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Abstract—The method of types is one of the most popular
technique in information theory and combinatorics. However, it
was never thoroughly studied for Markov fields. Markov fields
can be viewed as models for systems involving a large number
of variables with local dependencies and interactions. These
local dependencies can be captured by a shape of interactions
(locations that contribute the next probability transition). Shapes
marked by symbols from a finite alphabet are called tiles. Two
Markov fields have the same type if they have the same empirical
distribution or they can be tiled by the same number of tile types.
Our goal is to study the growth of the number of Markov field
types or the number of tile types. This intricate and important
problem was left open for too long.

I. INTRODUCTION

The method of types is one of the most popular and useful

techniques in information theory and combinatorics [3], [4],

[6], [14], [17]. Two sequences of equal length are of the same

type if they have identical empirical distributions. Method of

types is used in myriad of applications from the minimax

redundancy [6] to simulation of information sources [10].

However, thus far this method was mostly (if not exclusively)

studied for one-dimensional Markov processes [7] and general

one-dimensional stationary ergodic processes [14]. Here we

investigate types of Markov fields [2] that find applications

ranging from sensor networks [13], to image processing, to

information retrieval [11].

In order to gently introduce Markov fields and their types,

we start with a one-dimensional Markov chains over a finite

alphabet A = {1, 2, . . . ,m}. We shall follow notation and the

combinatorial approach introduced in [7]. Let us write xn =
x1 . . . xn ∈ An for a sequence of length n generated by a

Markov source. For Markov sources of order r = 1 we have

two equivalent representations for the probability P (xn):

P (xn) = P (x1)
n
∏

i=2

P (xi|xi−1) = P (x1)
∏

t∈T

p
k(t)
t (1)

with
∑

x1
P (x1) = 1 where t = (ij) ∈ A2 =: T and pij = pt

is the transition probability from i ∈ A to j ∈ A. The

frequency vector k(t) counts the number of pairs t = (ij)
in the sequence xn. Similarly, for one-dimensional Markov

sources of order r we define t = (j1, . . . , jr+1) ∈ Ar+1 =: T
as the (r+1) tuples of the underlying Markov source and k(t)
as the number of t in xn. Observe that the number of distinct

(empirical) distributions P (xn) depends on the number of

distinct vectors {k(t)}t∈T and the initial distribution.

Two interesting questions arise: For a given vector count

{k(t)}t∈T how many sequences xn realize it (i.e., have

the same {k(t)}t∈T ), and how many distinct vector counts

{k(t)}t∈T (i.e., distinct empirical distributions) are there? In

the language of Markov sources, we identify the vector count

{k(t)}t∈T as a Markov type. The number of sequences of

a given Markov type was first addressed by Whittle [17]

and then re-established by analytic method in [6]. A precise

evaluation of the number of Markov types was left open until

it was recently discussed in [7] (see also [9] for tree models).

In this paper, we consider Markov fields [2] and count the

number of distinct (empirical) distributions, that is, the number

of Markov field types. Thus we extend our analysis from [7]

on one-dimensional Markov types to Markov fields. We start

our discussion with some general remarks and definitions. We

shall follow notation from [2]. Throughout we assume that

the underlying process, taking values in a finite alphabet A =
{1, 2, . . . ,m}, is defined on a finite d dimensional box IN =
In1

× In2
× ..× Ind

, with In := {0, 1, .., n− 1} and N := n1 ·
n2 ·...·nd. Elements of IN are called locations. A random field

on IN is a collection of random variables X = {X(ℓ)}ℓ∈IN

with values in AN . We also write X(S) = {X(ℓ), ℓ ∈ S}
for some S ⊂ IN .

There are many ways to define Markov fields. We adopt

here the so called “unilateral scanning” approach that is

popular in some applications such as image processing [2].

We now postulate that the underlying d dimensional process

X visits locations ℓ1, . . . , ℓN in that order taking values

X(ℓj). The Markov property implies that the probability

P (x(ℓ1), . . . , x(ℓN )) := P (X(ℓ1) = x(ℓ1), . . . , X(ℓN) =
x(ℓN )) depends only on the local past visits (see Figure 1).

More precisely, let S ⊂ Zd, where Z is the set of integers,

be a shape, and also S(j) = S \ {ℓj}. For the homogeneous

Markov field X we require that

P (X(ℓj) = x(lj)|X(ℓj−1) = x(ℓj−1), . . .X(ℓ1) = x(ℓ1)) =
(2)

P (X(ℓj) = x(ℓj)|X(S(j)) = x(S(j))).

Let us now define a tile t : S → A as marked shape S
with symbols from the alphabet A. Notice that the set of all

tiles T has the cardinality D := |A||S| = m|S|. By (2), we

can write the joint probability P (xN ) as [2]

P (xN ) = P (x0)

N
∏

j=1

P (x(ℓj)|x(S(j)) = P (x0)
∏

t∈T

p
k(t)
t (3)



Figure 1. Box of size 3 × 4 and its corresponding torus over A = {0, 1}
with the L shape.

where k(t) counts the number of tiles t which can be viewed

as values of the process (x(ℓj), x(S(j)) on AS . We should

point out that (3) can be even better justified by appealing

to Hammersley-Clifford Theorem [12] and Gibbs distribution.

However, we leave this for the journal version of the paper.

Finally, it is now easy to see that the number of (empiri-

cal) distributions is fully characterized by the count vector

{k(t), t ∈ T } and the initial probability. The latter is ignored

in the cyclic representation of the underlying Markov field

discussed next.

We first re-formulate our question in terms of counting tiles

[1]. For dimension d ∈ N and n = (n1, n2, .., nd) define the

torus

On = In1
× In2

× ..× Ind
⊂ Zd, N := n1 · n2 · ... · nd

which is a cyclic multidimensional box with periodic boundary

conditions, or equivalently as Zd modulo (n1, n2, .., nd). For

d = 2 in Figure 1 we show the box I3×4 (with L shape S
of dependency) and its corresponding cyclic representation,

namely the torus O3×4.

In this conference version we mostly deal with cyclic fields

(see Figure 1) that can be viewed as functions from torus On

to A, that is, the underlying Markov field is defined on

Xn := {xn : On → A}.

Our approach through tilings has the advantage of allowing

us to introduce a general formulation of Markov field types.

We first recall that for one-dimensional Markov chains, we

study correlations between consecutive positions represented

by t = (ij), as in (1). For Markov fields defined on On,

and a general shape S ⊂ Zd, we replace the pairs (ij) of

the one-dimensional case by tiles t which are marked shapes

by symbols from A. Now, the tile count k(t) is a function

k : T → N enumerating the number of t occurrences in the

underlying field, that is,

k(t) ≡ kS(t) = |{s ∈ On : x|S+s = t}| (4)

where the tile t is properly shifted by s and f |A denotes a

function restricted to a smaller domain A.

Our goal is to count the number of different ways to tile

the torus On or the box In. In other words, we would like

to partition Xn into subsets of the same types and count the

number of these subsets, not the number of fields of a given

type. While tilings and counting them are discussed in many

references [1], [8], our problem is distinctly different and we

couldn’t find any relevant literature. Counting tilings usually

means to enumerate the number of different tilings of all types.

Here, we count the number of distinct (tiling, vectors) types

{k(t)}t∈T , that is, we are interested in the cardinality of the

set of types

Pn(m,S) = {k : ∃xn∈Xn xn is of type k} (5)

where k = {k(t), t ∈ T } is the count vector.

We now briefly discuss our main findings. We shall view

the set of frequency counts {k(t)}t∈T as a D := |T | = m|S|–

dimensional vector k indexed by t ∈ T . Clearly, k(t) ≥ 0
for all t ∈ T , however, this vector satisfies some additional

constraints that have major impact on the cardinality of

Pn(m,S). First of all, the normalization condition
∑

t∈T

k(t) = N := n1 · . . . · nd (6)

is quite obvious for the torus. Moreover, in order to tile a torus

the number of tiles “ending” with a subtile t′ : S′ → A for

some subshape S′ ⊂ S must be equal to the number of tiles

that “begin” with t′. This leads to the following conservation

law

∀S′⊂S∀t′:S′→A kS′(t′)− kS′+s(t
′) = 0 (7)

where t′ is properly shifted by s ∈ Zd subject to (S′+s) ⊂ S.

The system of equations (7) and the normalization equation

(6) over k ∈ ND constitutes a linear system of Diophantine

equations. We denote by Fn := Fn(m,S) the set of non-

negative integer solutions to (6)-(7). Clearly, |Pn| ≤ |Fn|
since all k ∈ Pn lead to a realizable (periodic) tiling and

hence we must conclude that k ∈ Fn. In the one-dimension

case we used analytic approach to enumerate precisely Fn

(see also [15]). Furthermore, for d = 1 we show in [7] that

|Pn| ∼ |Fn|, however, this does not hold any longer for the

multidimensional case where the set of types Pn is a proper

subset of Fn.

To analyze the cardinality of Fn and ultimately Pn we

need to understand the geometry of the D-dimensional count

vectors k as illustrated in Figure 2. In particular, we need to

estimate the dimensionality of a subspace on which Fn and

Pn reside. To accomplish it we shall write the conservation

law as C · k = 0 where C is a matrix of coefficients of the

conservation laws (7). This allows us to define the cone C as:

C ≡ C (m,S) = {k ∈ ND : C · k = 0}

and

FN ≡ FN (m,S) = {k ∈ C :
∑

i

ki = N}.

(Recall that a set C is a cone if k ∈ C implies λk ∈ C for any

λ.) We shall show that matrix C is hugely over-determined.

In fact, we prove that Fn lies on a subspace of dimensionality

µ = D − 1 − rk(C) where rk(C) is the rank of C (see
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Figure 2. Schematic general picture in D = 3 dimensions.

Theorem 1). For example, for d = 2 and a 2× 2 square shape

we have µ = m4 − 2m2 +m, while for a 3 × 2 rectangular

shape we find µ = m6 −m4 −m3 +m2.

Our goal, however, is to estimate the cardinality of the

number of types Pn, that is, the number of realizable tiling

types of Xn or the number of distinct count vectors k. In

other words, we need to evaluate the number of lattice points

in Pn. We shall see that the closure of the normalized set

P̂N := 1
N

⋃

∏
i
ni=N Pn is dense in F̂N := FN/N (see

Lemma 2) leading to our main result |Pn(m,S)| = Θ(Nµ)
(see Theorem 4). However, unlike d = 1 where we proved

|PN | ∼ |FN | in the multidimensional case FN is not asymp-

totically equivalent to PN even if the growth of both is the

same. We also show in Theorem 5 that the number of types in

the box In is much larger, namely Θ(ND−1/(mini ni)
rk(C)).

To establish these findings we use tools of discrete, con-

vex, and analytic multidimensional geometry that somewhat

resembles the method discussed in [15]. In particular, we apply

Ehrhart Theorem [5] to count the number of lattice points in

a polytope. This allows us to find the number of nonnegative

integer solutions of a linear system of Diophantine equations

(i.e., conservation laws) that leads to the enumeration of the

Markov field types.

II. MAIN RESULTS

A. Basic Definitions and Examples

As discussed in the introduction, we work here with the

torus On := In1
× In2

× .. × Ind
⊂ Zd in the d-dimensional

integer lattice Zd where n = (n1, . . . , nd) and N := n1 · n2 ·
...·nd. For field xn : On → A = {1, 2, . . . ,m}, shape S ⊂ Zd

and tile t : S → A, the function k : T → N defined in (4)

counts the occurrences of tile t ∈ T in xn. We illustrate these

definitions with one example.

Example 1: Markov Field in d = 2 with the L Shape.

We deal here with n1 × n2 rectangle with cyclic boundary

conditions: xi,j = xi+n1,j = xi,j+n2
. Let us take the 3 × 4

torus O{3,4} = {0, 1, 2} × {0, 1, 2, 3}. For example, consider

the following field over A = {1, 2}

x =





1121
1121
2221



 .

Because of the cyclic condition we have x(4, 0) = x(0, 3) =
x(4, 3) = x(0, 0). For the 3 point ”L”-like shape: S =

{(0, 0), (0, 1), (1, 0)}, we find k

(

1
12

)

= 2 since this

pattern appears in s ∈ {(3, 0), (1, 1)} positions. �

We aim at finding the number of (cyclic) Markov field types

that is also the number of “periodic” tilings of the underlying

torus On. Observe that the count vectors k ∈ Pn := Pn(m,S)
satisfy some additional constraints such as the normalization

equation (6) and the conservation laws (7) that we discuss next.

This will contribute to the reduction of the dimensionality of

the space on which Pn resides.

B. Conservation Laws

Let us start with a new definition. We say that kS′(t′) is a

restriction of kS(t) to a smaller subshape S′ ⊂ S if

kS′(t′) =
∑

t′′:(S\S′)→A

kS(t
′ ∪ t′′) for t′ : S′ → A

where t′ ∪ t′′ is concatenation of these tiles.

We now proceed to describe the conservation laws that

play crucial role in determining the asymptotics of |Pn| :=
|Pn(S,m)|. Observe that a subshape S′ ⊂ S may be translated

to a few positions in S; e.g., a single subshape can appear in

all |S| positions (but perhaps having different subtile t′). Since

the k function is obtained in translationally invariant way, all

restrictions to subshapes differing only by a translation have

to be identical. We will call the set of all these constrains

the conservation laws as expressed in (7). As discuss in the

introduction, (7) follows from the fact that the number of

tiles “ending” with a subtile t′ of subshape S′ ⊂ S must

be equal to the number of tiles that “begin” with t′. If we

treat k(t) as a D = m|S| dimensional vector k, then for

any (S′, s, t′) triple, we have a single linear equation in (7).

Let us denote by C∗({(S′, s, t′)}) the corresponding 1 × D
single row of coefficients of a much larger matrix C∗. Thus

kS′(t′)−kS′+s(t
′) = 0 can be written as C∗({(S′, s, t′)})·k =

0.

It is not difficult to see that the matrix C∗ of the coeffi-

cients corresponding to all conservation laws is hugely over

determined with many dependent rows. Our goal is to find

matrix C ≡ Cm(S) fulfilling all conservation laws that can

be written as C ·k = 0. We denote rank of C as rk(C) which

plays major role in our analysis.

In fact, we aim at finding matrix C with independent rows.

There are three ways to remove dependencies of C:

1. The normalization equation
∑

t′:S′→A kS′(t′) = k∅ = N
eliminates for every S′ and s one equation since summing (7)

over all t′ we obtain the trivial equation. Thus for every S′

and s we can remove the equation with t′ using only the last

symbol m ∈ A (i.e., t′ being constant function t′ = m).

2. Observe that for a given S′ ⊂ S the conservation laws (7)

contain equations between all of its shifted positions S′+s. We

can instead choose some fixed position of S′ and use equalities

only with this position. To accomplish it, let us denote by S0

the set of all nonempty subsets of S, but having only a single

representation of S′ ≡ S′ + s, which we can formally write

3



as: S0 is a maximal nonempty set of subsets of S such that

¬∃S′,S′′∈S0, s 6=0 S′ = S′′+ s. We will only use these subsets

in C.

3. These two reductions are sufficient for small shapes S.

However, for larger shapes like 2 × 2 squares, we also need

another reduction that turns out to be the final one. Let

ℓ ∈ Zd \ S′ be a position in On for some subshape S′. If the

value of the tile t at this position is i ∈ A, that is, t(ℓ) = i,
then we denote it as ℓ(i). Then for t′ : S′ → A we can write

the restriction from S′ ∪ ℓ to S′ as:

k(t′) = k(t′ ∪ ℓ(m)) +
∑

i=1,..,m−1

k(t′ ∪ ℓ(i)). (8)

This formula allows to express (7) for S′∪ ℓ subshape by dis-

regarding symbol m, but requiring also to have all conditions

for smaller subshape S′. Using this formula multiple times, we

see that by restricting (7) to the smaller alphabet {1, ..,m−1},

we still can deduce all conditions on S′ (on complete alphabet

{1, ..,m}). Equivalently, having only kS′(t′) on all S′ ∈ S0

and t′ : {1, ..,m− 1} → A, linear equations (8) allow us to

deduce the whole k function.

These three restrictions suggest that vector count k ∈ ZD

resides in a space of dimensionality µ = D−rk(C)−1 where

rk(C) is the rank of matrix C. We formally establish it in the

theorem below.

Theorem 1. The following matrix

Cm(S) = C∗
({

(S′, s, t′) : S′ ∈ S0, (S′ + s) ⊂ S,

t′ : S′ → {1, ..,m− 1}})

of rank

rk(C) =
∑

S′∈S0

(|{s : (S′ + s) ⊂ S}| − 1)(m− 1)|S
′| (9)

consists of linearly independent rows of the conservation laws.

There are µ = D − rk(C)− 1 independent coordinates
{

kS′(t′) : S′ ∈ S0, t′ : S′ → {1, ..,m− 1}
}

(10)

of the count vector k ∈ ZD. In particular, for the box shape

S = Il1 × Il2 × . . .× Ild we find

µ = D − 1− rk(C) =
∑

s∈{0,1}d

m
∏

i
(li−si) · (−1)

∑
i
si (11)

where l = (l1, . . . , ld) ∈ Nd.

We now discuss a few examples illustrating reduction of the

conservation laws and Theorem 1.

Example 2: One-dimensional Markov Chain. Consider now

d = 1 Markov chain over A = {1, 2}. We have four tiles

((11), (21), (12), (22)) that constitute four coordinates of the

vector count k. The normalization condition is

k(11) + k(21) + k(12) + k(22) = N.

To find the conservation law (7) we choose a one point

subshape, that can appear in two different positions: e.g. for

S′ = {(0)} and s = (1). Clearly, k(t) restricted to a single

point leads for m = 2 to two conservation equations

k(11) + k(12) = k(1∗) = k(∗1) = k(11) + k(21),

k(21) + k(22) = k(2∗) = k(∗2) = k(12) + k(22)

where ∗ denotes “don’t care” symbol. Summing these two

equations we obtain the normalization equation, thus one of

them can be removed as linearly dependent leading to only one

conservation equation k(12)− k(21) = 0 that can be written

in the matrix form as Ck = 0 or

(0,−1, 1, 0) · k = 0.

The vector count k of the original D = 4 dimensional space

lies on a µ = 2–dimensional polytope (by the normalization

and the conservation laws). Such a vector has two independent

coordinates, for example k(1) and k(11) that satisfy (10) for

S0 = {{(0)}, {(0), (1)}}. Then by (8), we can find all other

coordinates as follows: k(2) = 1 − k(1), k(21) = k(12) =
k(1)− k(11), k(22) = k(2)− k(12) = 1− 2k(12). �

Example 3: Markov Field for d = 2 with the L Shape. For the

”L”-shape in the d = 2 case and m = 2, the frequency vector

k has D = m3 = 8 coordinates however, only five of them

are independent. The only nontrivial subshape S′ appearing

in multiple positions is a one point shape but it can appear

in 3 different positions. We could use (7) in three different

ways but one of these conservative equation is redundant – -

choosing the one point S′ ∈ S0 as {(0, 0)}, there will remain

only two independent equations. We can show that the matrix

C is in this case:

Ck =

(

0 −1 1 0 0 −1 1 0
0 −1 0 −1 1 0 1 0

)

· k = 0.

These two independent conservation laws restrict the space

of k to µ + 1 =6–dimensional cone, and the normalization

equation further restricts it to µ = 5 dimensional polytope. �

C. Geometry and Enumeration

We now explore the geometry of the count vector k =
{k(t)}t∈T in the D = m|S| space. As discussed before and

illustrated in Figure 2, the conservation laws Ck = 0 restrict

k to a D − rk(C) = µ + 1 dimensional cone C and the

normalization equation
∑

t k(t) = N further restricts k to the

polytope Fn. Formally,

C ≡ C (m,S) = {k ∈ ND : Cm(S) · k = 0}, (13)

F ≡ FN (m,S) = {k ∈ C :
∑

i

ki = N}. (14)

We also define the normalized polytope F̂(m,S) of frequency

vectors k̂ as

F̂ ≡ F̂(m,S) = {k̂ ∈ {(R+∪{0})D : C·k̂ = 0,
∑

i

k̂i = 1}

(15)

and then

FN = {N k̂ : k̂ ∈ F̂ , N k̂ ∈ ZD} (16)

4



for the scaled polytope. Finally, the set of all realizable count

vectors (Markov types) is then

P̂(m,S) ≡ P̂ =

{

k

N
: ∃n∈Nd k ∈ Pn(m,S), N =

∏

i

ni

}

.

Observe that F̂ is an intersection of a linear subspace

with {k̂i ≥ 0} half planes for i = 1, . . . , D. From basic

convex analysis we then know that F̂ is convex with extremal

points that algebraically satisfy the original linear conditions

C · k̂ = 0 with (1, 1, ..., 1) · k̂ = 1 and µ = D − rk(C) − 1
of D equations k̂i = 0 for i = 1, . . . , D. The number of the

extremal points obtained this way is finite and at most
(

D
µ

)

.

Therefore, F̂ is a convex polytope and these extremal points

are in fact vertices. We can find them by solving a system

of linear equations for each of
(

D
µ

)

cases and removing those

having negative coordinates. For example, for the ”L”-shape in

the case with m = 2 we have 7 vertices of µ = 5 dimensional

polytope in D = 8 dimensional space.

Furthermore, we we shall prove in the journal version that

topological closure cl(P̂) of P̂ is a convex subset of F̂ . We

formally express it as a lemma below.

Lemma 2. The topological closure cl(P̂) is a convex subset

of F̂ .

The lattice FN consists of all integer points inside the

polytope F̂ scaled by N factor. Volume of FN is of order Nµ,

and we expect the number of integer points in FN also grows

asymptotically as Nµ. This is indeed the case by the Ehrhart

Theorem [5] which shows that if F̂ is a convex polytope with

rational vertices, then the scaled polytope FN has cardinality

of order Nµ.

Theorem 3 (Ehrhart, 1967). If F̂ is a convex polytope with

vertices in QD, where Q is the set of rational numbers, then

there exist a period p ∈ N and real coefficients ci,j such that

cµ,j 6= 0 for some j and |FN | = aµ,jN
µ + aµ−1,jN

µ−1 +
...a0,j if N ≡ j (mod p) where µ is the dimension of FN .

In our case, it is easy to see that F̂ has vertices in QD.

Indeed, by the construction these vertices are solutions of a

system of linear equations with integer coefficients.

But FN is only a superset of PN . Therefore, to establish the

growth of |PN | we need a matching lower bound. We establish

it in the journal version of this paper proving the following

main result.

Theorem 4. Consider the torus On. There exists 0 < cmin ≤
cmax such that if ni ≥ 2wi − 1 for all i, then

cminNµ ≤ |Pn(m,S)| ≤ cmaxNµ (17)

where the width w of shape S is the smallest (w1, .., wd) ∈ Nd

such that for some shift S ⊂ Iw1
× ..× Iwd

.

Finally, we consider the box In = In1
×In2

×. . .×Ind
⊂ Zd

and count the number of types P̃n(m,S) in such a box. It turns

out that the number of types significantly increases due to the

boundary effect. We formulate our next result below.

Theorem 5. Consider the box IN . There exists 0 < c̃min ≤
c̃max such that if ni ≥ 4wi − 1 for all i, then

c̃min ND−1

(mini ni)rk(C)
≤ |P̃n(m,S)| ≤ c̃max ND−1

(mini ni)rk(C)

(18)

where the width w of shape S is the smallest (w1, .., wd) ∈ Nd

such that for some shift S ⊂ Iw1
× ..× Iwd

.

We should point out that in [7] for d = 1 it was shown that

|FN | is asymptoticly equivalent to |PN |, that is, |PN | ∼ |FN |
as N → ∞. Generally, this turns out not to be true. However,

in some special cases we can say more about |PN | provided

we have a more precise estimate for |FN | which we discuss

next. Furthermore, the constants appearing in Theorems 4 and

5 are very small, of order O(1/µ!) or smaller. For example,

for d = 1 and m = 5 it was shown in [7] that the constant is

O(10−22).
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