evaluations of our algorithms on large-scale
synthetic density matrices, generated using Matlab’s QETLAB
toolbox [6]. For a 30,000 by 30,000 matrix that was used in our
evaluations, the exact computation of the entropy takes hours,
whereas our algorithms return approximations with relative
errors well below 0.5% in only a few minutes.

We conclude by noting that a longer version of this short
abstract is available in [7]. Indeed, we will often reference [7]
for omitted proofs, omitted experimental evaluations, and
detailed discussions that are omitted from this version due
to space considerations.

C. Prior work

To the best of our knowledge, prior to this work, the only
non-trivial algorithm to approximate the von Neumann entropy
of a density matrix appeared in [2]. Their approach is based
on the Chebyschev polynomial expansion that we also analyze
in Section III. However, our analysis is somewhat different
and, overall, much tighter, leveraging a provably accurate
variant of the power method as well as provably accurate
trace estimators to derive a relative error approximation to the
entropy of a density matrix, under appropriate assumptions. A
brief technical comparison between our results in Section III
and the work of [2] appears in Section III-A, while a detailed
comparison can be found in Section 3.3 of [7].

Independently and in parallel with our work, [8] presented
a multipoint interpolation algorithm (building upon [9]) to
compute a relative error approximation for the entropy of a real
matrix with bounded condition number. The proposed running
time of Theorem 35 of [8] does not depend on the condition
number of the input matrix (i.e., the ratio of the largest to the
smallest probability), which is a clear advantage in the case

of ill-conditioned matrices. However, the dependency of the
algorithm of Theorem 35 of [8] on terms like (log n/ε)6 or
n1/3nnz(A)+n

√
nnz(A) could blow up the running time of

the proposed algorithm for reasonably conditioned matrices.
We also note the recent work in [10], which used Taylor

approximations to matrix functions to estimate the log determi-
nant of symmetric positive definite matrices (see also Section
1.2 of [10] for an overview of prior work on approximating
matrix functions via Taylor series). Finally, the work of [11]
used a Chebyschev polynomial approximation to estimate the
log determinant of a matrix and is reminiscent of our approach
in Section III and, of course, the work of [2].

II. AN APPROACH VIA TAYLOR SERIES

Our first approach to approximate the von Neumann entropy
of a density matrix uses a Taylor series expansion to approxi-
mate the logarithm of a matrix, combined with a relative-error
trace estimator for symmetric positive semi-definite matrices
and the power method to upper bound the largest singular
value of a matrix.

A. Algorithm and Main Theorem

Our main result is an analysis of Algorithm 1 (see below)
that guarantees relative error approximation to the entropy
of the density matrix R, under the assumption that R =∑n
i=1 piψiψ

T
i ∈ Rn×n has n pure states with 0 < ` ≤ pi

for all i = 1 . . . n. The following theorem is our main quality-

Algorithm 1 A Taylor series approach to estimate the entropy.

1: INPUT: R ∈ Rn×n, accuracy parameter ε > 0, failure
probability δ, and integer m > 0.

2: Estimate p̃1 using the power method of [4] with t =
O(lnn) and q = O(ln(1/δ)).

3: Set u = min{1, 6p̃1}.
4: Set s =

⌈
20 ln(2/δ)/ε2

⌉
.

5: Let g1,g2, . . . ,gs ∈ Rn be i.i.d. random Gaussian vec-
tors.

6: OUTPUT: return

Ĥ (R) = lnu−1 +
1

s

s∑
i=1

m∑
k=1

g>i R(In − u−1R)kgi
k

.

of-approximation result for Algorithm 1.

Theorem 1. Let R be a density matrix such that all proba-
bilities pi, i = 1 . . . n satisfy 0 < ` ≤ pi. Let u be computed
as in Algorithm 1 and let Ĥ (R) be the output of Algorithm 1
on inputs R, m, and ε < 1; Then, with probability at least
1− 2δ, ∣∣∣Ĥ (R)−H (R)

∣∣∣ ≤ 2εH (R) ,

by setting m =
⌈
u
` ln 1

ε

⌉
. The algorithm runs in time

O
(
u

`
·
ln(1/ε) ln(1/δ)

ε2
· nnz(R) + ln(n) · ln(1/δ) · nnz(R)

)
.

A few remarks are necessary to better understand the above
theorem. First, ` could be set to pn, the smallest of the



probabilities corresponding to the n pure states of the density
matrix R. Second, it should be obvious that u in Algorithm 1
could be simply set to one and thus we could avoid calling
the power method to estimate p1 by p̃1 and thus compute u.
However, if p1 is small, then u could be significantly smaller
than one, thus reducing the running time of Algorithm 1, which
depends on the ratio u/`. Third, ideally, if both p1 and pn
were used instead of u and `, respectively, the running time
of the algorithm would scale with the ratio p1/pn. Fourth,
even though the overhead of the power method (the second
term in the running time expression) appears to dominate, at
least asymptotically, it is negligible in practice.

B. Proof of Theorem 1

We now prove Theorem 1, which analyzes the performance
of Algorithm 1. Our first lemma presents a simple expression
for H (R) using a Taylor series expansion.

Lemma 2. Let R ∈ Rn×n be a symmetric positive definite
matrix with unit trace and whose eigenvalues lie in the interval
[`, u], for some 0 < ` ≤ u ≤ 1. Then,

H (R) = lnu−1 +

∞∑
k=1

tr
(
R(In − u−1R)k

)
k

.

Proof. The proof follows by further manipulating eqn. (3)
and then applying the Taylor expansion of ln(In − u−1R) =
−
∑∞
k=1 u

−1Rk/k. See [7] for the full proof.

We now proceed to prove Theorem 1. We will condition our
analysis on power method algorithm being successful, which
happens with probability at least 1 − δ. In this case, u =
min{1, 6p̃1} is an upper bound for all probabilities pi. For
notational convenience, set C = In − u−1R. We start by
manipulating ∆ =

∣∣∣Ĥ (R)−H (R)
∣∣∣ as follows:

∆ =

∣∣∣∣∣∣
m∑

k=1

1

k
·

1

s

s∑
i=1

g
>
i RC

k
gi −

∞∑
k=1

1

k
tr
(
RC

k
)∣∣∣∣∣∣

≤

∣∣∣∣∣∣
m∑

k=1

1

k
·

1

s

s∑
i=1

g
>
i RC

k
gi −

m∑
k=1

1

k
tr
(
RC

k
)∣∣∣∣∣∣ +

∣∣∣∣∣∣
∞∑

k=m+1

1

k
tr
(
RC

k
)∣∣∣∣∣∣

=

∣∣∣∣∣∣
1

s

s∑
i=1

g
>
i

 m∑
k=1

RC
k
/k

 gi − tr

 m∑
k=1

1

k
RC

k

∣∣∣∣∣∣︸ ︷︷ ︸
∆1

+

∣∣∣∣∣∣
∞∑

k=m+1

tr
(
RC

k
)
/k

∣∣∣∣∣∣︸ ︷︷ ︸
∆2

.

We now bound the two terms ∆1 and ∆2 separately. We start
with ∆1: the idea is to apply Theorem 5.2 from [5] on the
matrix

∑m
k=1 RCk/k with s =

⌈
20 ln(2/δ)/ε2

⌉
. Hence, with

probability at least 1− δ:

∆1 ≤ ε · tr

(
m∑
k=1

RCk/k

)
≤ ε · tr

( ∞∑
k=1

RCk/k

)
. (4)

A subtle point in applying Theorem 5.2 from [5] is that the
matrix

∑m
k=1 RCk/k must be symmetric positive semidefi-

nite. To prove this, let the SVD of R be R = ΨΣpΨ
T ,

where all three matrices are in Rn×n and the diagonal en-
tries of Σp are in the interval [`, u]. Then, it is easy to
see that C = In − u−1R = Ψ(In − u−1Σp)Ψ

T and
RCk = ΨΣp(In − u−1Σp)

kΨT , where the diagonal entries
of In−u−1Σp are non-negative, since the largest entry in Σp

is upper bounded by u. This proves that RCk is symmetric

positive semidefinite for any k, a fact which will be useful
throughout the proof. Now,

m∑
k=1

RCk/k = Ψ

(
Σp

m∑
k=1

(In − u−1Σp)
k/k

)
ΨT ,

which shows that the matrix of interest is symmetric positive
semidefinite. Additionally, since RCk is symmetric positive
semidefinite, its trace is non-negative, which proves the second
inequality in eqn. (4) as well. We proceed to bound ∆2 as
follows:

∆2 =

∣∣∣∣∣∣
∞∑

k=m+1

tr
(
RC

k
)
/k

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∞∑

k=m+1

tr
(
RC

m
C

k−m
)
/k

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∞∑

k=m+1

tr
(
C

m
C

k−m
R
)
/k

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∞∑

k=m+1

‖Cm‖2 · tr
(
C

k−m
R
)
/k

∣∣∣∣∣∣ (5)

= ‖Cm‖2 ·

∣∣∣∣∣∣
∞∑

k=m+1

tr
(
RC

k−m
)
/k

∣∣∣∣∣∣ ≤ ‖Cm‖2 ·

∣∣∣∣∣∣
∞∑

k=1

tr
(
RC

k
)
/k

∣∣∣∣∣∣ (6)

≤
(

1 −
`

u

)m ∞∑
k=1

tr
(
RC

k
)
/k. (7)

To prove eqn. (5), we used von Neumann’s trace inequality2

Eqn. (5) now follows since Ck−mR is symmetric posi-
tive semidefinite3. To prove eqn. (6), we used the fact that
tr
(
RCk

)
/k ≥ 0 for any k ≥ 1. Finally, to prove eqn. (7),

we used the fact that ‖C‖2 = ‖In−u−1Σp‖2 ≤ 1−`/u since
the smallest entry in Σp is at least ` by our assumptions. We
also removed unnecessary absolute values since tr

(
RCk

)
/k

is non-negative for any positive integer k.
Combining the bounds for ∆1 and ∆2 gives∣∣∣Ĥ (R)−H (R)

∣∣∣ ≤ (ε+

(
1− `

u

)m) ∞∑
k=1

tr
(
RCk

)
k

.

We have already proven in Lemma 2 that
∞∑
k=1

tr
(
RCk

)
k

≤ H (R)− lnu−1 ≤ H (R) ,

where the last inequality follows since u ≤ 1. Collecting our
results, we get∣∣∣Ĥ (R)−H (R)

∣∣∣ ≤ (ε+

(
1− `

u

)m)
H (R) .

Setting

m =

⌈
u

`
ln

1

ε

⌉
and using

(
1− x−1

)x ≤ e−1 (x > 0), guarantees that (1 −
`/u)m ≤ ε and concludes the proof of the theorem. We note
that the failure probability of the algorithm is at most 2δ (the
sum of the failure probabilities of the power method and the
trace estimation algorithm). Finally, we discuss the running
time of Algorithm 1, which is equal to O(s · m · nnz(R)).
Since s = O

(
ln(1/δ)
ε2

)
and m = O

(
u ln(1/ε)

`

)
, the running

2Indeed, for any two matrices A and B, tr (AB) ≤
∑

i σi(A)σi(B),
where σi(A) (respectively σi(B)) denotes the i-th singular value of A
(respectively B). Since ‖A‖2 = σ1(A) (its largest singular value), this
implies that tr (AB) ≤ ‖A‖2

∑
i σi(B); if B is symmetric positive

semidefinite, tr (B) =
∑

i σi(B).
3This can be proven using an argument similar to the one used to prove

eqn. (4).



time becomes (after accounting for the running time of the
power method)

O
(
u

`
·
ln(1/ε) ln(1/δ)

ε2
· nnz(R) + ln(n) · ln(1/δ) · nnz(R)

)
.

III. AN APPROACH VIA CHEBYSCHEV POLYNOMIALS

Our second approach is to use a Chebyschev polynomial-
based approximation scheme to estimate the entropy of a
density matrix. Our approach follows the work of [2], but our
analysis uses the trace estimators of [5] and the power method
of [4] and its analysis. Importantly, we present conditions
under which the proposed approach is competitive with the
approach of Section II.

A. Algorithm and Main Theorem

The proposed algorithm leverages the fact that the von Neu-
mann entropy of a density matrix R is equal to the (negative)
trace of the matrix function R ln R and approximates the
function R ln R by a sum of Chebyschev polynomials; then,
the trace of the resulting matrix is estimated using the trace
estimator of [5].

Let fm(x) =
∑m
w=0 αwTw(x) with α0 = u

2

(
ln u

4 + 1
)
,

α1 = u
4

(
2 ln u

4 + 3
)
, and αw = (−1)wu

w3−w for w ≥ 2. Let
Tw(x) = cos(w · arccos((2/u)x − 1)) and x ∈ [0, u] be
the Chebyschev polynomials of the first kind for any integer
w > 0. Algorithm 2 computes u (an upper bound estimate
for the largest probability p1 of the density matrix R) and
then computes fm(R) and estimates its trace. We note that
the computation g>i fm(R)gi can be done efficiently using
Clenshaw’s algorithm; see Appendix C of [7] for the well-
known approach.

Algorithm 2 A Chebyschev polynomial-based approach to estimate
the entropy.

1: INPUT: R ∈ Rn×n, accuracy parameter ε > 0, failure
probability δ and integer m > 0.

2: Estimate p̃1 using the power method of [4] with t =
O(lnn) and q = O(ln(1/δ)).

3: Set u = min{1, 6p̃1}.
4: Set s =

⌈
20 ln(2/δ)/ε2

⌉
.

5: Let g1,g2, . . . ,gs ∈ Rn be i.i.d. random Gaussian vec-
tors.

6: OUTPUT: Ĥ (R) = − 1
s

∑s
i=1 g>i fm(R)gi.

Our main result is an analysis of Algorithm 2 that guarantees
a relative error approximation to the entropy of the density
matrix R, under the assumption that R =

∑n
i=1 piψiψ

T
i ∈

Rn×n has n pure states with 0 < ` ≤ pi for all i = 1 . . . n.
The following theorem is our main quality-of-approximation
result for Algorithm 2; a detailed proof of Theorem 3 may be
found in [7].

Theorem 3. Let R be a density matrix such that all proba-
bilities pi, i = 1 . . . n satisfy 0 < ` ≤ pi. Let u be computed
as in Algorithm 1 and let Ĥ (R) be the output of Algorithm 2

on inputs R, m, and ε < 1; Then, with probability at least
1− 2δ, ∣∣∣Ĥ (R)−H (R)

∣∣∣ ≤ 3εH (R) ,

by setting m =
√

u
2ε` ln(1/(1−`)) . The algorithm runs in time

O
(√

u

` ln(1/(1− `))
·
ln(1/δ)

ε2.5
· nnz(R) + ln(n) · ln(1/δ) · nnz(R)

)
.

The similarities between Theorems 1 and 3 are obvious:
same assumptions and directly comparable accuracy guaran-
tees. The only difference is in the running times: the Taylor
series approach has a milder dependency on ε, while the
Chebyschev-based approximation has a milder dependency on
the ratio u/`, which controls the behavior of the probabilities
pi. We also note that the discussion following Theorem 1 is
also applicable here.

We conclude the section with a brief comparison of our
bound in Theorem 3 with the results of [2]; a detailed compar-
ison of the two bounds may be found in Section 3.3 of [7]. The
work of [2] culminates to the error bounds described in The-
orem 4.3 (and the ensuing discussion). Unfortunately, without
imposing a lower bound assumption on the pis it is difficult
to get a meaningful error bound and an efficient algorithm.
Indeed, [2] needs an efficient trace estimation procedure for
the matrix −fm(R). However, while this matrix is always
symmetric, it is not necessarily positive or negative semi-
definite (unless additional assumptions are imposed on the pis,
like we did in Theorem 3). Unfortunately, we are not aware of
any provably accurate, relative error approximation algorithms
for the trace of just symmetric matrices: the results of [5], [12]
only apply to symmetric positive (or negative) semidefinite
matrices. The work of [2] does provide an analysis of a
trace estimator for general symmetric matrices (pioneered by
Hutchinson in [13]). However, in our notation, in order to
achieve a relative error bound, the final error bound of [2]
(see eqns. (19) and (20) in [2]), could necessitate setting s (the
number of random vectors in Algorithm 2) to a prohibitively
large value, thus leading to running times that blow up to
O(n2nnz(R)), which could easily exceed the trivial O(n3)
running time to exactly compute H (R). See Section 3.3 of [7]
for details.

IV. EXPERIMENTS

A detailed experimental evaluation of the proposed algo-
rithms may be found in Section 4 of [7]. Here, we only
highlight one of our observations on a random density matrix
of size 30, 000 × 30, 000 in order to prove the practical effi-
ciency of our algorithms. Our algorithms were implemented
in MatLab; to be precise, we used MATLAB R2016a on a
(dedicated) node with two 10-Core Intel Xeon-E5 processors
(2.60GHz) and 512 GBs of RAM. We generated our random
density matrices using the QETLAB Matlab toolbox [6]. We
computed the exact singular values of the matrix (and thus the
entropy) using the svd function of MatLab. The accuracy of
our algorithms was evaluated by measuring the relative error.



We set the parameters m and s to take values in the sets
{5, 10, 15, 20} and {50, 100, 200}, respectively. The parameter
u was set to λ̃max, and was computed using the power method
(see [7] for details) in approximately 3.6 minutes. We report
the relative error (out of 100%) in Figure 1.

We observe that the relative error is always less than
1% for both methods, with the Chebyshev approximation
yielding almost always slightly better results. Note that our
Chebyshev-polynomial-based approximation algorithm signif-
icantly outperformed the exact computation: e.g., for m = 5
and s = 50, our estimate was computed in less than ten
minutes and achieved less than .2% relative error, whereas
the exact computations of the Von-Neumann entropy took
approximately 5.6 hours. Finally, we report the wall-clock
times (in minutes) in Figure 2. We note that for both algorithms
and all combinations of the parameters, the approximation of
the Von-Neumann entropy was computed in less than one hour.
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Fig. 1. Relative error for 30, 000× 30, 000 density matrix using the Taylor
and the Chebyshev approximation algorithms with u = λ̃max.
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Fig. 2. Wall-clock times: Taylor approximation (blue) and Chebyshev
approximation (red) for u = λ̃max. Exact computation needed approximately
5.6 hours.

V. CONCLUSIONS AND OPEN PROBLEMS

We presented and analyzed two randomized algorithms
to approximate the von Neumann entropy of density ma-

trices. Our algorithms leverage recent developments in the
RandNLA literature: randomized trace estimators, provable
bounds for the power method, and the use of Taylor series
and Chebyschev polynomials to approximate matrix functions.
Both algorithms come with provable accuracy guarantees
under assumptions on the spectrum of the density matrix.
Empirical evaluations on 30, 000 × 30, 000 synthetic density
matrices support our theoretical findings and demonstrate that
we can efficiently approximate the von Neumann entropy in
a few minutes with minimal loss in accuracy, whereas an the
exact computation takes over 5.5 hours. An important open
problem is to relax (or eliminate) the assumptions associated
with our key technical results. It would be critical to under-
stand whether our assumptions are, for example, necessary
to achieve relative error approximations and either provide
algorithmic results that relax or eliminate our assumptions or
provide matching lower bounds and counterexamples.
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