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Abstract—We continue developing the information theory of
advanced data structures. In our previous work, we introduced
structural entropy of unlabeled graphs and designed lossless com-
pression algorithms for binary trees (with structure-correlated
vertex names). In this paper, we consider d-ary trees (d ≥ 2) and
trees with unrestricted degree for which we compute the entropy
(the first step to design optimal compression algorithms). It turns
out that extending from binary trees to general trees is math-
ematically quite challenging and leads to new recurrences that
find ample applications in the information theory of structures.

I. INTRODUCTION

Advances in sensing, communication, and storage technolo-
gies have created a state of the art in which our ability to
collect data from richly instrumented environments has far
outpaced our ability to process, understand, and analyze it
in a (provably) rigorous manner. A significant component of
this complexity arises from the multimodal and heterogeneous
nature of data. This poses significant challenges for theoretical
characterization of limits of information storage and transmis-
sion and methods that achieve these limits. While ad hoc ap-
proaches are often currently deployed, critical issues regarding
their performance, robustness, and scalability remain. These
challenges have motivated our recent research program [3],
[4], [8] and others [1], [7], [10]. It provides the basis for our
effort in developing a comprehensive theory of information for
multimodal and structured data, that is, multitype and context
dependent structures.

As a start to understand advanced data structures in an
information-theoretic setting, we focused on graphs [3] and
trees with vertex names [8]. In [3] the entropy and an op-
timal compression algorithm (up to two leading terms of the
entropy) for Erdős-Rényi graph structures were presented. Fur-
thermore, in [9] an automata approach was used to design an
optimal graph compression scheme. For binary plane-oriented
trees, rigorous information-theoretic results were obtained in
[7], complemented by a universal grammar-based lossless
coding scheme [10].

In our recent work [8] (see also [4]) we study binary
trees (with structure-correlated vertex names) and design an
optimal compression scheme based on arithmetic encoding. In
this paper, we extend our study on entropy of advanced data
structures to d-ary trees (i.e., trees with degree d ≥ 2) and
general trees without any restriction on the degree. It turns
out that moving from binary trees to d-ary (general) trees
is mathematically quite challenging. First of all, in [8] we
proved for binary trees an equivalence between two models:

the binary search tree model and a model in which leaves are
selected randomly to expand the tree by adding two additional
nodes (new leaves). This equivalence allowed us to analyze the
entropy of such trees by solving a relatively simple recurrence,
namely

xn = an +
2

n

n−1∑
i=1

xi

for some given an (e.g., for the entropy, an = log n), where
n denotes the number of internal nodes. However, for d-ary
trees Tn on n internal nodes the entropy H (Tn) satisfies

H (Tn) = H (root) + d

n−1∑
k=0

H (Tk) pn,k

where H (root) is the entropy of the split probability at the
root, and pn,k is the probability of one specified subtree
being of size k. For the m-ary search tree model discussed
in Section II, this recurrence can be handled by results from
[2], [6]. In a more interesting d-ary tree model, we randomly
select a leaf and add exactly d leaves to it. We studied this
model previously in the special case of d = 2, but the analysis
is more complicated when d > 2.

After some tedious algebra, we prove in Section III that the
new type of recurrence we need to solve to find the entropy
is of the following form (see Lemma 2):

xn = an +
α

n

n!

Γ(n+ α− 1)

n−1∑
k=0

Γ(k + α− 1)

k!
xk (1)

where α = d/(d−1), an is given sequence, and Γ is the Euler
gamma function. The situation is even more involved when we
consider general trees in Section III-C where no restrictions
on degrees are imposed.

We present our main results in Section III. We first provide
in Corollary 1 the entropy rate for m-ary search trees. Then
we consider d-ary recursive (also called increasing) trees and
in Theorem 1 give our expression for the entropy of such trees.
We extend it to general recursive trees in Theorem 2.

II. MODELS

In this section we describe the concepts of unlabeled plane
trees with and without restrictions on the nodes’ out-degrees.
This will allow us to introduce three models of tree generation.



A. Unlabeled m-Ary Search Tree Generation

Search trees are plane trees built from a set of n distinct keys
taken from some totally ordered set, for instance a random
permutation of the numbers {1, 2, . . . , n}. An m-ary search
tree is a tree in which each node has at most m children;
moreover, each node stores up to m− 1 keys. We define the
size of a search tree as the number of keys n. The construction
of m-ary search tree can be described as follows [5]. If n = 0
the tree is empty. If 1 ≤ n ≤ m − 1 the tree consists of a
root only, with all keys stored in the root. If n ≥ m we select
m− 1 keys that are called pivots. The pivots are stored in the
root. The m − 1 pivots split the set of remaining n −m + 1
keys into m sublists I1, . . . , Im: if the pivots are p1 < p2 <
· · · < pm−1, then I1 := (pi : pi < p1), I2 := (pi : p1 <
pi < p2), . . . , Im := (pi : pm−1 < pi). We then recursively
construct a search tree for each of the sets Ii of keys. In order
to obtain an unlabeled search tree of size n we remove the
keys from a search tree.
B. Unlabeled d-ary Recursive Plane Tree Generation

We consider the following generation model of an unlabeled
d-ary recursive plane tree. Suppose that the process starts with
an empty tree, that is with just an external node (leaf). The
first step in the growth process is to replace this external node
by an internal one with d successors that are external nodes
(see Figure 1). Then with probability 1

d each, one of these d
external nodes is selected and again replaced by an internal
node with d successors. At the end, we remove the labels
(which describe the history of tree evolution) from internal
nodes.

C. Unlabeled General Recursive Plane Trees Generation

We consider the following generation model of unlabeled
plane trees. Suppose that the process starts with the root node
carrying a label 1. Then we add a node with label 2 to the
root. The next step is to attach a node with label 3. However,
there are three possibilities: either to add it to the root (as
a left or right sibling of 2) or to the node with label 2.
Similarly one proceeds further. Now if a node already has
out-degree k (where the descendants are ordered), then there
are k + 1 possible ways to add new node (this time we do
not distinguish between external and internal nodes). Hence,
if a plane tree already has j−1 nodes then there are precisely
2j−3 possibilities to attach the jth node (see Figure 2). More
precisely, the probability of choosing a node of out-degree k
equals (k + 1)/(2j − 3). At the end, we remove the labels
from internal nodes of a tree.

III. MAIN RESULTS

In this section we present our main results. In particular,
we briefly address the entropy of m-ary search trees. Then we
present our derivation of the the entropy of unlabeled d-ary
recursive trees and general trees.

We should point out that in all our models, the probabil-
ity of a tree generation is non-uniform, and root subtrees
are conditionally independent given their respective sizes.
Indeed, let Tn be a random variable representing a tree tn
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Fig. 1: Labeled and unlabeled 3-ary trees of size 4.

on n internal nodes. Assume now that at the root we split
tn into d subtrees of size k1, . . . , kd, respectively, where
k1 + · · · + kd = n − 1. Then the probability P (Tn = tn) of
generating tree tn in all our models satisfies P (Tn = tn) =
P (k1, . . . , kd)

∏d
i=1 P (Tki = tki) where P (k1, . . . , kd) is the

probability of a split at the root of n internal nodes into
subtrees tk1 , . . . , tkd , respectively. This split probability is
different for m-ary search trees, d-ary trees, and general trees,
as we shall see in this section.

Throughout we shall use the following notation. Let k(n) =
(k1, . . . , kn) denote an n-dimensional vector of non-negative
integers and ‖k(n)‖ = k1 + . . . + km be its L1 norm. Let
(k,k(n−1)) = (k, k2 . . . , kn) denote a n-dimensional vector
with the first coordinate equal to k. We often write k instead
of k(n).
A. The Entropy of the Unlabeled m-ary Search Trees

Let Un denote a random unlabeled m-ary search tree with
n keys, generated according to the process described earlier.
We write un for an arbitrary fixed m-ary (unlabeled) search
tree with n keys.

We describe the splitting of keys at the root of the search
tree by the random vector Y

(m)
n = (Yn,1, . . . , Yn,m), where

Yn,j = |Ij | is the number of keys that go into the jth subtree
of the root. If n ≥ m−1 we have Yn,1 + · · ·Yn,m = n−m+1

and P
(
Y

(m)
n = k(m)

)
= 1/

(
n

m−1

)
.
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Fig. 2: Labeled and unlabeled general trees of size 5.

Suppose that the tree un has subtrees uk1 , . . . , ukm of sizes
k1, . . . , km, then

P (Un = un) = P
(
Y(m)
n = k(m)

) m∏
j=1

P
(
Ukj = ukj

)
.

If n = 0 we have an empty tree, and H (U0) = 0. Moreover,
if 1 ≤ n ≤ m − 1, all keys are stored in one node, and
H (Un) = 0. For n > m− 1, we have

H (Un) = H
(
Y(m)

n , UYn,1 , . . . , UYn,m

)
= H

(
Y(m)

n

)
+

∑
‖k‖=n−m+1

H
(
UYn,1 , . . . , UYn,m |Y

(m)
n = k(m)

)
P
(
Y(m)

n = k(m)
)

leading to

H (Un) = H
(
Y(m)
n

)
+m

n−m+1∑
k=0

H (Uk)P (Yn,1 = k) .

For n ≥ m − 1 and 1 ≤ j ≤ m, the random variables
Yn,j are identically distributed, and for 0 ≤ k ≤ n − 1,

P (Yn,1 = k) =
(n−k−1

m−2 )
( n
m−1)

(see [5]). Hence H
(
Y

(m)
n

)
=

log
(

n
m−1

)
leading to the following recurrence

H (Un) = log

(
n

m− 1

)
+

m(
n

m−1

) n−m+1∑
k=0

(
n− k − 1

m− 2

)
H (Uk) .

The asymptotics of a recurrence like this one have been studied
before; see Theorem 2.4 in [6].

Hence, the entropy of the m-ary search tree becomes
H(Un) = cmn+ o (n) where

cm =
1

Hm − 1

∑
k≥0

log
(

k
m−1

)
(k + 1)(k + 2)

,

where Hm is the mth harmonic number.

Corollary 1. The entropy rate hm = limn→∞H (Un) /n of
the unlabeled m-ary trees, is given by

hm =
1

Hm − 1

∑
k≥0

log
(

k
m−1

)
(k + 1)(k + 2)

. (2)

B. The Entropy of the Unlabeled d-ary Plane Recursive Trees

Let Fn be the set of d-ary plane trees with n internal nodes,
and let Gn be the set of d-ary plan recursive trees with exactly
n internal nodes. By gn = |Gn| we denote the number of d-ary
plane recursive trees with n internal nodes. From [5] we know
that for d = 2 we have gn = n!. Moreover, for d > 2 we have

gn = (−1)n(d− 1)n
Γ(2− d

d−1 )

Γ(2− d
d−1 − n)

. (3)

Let Gfn denote the subset of Gn of trees that have the same
structure as the unlabeled tree fn ∈ Fn; that is, Gfn is the
set of labeled representatives of fn. Moreover, let gfn = |Gfn |
be the number of d-ary plane recursive trees that have the
same structure as a tree fn. Observe that P (Fn = fn) =

gfn
gn

.
Suppose that the tree fn has subtrees fk1 , . . . , fkd of sizes
k1, . . . , kd. Then

P (Fn = fn) =
1

gn

(
n− 1

k1, . . . , kd

) d∏
j=1

gfkj
(4)

=

(
n− 1

k1, . . . , kd

)
gk1 · · · gkd

gn

d∏
j=1

P
(
Fkj = fkj

)
.

Observe that
(

n−1
k1,...,kd

) gk1
···gkd

gn
is the probability that the

subtrees of the root are of sizes k1, . . . , kd. Let us define
a random vector V

(d)
n : Gn → {0, . . . , n − 1}d whose jth

component Vn,j denotes the size of the jth subtree. For n ≥ 1
we have Vn,1 + . . .+ Vn,d = n− 1 and

P
(
V(d)
n = k(d)

)
=

(
n− 1

k1, . . . , kd

)
gk1 · · · gkd

gn
. (5)

The entropy of unlabeled d-ary plane recur-
sive trees of size n is defined as H (Fn) =
−
∑

fn∈Fn
P (Fn = fn) log (P (Fn = fn)). If n = 0 we

have an empty tree, and H (F0) = 0. If n = 1, we have
one fixed tree and H (F1) = 0. By (4) for n > 1 there is a
bijection between a tree Fn and a tuple (V

(d)
n , FV1 , . . . , FVd

).
Therefore, for n > 1, we have

H (Fn) = H
(
V(d)
n , FVn,1

, . . . , FVn,d

)
= H

(
V(d)
n

)
+∑

‖k‖=n−1

H (Fk1 , . . . , Fkd)P
(
V(d)
n = k(d)

)
.



Since subtrees Fk1 , . . . , Fkd are conditionally independent
given their sizes, we have

H (Fn) = H
(
V(d)
n

)
+

d

n−1∑
k=0

H (Fk)
∑

‖k(d−1)‖=n−1−k

P
(
V(d)
n =

(
k,k(d−1)

))
.

For k = 0, . . . , n − 1, let pn,k be the probability that one
specified subtree in a d-ary recursive tree is of size k, that is,
pn,k =

∑
‖k(d−1)‖=n−1−k P

(
V

(d)
n =

(
k,k(d−1)

))
. Then we

have the following recurrence

H (Fn) = H
(
V(d)
n

)
+ d

n−1∑
k=0

H (Fk) pn,k. (6)

We can prove the following lemma.

Lemma 1. For k = 0, . . . , n− 1 and d > 1, α = d
d−1 , then

pn,k =
(α− 1)

n

n!Γ(k + α− 1)

k!Γ(n+ α− 1)
.

In the lemma below we propose a general solution for
recurrences of the form (6).

Lemma 2. For constant α, x0 and x1, the recurrence

xn = an +
α

n

n!

Γ(n+ α− 1)

n−1∑
k=0

Γ(k + α− 1)

k!
xk, n ≥ 2

(7)
has the following solution for n ≥ 2:

xn = an + α(n+ α− 1)

n−1∑
k=0

ak
(k + α− 1)(k + α)

+
n+ α− 1

α+ 1

(
x1 +

x0

α− 1

)
.

Proof. Multiply both sides of the recurrence by the normal-
izing factor Γ(n+α−1)

n! . Define also x̂n = xnΓ(n+α−1)
n! and

ân = anΓ(n+α−1)
n! . Then

x̂n = ân +
α

n

n−1∑
k=2

x̂k. (8)

To solve the recurrence (8) we compute nx̂n − (n− 1)x̂n−1.
This leads us to

x̂n = ân −
(

1− 1

n

)
ân−1 +

(
1 +

α− 1

n

)
x̂n−1,

which holds for n ≥ 3. Then after iterating the above we arrive
at

x̂n = x̂2

n∏
j=3

(
1 +

α− 1

j

)
+

n∑
k=3

(
âk −

(
1− 1

k

)
âk−1

) n∏
j=k+1

(
1 +

α− 1

j

)
. (9)

The product
∏n
j=k+1

(
1 + α−1

j

)
= k!Γ(n+α)

n!Γ(k+α) , and after some
standard calculations we obtain

x̂n = ân + (x̂2 − â2)
2Γ(n+ α)

Γ(α+ 2)n!
+

Γ(n+ α)

n!

n−1∑
k=2

âk
k!

Γ(k + α)

α

k + α
.

Going back from x̂n and ân to xn, an, respectively, we obtain

xn = an + α(n+ α− 1)

n−1∑
k=2

ak
(k + α− 1)(k + α)

+ (x2 − a2)
n+ α− 1

α+ 1
.

But x2 − a2 = x1 + x0

α−1 which completes the proof.

This leads us to out first main result.

Theorem 1. The entropy of an unlabeled d-ary plane tree is

H (Fn) = H
(
V(d)
n

)
+α(n+α−1)

n−1∑
k=0

H
(
V

(d)
k

)
(k + α− 1)(k + α)

,

(10)
where α = d

d−1 and

H
(
V(d)
n

)
= −

∑
‖k‖=n−1

P
(
V(d)
n = k(d)

)
logP

(
V(d)
n = k(d)

)
.

Furthermore, the entropy rate hd = limn→∞H (Fn) /n is

hd = α

∞∑
k=0

H (Vk)

(k + α− 1)(k + α)
. (11)

C. The Entropy of the Unlabeled General Plane Trees
Let Tn be the set all unlabeled trees with n internal nodes

(of any degree), while T (d)
n be the subset of Tn consisting of

all trees that contain exactly n nodes and have root degree
equal to d. Finally, by Rn we denote a set of labeled plane
trees oriented recursive trees with exactly n nodes.

Let rn = |Rn|. From [5] we know that there are

rn = (2n− 3)!! =
n!

n2n−1

(
2n− 2

n− 1

)
different labeled plane oriented recursive trees of size n.

As in the case of the d-ary plane recursive trees, let Rtn

denote the subset of trees in Rn that have the same structure
as a given unlabeled tree tn ∈ Tn (i.e., Rtn is the set of
labeled representatives of tn); moreover, let rtn = |Rtn | be
the number of such trees. Observe that P (Tn = tn) =

rtn
rn

.
Let Dn denote the random variable representing the number

of subtrees of the root. Observe that P (Dn = d) =
r(d)n

rn
, where

r
(d)
n = |R(d)

n | is the number of plane recursive trees with root
degree equal to d. Suppose that the tree tn has d subtrees
tk1 , . . . , tkd of sizes k1, . . . , kd. Then

P (Tn = tn) = P (Dn = d)P (Tn = tn|Dn = d)

=

(
n− 1

k1, . . . , kd

)
rk1 · · · rkd

rn

d∏
j=1

P
(
Tkj = tkj

)
. (12)



Observe that
(

n−1
k1,...,kd

) rk1
···rkd

rn
is the probability that the root

of a plane recursive tree of size n has degree equal to d and
the root’s subtrees are of sizes k1, . . . , kd. Let W(d)

n : R(d)
n →

{1, . . . , n − d}d, where its jth component Wn,j denotes the
size of the jth subtree when the root is of degree d. For n ≥ 1
we have Wn,1 + . . .+Wn,d = n− 1 and

P (Dn = d)P
(
W(Dn)

n = k(Dn)|Dn = d
)

=(
n− 1

k1, . . . , kd

)
rk1 · · · rkd

rn
. (13)

For the entropy of unlabeled plane recursive trees of size n,
using the conditional independence of Tk1 , . . . , Tkd , we have

H (Tn) =

n−1∑
d=1

H
(
W(d)

n |Dn = d
)
P (Dn = d) +

n−1∑
d=1

P (Dn = d) d

n−d∑
k=1

H (Tk)∑
‖k(d−1)‖=n−1−k

P
(
W(d)

n =
(
k,k(d−1)

))
.

For k = 1, . . . , n − 1, let qn,k = q
(d)
n,k be defined as the

probability that the root of a plane recursive tree has degree
d and that one specified root subtree is of size k. Then

q
(d)
n,k = P (Dn = d)

∑
‖k(d−1)‖=n−1−k

P
(
W(d)

n =
(
k,k(d−1)

))
(14)

leading to

H (Tn) =

n−1∑
d=1

H
(
W(d)

n |Dn = d
)
P (Dn = d)

+

n−1∑
d=1

d

n−d∑
k=1

H (Tk) q
(d)
n,k. (15)

We need an expression for the probability q
(d)
n,k which we

present in the next lemma.

Lemma 3. For k = 1, . . . , n−1 we have q(1)
n,n−1 = 1

2n−3 and
if k 6= n− 1 : q

(1)
n,k = 0, while for d > 1:

q
(d)
n,k = 2d

d− 1

k(n− 1− k)

(
2k−2
k−1

)(
2(n−1−k)−d
n−2−k

)(
2n−2
n−1

) .

The recurrence (15) is another recurrence that we need to
analyze. Its general solution is presented next. The proof can
be found in the journal version of the paper.

Lemma 4. For constant y1 and y2, the recurrence

yn = bn +

n−1∑
d=1

d

n−d∑
k=1

q
(d)
n,k · yk, n > 2 (16)

has the following solution for n > 2:

yn =
2(2n− 1)

3
b1 + bn +

1

2

(
n− 1

2

) n−1∑
j=2

bj(
j − 1

2

) (
j + 1

2

) .

This leads us to our second main result.

Theorem 2. The entropy of an unlabeled general plane tree
is

H (Tn) =

n−1∑
d=1

H
(
W(d)

n |Dn = d
)
P (Dn = d) (17)

+
1

2

(
n− 1

2

) n−1∑
j=2

∑j−1
d=1H

(
W

(d)
j |Dj = d

)
P (Dj = d)(

j − 1
2

) (
j + 1

2

) ,

(18)

where

H
(
W(d)

n |Dn = d
)

= −
∑

‖k‖=n−1

P
(
W(d)

n = k(d)|Dn = d
)

· logP
(
W(d)

n = k(d)|Dn = d
)
.

Furthermore, the entropy rate ht = limn→∞H (Tn) /n is

ht =
1

2

∞∑
j=2

∑j−1
d=1H

(
W

(d)
k |Dn = d

)
P (Dn = d)(

j − 1
2

) (
j + 1

2

) . (19)

Finally, we did not address how to optimally compress these
trees, but it is not hard to see that a direct generalization of the
arithmetic encoding proposed in [8] can be used. For example,
in the d-ary tree cases, we traverse the tree in depth-first order
from left to right, taking advantage of the fact that conditioned
on the size k of the leftmost root subtree, the rest of the tree
is a random d− 1-ary tree of size n− k.
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