
Lossless Compression of Binary Trees
with Correlated Vertex Names

Abram Magner
Coordinated Science Laboratory

Univ. of Illinois at Urbana-Champaign
Urbana, IL, USA

Email: anmagner@illinois.edu

Krzysztof Turowski
Dept. of Algorithms and System Modeling

Gdansk University of Technology
Gdansk, Poland

Email: krzturow@pg.gda.pl

Wojciech Szpankowski
Department of Computer Science

Purdue University
West Lafayette, IN, USA

Email: spa@cs.purdue.edu

Abstract—Compression schemes for advanced data structures
have become the challenge of today. Information theory has
traditionally dealt with conventional data such as text, image,
or video. In contrast, most data available today is multitype
and context-dependent. To meet this challenge, we have recently
initiated a systematic study of advanced data structures such as
unlabeled graphs [1]. In this paper, we continue this program by
considering trees with statistically correlated vertex names. Trees
come in many forms, but here we deal with binary plane trees
(where order of subtrees matters) and their non-plane version.
Furthermore, we assume that each symbol of a vertex name
depends in a Markovian sense on the corresponding symbol
of the parent vertex name. We first evaluate the entropy for
both types of trees. Then we propose two compression schemes
COMPRESSPTREE for plane trees with correlated names, and
COMPRESSNPTREE for non-plane trees. We prove that the former
scheme achieves the lower bound within two bits, while the latter
is within 1% of the optimal compression.

I. INTRODUCTION

Over the last decade, repositories of various data have
grown enormously. Most of the available data is no longer
in conventional form, such as text or images. Instead, bio-
logical data (e.g., gene expression data, protein interaction
networks, phylogenetic trees), medical data (cerebral scans,
mammogram, etc.), and social network data archives are in
the form of multimodal data structures, that is, multitype
and context dependent structures. For efficient compression
of such data structures, one must take into account not only
several different types of information, but also the statistical
dependence between the general data labels and the structures
themselves.

This paper is a first step in the direction of the larger goal of
a unified framework for compression of labeled graph and tree
structures. We focus on compression of trees with structure-
correlated vertex “names” (strings). First, we formalize natural
models for random binary trees with correlated names. We
focus on two variations: plane-oriented and non-plane-oriented
trees. For the plane-oriented case, we give an exact formula
for the entropy of the labeled tree, as well as an efficient

compression algorithm whose expected code length is within
two bits away from the optimal length. In the non-plane
case, due to the typically large number of symmetries, the
compression problem becomes more difficult, and in this
conference version of the paper we focus on the case without
vertex names. We prove upper and lower bounds on the
entropy of such trees and provide an efficient compression
algorithm whose expected code length is no more than 1%

away from the entropy.

Regarding prior work, literature on tree and graph com-
pression is quite scarce. For unlabeled graphs there are some
recent information-theoretic results, including [2], [1] (see also
[4]) and [3]. In 1990, Naor [2] proposed a representation for
unlabeled graphs (solving Turan’s [5] open question) that is
asymptotically optimal when all unlabeled graphs are equally
likely. Naor’s result is asymptotically a special case of recent
work of Choi and Szpankowski [1]. In [1] the entropy and
optimal compression algorithm for Erdős-Rényi graphs were
presented. Furthermore, in [3], an automata approach was used
to design an optimal graph compression algorithm. There also
have been some heuristic methods for real-world graph com-
pression. Peshkin [6] proposed an algorithm for a graphical
extension of the one-dimensional SEQUITUR compression
method, however, it is known not to be asymptotically optimal.
For binary plane-oriented trees rigorous information-theoretic
results were obtained in [7], complemented by a universal
grammar based lossless coding scheme [8].

However, for labeled structures, which is the topic of
this paper, there have been almost no attempts at theoretical
analyses, with the notable exception of [9] for sparse Erdős-
Rényi graphs. The only relevant results have been based on
heuristics, exploiting the well-known properties of special
kinds of graphs [13]. Similarly, there are some algorithms
with good practical compression rate for phylogenetic trees
[14]; however, they too lack any theoretical guarantees on their
performance.

II. MODELS

We call a rooted tree a plane tree when we distinguish left-
to-right-order of the successors of the nodes in the embedding
of a tree on a plane (see [12]). To avoid confusion, we call a
tree with no fixed ordering of its subtrees a non-plane tree.

Let T be the set of all binary rooted plane trees having
finitely many vertices and, for each positive integer n, let Tn
be the subset of T consisting of all trees with exactly n leaves.
Similarly, let S and Sn be the set of all binary rooted non-
plane trees with finitely many vertices and exactly n leaves,
respectively.

We can also augment our trees with vertex names – given
the alphabet A, names are simply words from Am for some
integer m ≥ 1. Let LT n and LSn be the set of all binary
rooted plane and non-plane trees with names, respectively,
having exactly n leaves with each vertex assigned a name
– a word from Am. In this paper we consider the case where
names are locally correlated as discussed below.

Formally, a rooted plane tree t ∈ Tn can be uniquely
described by its sequence of vertices (vi)

2n−1
i=1 in depth-first

search (DFS) order, together with a set of triples (vi, vj , vk),
consisting of the parent vertex and its left and right children.
Furthermore, a tree with names lt ∈ LT n can be uniquely
described as a pair (t, f), where t is a tree, described as above,
and f is a function from the vertices of t to the words in Am.

We now present a model for generating plane trees with
locally correlated names. We shall assume that individual
names are generated by a memoryless source (horizontal
independence), but the letters of vertex names of children
depend on the vertex name of the parent (vertical Markovian
dependence).

Our main model MT1 is defined as follows: given the
number n of leaves in the tree, the length of the names m, the
alphabet A (of size |A|) and the transition probability matrix
P (of size |A| × |A|) with its stationary distribution π (i.e.
πP = π), we define a random variable LTn as a result of the
following process: starting from a single node with a randomly
generated name of length m by a memoryless source with
distribution π, we repeat the following steps until a tree has
exactly n leaves:

• pick uniformly at random a leaf v in the tree generated
in the previous step,

• append two children vL and vR to v,
• generate correlated names for vL and vR by taking each

letter from v and generating new letters according to P :
for every letter of the parent we pick the corresponding
row of matrix P and generate randomly the respective
letters for vL and vR.

Our second model, MT2 (also known as the binary search
tree model), is ubiquitous in the computer science literature,

arising for example in the context of binary search trees
formed by inserting a random permutation of [n − 1] into a
binary search tree. Under this model we generate a random
tree Tn as follows: t is equal to the unique tree in T1 and
we associate a number n with its single vertex. Then, in each
recursive step, let v1, v2, . . . , vk be the leaves of t, and let
integers n1, n2, . . . , nk be the values assigned to these leaves,
respectively. For each leaf vi with value ni > 1, randomly
select integer si from the set {1, . . . , ni− 1} with probability

1
ni−1 (independently of all other such leaves), and then grow
two edges from vi with the left edge terminating at a leaf of the
extended tree with value si and the right edge terminating at a
leaf of the extended tree with value ni−si. The extended tree
is the result of the current recursive step. Clearly, the recursion
terminates with a binary tree having exactly n leaves, in which
each leaf has assigned value 1; this tree is Tn. The assignment
of names to such trees proceeds exactly as in the MT1 model.

Let ∆(t) be the number of leaves of a tree t. For simplicity,
let us also use ∆(v) to denote the number of leaves of a tree
rooted at v. In [7] it was shown that under the model MT2,
P(Tn = t1) = 1 (where t1 is the unique tree in T1) and

P(Tn = t) =
1

n− 1
P(T∆(tL) = tL)P(T∆(tR) = tR),

which leads us to the formula P(Tn = t) =
∏
v∈V̊

(∆(v)− 1)−1

where V̊ is the set of the internal vertices of t. We can prove
that both models are equivalent.

Theorem 1. Under the model MT1 it holds that P(Tn = t) =∏
v∈V̊

(∆(v) − 1)−1 where V̊ is the set of the internal vertices

of t. Therefore, models MT1 and MT2 are equivalent.

On the top of these models, we define models MS1 and
MS2 for non-plane trees: just generate the tree according to
MT1 (respectively, MT2) and then treat the resulting plane
tree Tn as a non-plane one Sn.

III. ENTROPY EVALUATIONS

A. The entropy of the plane trees with names

Let ∆(LTL
n) be a random variable corresponding to the

number of leaves in the left subtree of LTn. From the previous
section, we know that P(∆(LTL

n) = i) = 1
n−1 . Let also r, rL,

rR denote the root of LTn and the roots of its left and right
subtrees (denoted by LTL

n and LTR
n), respectively.

First, we observe that there is a bijection
between a tree with names LTn and a quadruple
(∆(LTL

n), Fn(r), LTL
n , LT

R
n) (that is, for each named

tree, there is a unique associated quadruple, and
each valid quadruple defines a unique tree). Therefore
H(LTn|Fn(r)) = H(∆(LTL

n), Fn(r), LTL
n , LT

R
n |Fn(r)).

Second, using the fact that ∆(LTL
n) is independent from

Fn(r) and that LTL
n and LTR

n are independent, we find

H(LTn|Fn(r)) = H(∆(LTL
n))

+

n−1∑
k=1

(
H(LTL

n |Fn(r),∆(LTL
n) = k)+

H(LTR
n |Fn(r),∆(LTL

n) = k)
)
P(∆(LTL

n) = k).

(1)

By the definition, we know that H(∆(LTL
n)) = log2(n− 1).

Next, it is sufficient to note that the random variable LTL
n

conditioned on ∆(LTL
n) = k is identical to the random

variable LTk (the model has the hereditary property), and the
same holds for LTR

n and LTn−k. Similarly, Fn on the left (or
right) subtree of LT , given Fn(rL) (respectively, Fn(rR)) and
∆(LTL

n) = k has identical distribution to the random variable
Fk (resp. Fn−k) given Fk(r) (Fn−k(r)). This leads us to the
following recurrence:

H(LTn|Fn(r)) = log2(n− 1) + 2mh(P)

+
2

n− 1

n−1∑
k=1

H(LTk|Fk(r))
(2)

where h(P) = −
∑
a∈A

π(a)
∑
b∈A

P (b|a) logP (b|a) is the en-

tropy of the Markov process with the transition matrix P .
In (2) we encounter a recurrence whose general solution is

presented next.

Lemma 1. The recurrence x1 = a1,

xn = an +
2

n− 1

n−1∑
k=1

xk, n ≥ 2 (3)

has the following solution:

xn = an + n

n−1∑
k=1

2ak
k(k + 1)

. (4)

Proof: By comparing the equations for xn and xn+1 for
any n ≥ 2 we obtain

xn+1

n+ 1
=
xn
n

+
nan+1 − (n− 1)an

n(n+ 1)
.

Substituting yn = xn

n and bn = nan+1−(n−1)an

n(n+1) we find

yn = y1 +

n−1∑
k=1

bk = y1 +

n−1∑
k=1

(
ak+1

k + 1
− ak

k
+

2ak
k(k + 1)

)

= y1 +
an
n
− a1 +

n−1∑
k=1

2ak
k(k + 1)

=
an
n

+

n−1∑
k=1

2ak
k(k + 1)

which completes the proof.
Using Lemma 1 we immediately obtain our first main result.

Theorem 2. The entropy of a binary tree with names, gener-
ated according to the model MT1, is given by

H(LTn) = log2(n− 1) + 2n

n−1∑
k=2

log2(k − 1)

k(k + 1)

+2(n− 1)mh(P) +mh(π)

(5)

where h(π) = −
∑
a∈A

π(a) log π(a).

We know that 2
∞∑
k=2

log2(k−1)
k(k+1) ≈ 1.736. Therefore, if we

consider trees without names (m = 0), the entropy of the trees
would be approximately equal 1.736n, as was already shown
in [7]. In a typical setting m = O(1) or Θ(log n) (which is
certainly needed if we want all the labels to be distinct) – so
H(LTn) would be O(n) or O(n log n), respectively.

B. The entropy of the non-plane trees

Now we turn our attention to the non-plane trees and the
case when m = 0. Let Sn be the random variable with
probability distribution given by the MS1 (or, equivalently,
MS2) model. For any s ∈ S and t ∈ T let t ∼ s mean that the
plane tree t is isomorphic to the non-plane tree s. Furthermore,
we define [s] = {t ∈ T : t ∼ s}. For any t1, t2 ∈ Tn such that
t1 ∼ s and t2 ∼ s it holds that P(Tn = t1) = P(Tn = t2) [11].
By definition, s corresponds to |[s]| isomorphic plane trees, so
for any t ∼ s it holds that P(Sn = s) = |[s]|P(Tn = t).

Let us now introduce two functions: X(t) and Y (t), which
are equal to the number of internal vertices of t ∈ T with
unbalanced subtrees (unbalanced meaning that the numbers
of leaves of its left and right subtree are not equal) and the
number of internal vertices with balanced, but non-isomorphic
subtrees, respectively. Similarly, let X(s) and Y (s) denote the
number of such vertices for s ∈ S. Clearly, X(t) = X(s) and
Y (t) = Y (s). Moreover, observe that any structure s ∈ S
has exactly |[s]| = 2X(s)+Y (s) distinct plane orderings, since
each vertex with non-isomorphic subtrees can have either one
of two different orderings of the subtrees, whereas when both
subtrees are isomorphic – only one.

Now we can conclude that:

H(Tn|Sn) = −
∑

t∈Tn,s∈Sn

P(Tn = t) logP(Tn = t|Sn = s)

=
∑
t∈Tn

P(Tn = t)(X(t) + Y (t)) = EXn + EYn

where we write Xn := X(Tn) and Yn := Y (Tn).

C. Lower and upper bounds on H(Tn|Sn)

Lower Bound. The stochastic recurrence for Xn can be
expressed as follows: X1 = 0 and

Xn = XUn−1
+Xn−Un−1

+ I
(
Un−1 6=

n

2

)
for n ≥ 2, where Un is the variable on {1, 2, . . . , n} with
uniform distribution. This leads us to

EXn =
1

n− 1

n−1∑
k=1

E(Xn|Un−1 = k)

= EI
(
Un−1 6=

n

2

)
+

2

n− 1

n−1∑
i=1

EXi.

Fig. 1: An example of s1 ∗ s1, s2 ∗ s2, s3 ∗ s3

Since, EI
(
Un−1 6= n

2

)
= (n − 2)/(n − 1) for n even (and

1 for n odd except for n = 1 when it is zero), we find by
Lemma 1 setting xn = EXn and an = EI

(
Un−1 6= n

2

)
EXn = an + n

(
2− 2

n
−

n−1∑
k=1

2(−1)k+1

k

)
∼ 2n(1− ln 2).

Upper Bound. Now we turn our attention to the upper bound
on H(Tn|Sn). We can introduce another function Z(t) – the
number of internal vertices of t with isomorphic subtrees.
Obviously, X(t) + Y (t) + Z(t) = n − 1. Given s ∈ S we
may define Z(t, s) – the number of internal vertices with
both subtrees isomorphic to s. Clearly, Z(t) =

∑
s∈S

Z(t, s),

and Z(Tn) =
∑
s∈S

Z(Tn, s). We may bound the value of

EZn := EZ(Tn) from below by computing only particular
values of EZn(s) := EZ(Tn, s)

Let us also use s ∗ s as a shorthand for a non-plane tree
having both subtrees of a root isomorphic to s. The stochastic
recurrence on Zn(s) becomes Zn(s) = I (Tn ∼ s ∗ s) +

ZUn−1(s) + Zn−Un−1(s) which leads us to

EZn(s) = EI (Tn ∼ s ∗ s) +
2

n− 1

n−1∑
k=1

EZk(s).

Moreover, since under condition that ∆(TL
n) = k the event

that Tn ∼ s∗s is equivalent to the union of the events TL
n ∼ s

and TR
n ∼ s, we have

EI (Tn ∼ s ∗ s) =
1

n− 1

n−1∑
k=1

P (Tn ∼ s ∗ s|Un−1 = k)

= I (n = 2∆(s))
P2(Tn/2 ∼ s)

n− 1
.

Now, we apply Lemma 1 with xn = EZn(s) and an =

I (n = 2∆(s))
P2(Tn/2∼s)

n−1 . Its solution (for n ≥ 2∆(s)) is

EZn(s) =
2P2(T∆(s) ∼ s)n

(2∆(s)− 1)2∆(s)(2∆(s) + 1)
. (7)

If we consider only three subtrees: s1 (cherries), s2 and
s3 (presented on Fig. 1), it can be easily noticed that
P(T1 ∼ s1) = P(T2 ∼ s2) = P(T3 ∼ s3) = 1.
Therefore for any n ≥ 6 it holds that EZn(s1) = n

3 (see
also [11] for a proof), EZn(s2) = n

30 , EZn(s3) = n
105

so EZn ≥ EZn(s1) + EZn(s2) + EZn(s3) = 79
210n – so

EXn + EYn = n − 1 − EZn ≤ 0.6239n. In summary we
obtain the following result.

Theorem 3. The conditional entropy of a plane tree from MT1

given its structure is asymptotically bounded as follows:

0.6137 ≤ lim
n→∞

H(Tn|Sn)

n
≤ 0.6239.

Therefore, the entropy of a non-plane tree generated under
model MS1 is asymptotically bounded as follows:

1.112 ≤ lim
n→∞

H(Sn)

n
≤ 1.123.

Because H(Tn) − H(Sn) = H(Tn|Sn), on average the
compression of the structure (the non-plane tree) requires
asymptotically 0.6137n fewer bits than the compression of
any plane tree isomorphic to it.

IV. ALGORITHMS

The main idea of the two algorithms presented here for
plane and non-plane trees is to use the arithmetic coding
scheme.
A. Algorithm COMPRESSPTREE for plane trees with names

First we set the interval to [0, 1) and then traverse the
vertices of the tree and its names. Here, we explicitly assume
that we traverse the tree in DFS order, first descending to the
left subtree and then to the right.

At each step, if we visit an internal node v, we split the
interval according to the probabilities of the number of leaves
in the left subtree. That is, if the subtree rooted at v has k
leaves and vL has l leaves, then we split the interval into
k−1 equal parts and pick l-th subinterval as the new interval.
Then if v is the root, for every letter of the name Fn(v) we
split the interval according to the distribution π and pick the
subinterval representing the respective letter of Fn(v). If v
is not the root, for every letter of the name Fn(v), we split
the interval according to transition probability distribution in
P according to the respective letter in Fn(u), where u is a
parent of v, and pick the subinterval representing the letter of
Fn(v). Finally, when we obtain an interval [a, b), we take as
output of the algorithm the first d− log2(b− a)e bits of a+b

2 .
Example. Suppose that A = {a, b} with the transition matrix

P =

[
0.7 0.3

0.2 0.8

]
. (8)

Observe that π = (0.4, 0.6). Then for the following tree our
algorithm COMPRESSPTREE proceeds as follows:

v1 : aa

v5 : bav2 : ab

v4 : bbv3 : ab

v1 ⇒ [0.5, 1)

a ⇒ [0.5, 0.7)

a ⇒ [0.5, 0.58)

v2 ⇒ [0.5, 0.58)

a → a ⇒ [0.5, 0.556)

. . .
and finally, we obtain [0.550282624, 0.5507567872) – so we
take the middle point of it (0.5505197056) and return its first
d− log(0.5507567872 − 0.550282624)e + 1 = 13 bits in the
binary representation, that is 1000110011101.

B. Algorithm COMPRESSNPTREE for non-plane trees

For non-plane trees, we present a suboptimal compression
algorithm called COMPRESSNPTREE that for a non-plane tree
Sn without vertex names, produces a code from which we can
efficiently reconstruct a non-plane tree.

As before, we first set the interval to [0, 1) and then traverse
the vertices of the tree. However, now we always visit the
smaller subtree (that is, the one with the smaller number of
leaves) first (ties are broken arbitrarily). At each step, if we
visit an internal node v, we split the interval according to the
probabilities of the sizes of the smaller subtree – that is, if the
subtree rooted at v has k leaves and its smaller subtree has
l leaves, then if k is even we split the interval into k

2 equal
parts. Otherwise, k is odd, so we split the interval into k+1

2

parts, all equal, except the last one, which has half the size of
the others. Finally, in both cases we pick the l-th subinterval
as the new interval.

C. Analysis of the algorithm for plane trees

In the journal version of our paper we prove the following.

Theorem 4. For a given plane tree with names lt the algo-
rithm COMPRESSPTREE computes an interval whose length
is equal to P(LTn = lt).

Therefore, if we take the first d− logP(LTn = lt)e + 1 =

d− log(b− a)e+ 1 bits of the middle of the interval [a, b) we
get a codeword C

(1)
n , which is guaranteed to be inside this

interval and which is uniquely decodable.

Theorem 5. The average length of a codeword C
(1)
n of

COMPRESSPTREE is only within 2 bits from the entropy.

Proof: From the analysis above, we know that:

EC(1)
n =

∑
lt∈LT n

P(LTn = lt)(d− log2 P(LTn = lt)e+ 1) <∑
lt∈LT n

−P(LTn = lt) log2 P(LTn = lt) + 2 = H(LTn) + 2

which completes the proof.

D. Analysis of the algorithm for non-plane trees

We now deal with COMPRESSNPTREE algorithm for the
non-plane trees together with the analysis of its performance.
The algorithm does not match the entropy rate for the non-
plane trees, since for every vertex with two non-isomorphic
subtrees of equal sizes, it can visit either subtree first –
resulting in different output intervals, so different codewords
too. Clearly, such intervals are shorter than the length of the
optimal interval; therefore, the codeword will be longer. How-
ever, given the bounds on EYn, we can bound the expected
redundancy rate within 1% of the entropy rate.

If we want to obtain an optimal algorithm for the compres-
sion of non-plane trees, we need a unique way of resolving

the ties for vertices which have non-isomorphic subtrees with
the same number of leaves. Unfortunately, if we fix any linear
ordering on the trees of the same size and force to go to the
smaller one first, it skews the probability distribution for the
right subtree, as it reveals some information about it. We can
prove the following.

Lemma 3. For a given non-plane tree s with exactly Y (s)

vertices with balanced but not isomorphic subtrees, COM-
PRESSNPTREE computes an interval whose length is equal
to 2−Y (s)P(Sn = s).

As before, if we use the arithmetic coding scheme on an
interval generated from a tree s, we get a codeword C

(2)
n ,

which, as a binary number, is guaranteed to be inside this
interval. Moreover, we can prove the following.

Theorem 6. The average length of a codeword C
(2)
n from

algorithm COMPRESSNPTREE does not exceed 1.01H(Sn).

ACKNOWLEDGMENT

This work was supported by NSF Center for Science
of Information (CSoI) Grant CCF-0939370, by NSF Grant
CCF-1524312, and NIH Grant 1U01CA198941-01. W. Sz-
pankowski is also with the Faculty of ETI, Gdańsk University
of Technology, Poland.

REFERENCES

[1] Y. Choi and W. Szpankowski: Compression of Graphical Structures:
Fundamental Limits, Algorithms, and Experiments. IEEE Transactions
on Information Theory, 2012, 58(2):620-638.

[2] M. Naor, Succinct representation of general unlabeled graphs, Discrete
Applied Mathematics, 28(3), 303–307, 1990.

[3] M. Mohri, M. Riley, A. T. Suresh, Automata and graph compression.
ISIT 2015, pp. 2989-2993.

[4] B. Guler, A. Yener, P. Basu, C. Andersen, A. Swami, A study on
compressing graphical structures. GlobalSIP 2014, pp. 823-827

[5] Gy. Turan, On the succinct representation of graphs, Discrete Applied
Mathematics, 8(3), 289–294, 1984.

[6] L. Peshkin, Structure induction by lossless graph compression, In Proc.
of the IEEE Data Compression Conference, 53–62, 2007.

[7] J. C. Kieffer, E.-H. Yang, W. Szpankowski, Structural complexity of
random binary trees. ISIT 2009 , pp. 635-639.

[8] J. Zhang, E.-H. Yang, J. C. Kieffer, A Universal Grammar-Based
Code for Lossless Compression of Binary Trees. IEEE Transactions
on Information Theory, 2014, 60(3):1373-1386.

[9] D. Aldous and N. Ross, Entropy of Some Models of Sparse Random
Graphs With Vertex-Names. Probability in the Engineering and Infor-
mational Sciences, 2014, 28:145-168.

[10] M. Steel, A. McKenzie, Distributions of cherries for two models of trees.
Mathematical Biosciences, 2000, 164:81-92.

[11] M. Steel, A. McKenzie, Properties of phylogenetic trees generated
by Yule-type speciation models. Mathematical Biosciences, 2001,
170(1):91-112.

[12] M. Drmota, Random Trees: An Interplay between Combinatorics and
Probability. Springer Publishing Company, Inc., 2009.

[13] F. Chierichetti, R. Kumar, S. Lattanzi, M. Mitzenmacher, A. Panconesi,
and P. Raghavan. On Compressing Social Networks, Proc. ACM KDD,
2009.

[14] S. J. Matthews, S.-J. Sul, T. L. Williams, TreeZip: A New Algorithm
for Compressing Large Collections of Evolutionary Trees, Data Com-
pression Conference 2010, pp. 544-554.

