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Abstract— We are motivated by applications that need rich
model classes to represent the application, such as the set of
all discrete distributions over large, countably infinite supports.
But such rich classes may be too complex to admit estimators
that converge to the truth with convergence rates that can be
uniformly bounded over the entire model class as the sample
size increases (uniform consistency). However, these rich classes
may still allow for estimators with pointwise guarantees whose
performance can be bounded in a model-dependent way. But
the pointwise angle has a drawback—estimator performance is
a function of the very unknown model that is being estimated,
and is unknown. Therefore, even if an estimator is consistent,
how well it is doing may not be clear no matter what the sample
size.

Departing from the uniform/pointwise dichotomy, a new anal-
ysis framework is explored by characterizing rich model classes
that may only admit pointwise guarantees, yet all information
about the unknown model needed to gauge estimator accuracy
can be inferred from the sample at hand. To bring focus, we
analyze the universal compression problem in this data derived,
pointwise consistency framework.

I. INTRODUCTION

Today, data accumulated in many biological, financial, and
other statistical problems stands out not just because of its
nature or size, but also because the questions we ask of it
are unlike anything we asked before. There is often a tension
in these big data problems between the need for rich model
classes to better represent the application and our ability to
handle these classes at all from a mathematical point of view.

Consider an example of insuring the risk of exposure to
the Internet as opposed to the simple credit monitoring tools
available today. Given the significant number of identity thefts,
security breaches, and privacy concerns, insurance of this
nature may be highly desirable. How would one model loss
here? After all, losses suffered can range from direct loss
of property to more intangible, yet very significant damage
resulting from lowered credit scores. Designing insurance
policies with ceilings on claim payments keeps us in familiar
territory mathematically, but also misses the point of why one
may want this sort of insurance. We therefore want a richer set
of candidate loss models that do not impose artificial ceilings
on loss.

But we will run into a fundamental roadblock here. Richness
of model classes is often quantified by metrics such as the
VC-dimension [1], the Rademacher complexity [2], [3], [4],
or the strong compression redundancy [5], [6], [7], [8], [9].
Typically, one looks for estimation algorithms with model-
agnostic guarantees based on the sample size—indeed this
is the uniform consistency dogma that underlies most for-
mulations of engineering applications today. But any such

guarantee on estimators on a model class depends on the
complexity metrics above—the more complex a class, the
worse the guarantees.

In fact, the insurance problem above and many applications
in the “big data” regime force us to consider model classes
that are too complex to admit estimators with reasonable
model-agnostic guarantees (or uniformly consistent estima-
tors). Instead the best we can often do is to have guarantees
dependent on not just the sample size but on the underlying
model in addition (pointwise consistent). This is not very
helpful either—our gauge of how well the estimator is doing
is dependent on the very quantity being estimated!

As in [10], we challenge the dichotomy of uniform and
pointwise consistency in the analysis of statistical estimators.
Neither uniform nor pointwise guarantees are particularly
suited to the big data problems we have in mind. The former
precludes the desired richness of model classes. While the
latter allows for rich model classes, it does not provide
practical guarantees that can be used in applications.

Instead, we consider a new paradigm positioned in between
these two extremes. This framework modifies the world of
pointwise consistent estimators—keeping as far as possible
the richness of model classes possible but ensuring that all
information needed about the unknown model to evaluate
estimator accuracy can be gleaned from the data. We call this
data-driven pointwise consistency.

To bring focus into the theoretical framework, we will for-
mulate and characterize this approach for weak compression
over countably infinite alphabets.

II. FORMULATION OF PROBLEM

Let P be a collection of distributions over the naturals
N = {1, 2, . . .}. Let P∞ be the measures induced over
infinite sequences of numbers from N by i.i.d. sampling from
distributions in P . P∞ is called strongly compressible if there
is a measure q satisfying

lim sup
n→∞

sup
p∈P∞

1
n
Ep log

p(Xn)
q(Xn)

= 0. (1)

We can allow for much richer classes if we work with a weaker
metric. P∞ is called weakly compressible if there exists a
measure q over infinite sequences of natural numbers such
that ∀p ∈ P∞

lim sup
n→∞

1
n
Ep log

p(Xn)
q(Xn)

= 0. (2)

Remark Note that both (1) and (2) are usually phrased
with encoders or distributions for length n sequences. How-
ever, since we will be concerned mainly with the limits, we



can use the simpler formulations as above. See [11] for a
formal explanation of why these formulations are completely
equivalent. 2

Throughout this paper, the class P∞ will be weakly com-
pressible but not necesssarily strongly so. The problem with
the weak formulation is that we know the measure q is a
good universal sequential encoding of the unknown p for
long enough sequences. But “long enough” depends on the
unknown p since the convergence to limit may not be uniform
in (2). Can we clarify this in (2) using the data generated?

Therefore, given any accuracy δ > 0 we ask for an
indicator function Φ : N∗ → {0, 1} that will clarify this point.
The function above observes a sequence in N∗, and decides
what sequence length is long enough that the normalized KL
divergence in (2) above is below δ, and in addition will remain
below δ for longer sequences.

From a notational point of view, we require Φ(xixi+1) ≥
Φ(xi)—namely, once Φ indicates that the length is “long
enough” that the normalized KL will remain below δ from
that point on, it cannot renege later. When Φ turns 1, we say
the scheme enters the compression game. Furthermore, we
require that for all p ∈ P∞,

p(Φ enters) = p(Xn : lim
n→∞

Φ(Xn) = 1) = 1.

Fix a universal measure q. Given δ > 0, Φ is δ-premature for
a source p ∈ P∞ and string xi1 if for some j ≤ i,

Φ(xj1) = 1 and
1
j
Ep log

p(Xj)
q(Xj)

> δ.

Note that given a measure p, the set of all strings on which
Φ is δ−premature can be identified with a prefix free set
corresponding to the first times the accuracy condition was
violated for the strings. The probability under p of Φ being
δ−premature is the probability of this prefix free set.

Definition 1. Given a weakly compressible class P∞ we
would like to find a universal measure q such that for any
accuracy δ > 0 and confidence η > 0, there is an indicator Φ
such that no matter what p ∈ P∞ is in force,

p(Φ is δ−premature) < η.

If possible, such a class is weakly compressible in the data
derived sense (d.w.c). 2

The operational justification for our formulation of d.w.c
classes of i.i.d. sources can be articulated as follows. Given
such a class, let q be any measure over infinite length se-
quences that verifies the definition, i.e. such that for every
δ > 0 and η > 0 there is some Φδ,η : N∗ 7→ {0, 1} for
which the probability under every p in the model class that
Φδ,η is δ-premature is less than η.

As we observe the realization of the i.i.d. data samples from
the (unknown) source p in the model class, we will eventually
see a string of some (random) length n = n(δ, η, p) (say xn1 )
such that Φδ,η(xn1 ) = 1. Now, even though we do not know
p, we get the guarantee (with confidence ≥ 1− η) that using
q to compress any subsequent length-n or longer sequence of

symbols in the usual way (i.e., − log q(xk) bits for a sequence
xk) incurs an expected per-symbol redundancy ≤ δ.

As an example, suppose P∞ is strongly compressible in
addition, namely there exists a measure q satisfying (1). For
all δ > 0, the sets

Nδ = {n : sup
p∈P∞

1
n
Ep log

p(Xn)
q(Xn)

> δ}

are finite. Suppose we set for any δ, Φ(xi) = 1 if i ≥ maxNδ
and 0 else, for all p ∈ P∞ that p(Φ is δ−premature) = 0.
Therefore, the more interesting case is when P∞ is weakly
compressible, but not strongly. Instead of restricting model
classes severely as strong compressibility does, data driven
weak compressibility does not depend on the entire class being
“simple”, but only requires that local neighborhoods be simple.

In this paper, we obtain a condition that is both necessary
and sufficient for an i.i.d. class P∞ to be data-driven weakly
compressible.
Remark This is similar to a formulation of a prediction
question in [10]. Suppose we have a collection P∞ of i.i.d.
measures, and samples X1, X2, . . . from an unknown p ∈ P∞.
Given a confidence η > 0, can we come up with a mapping
Φ : N∗ → R ∪∞ such that for all p,

p(Φ(Xi) < Xi+1) < η

and Φ is finite eventually almost surely? If so, we say P∞ is
insurable, see [10] for details. 2

III. NECESSARY AND SUFFICIENT CONDITIONS FOR d.w.c

Very complex local neighborhoods kill d.w.c. An indicator
scheme could be “deceived” by some process p ∈ P∞ into
certifying accuracy, while a close enough distribution lurks
with very bad performance. Note that since P∞ are i.i.d., the
sources therein can be identified without confusion using their
single letter marginals as well.

For any two measures p and q, we let

Dn(p||q) def= Ep(Xn) log
p(Xn)
q(Xn)

,

the KL divergence between the distributions induced over
length n sequences by p and q respectively. Furthermore, for
measures p and q,

J (p, q) = D1

(
p||p+ q

2

)
+D1

(
q||p+ q

2

)
,

where in the above, the KL divergences are taken between the
single letter distributions corresponding to p and q.

An ε−neighborhood of p ∈ P∞ is the set B(p, ε) of all
sources p′ ∈ P∞ such that J (p, p′) < ε.

A. Deceptive measures

Roughly speaking, p ∈ P∞ is deceptive if the strong
redundancy of neighborhoods of p is bounded away from 0 in
the limit as the neighborhood shrinks to 0. More precisely,

lim
ε→0

inf
q

lim sup
n→∞

sup
p′∈B(p,ε)

1
n
Dn(p′||q) > 0.



For example, consider the class of all monotone sources over
N (all sources such that the probability of i ≥ that of i+ 1).
It is easy to see that the distribution that assigns probability 1
to 1 is deceptive, and in the same way that all sources in the
collection are deceptive.

Lemma 1. If p ∈ P∞ is not deceptive, then there is a
measure q∗ such that

lim
ε→0

lim sup
n→∞

sup
p′∈B(p,ε)

1
n
Dn(p′||q∗) = 0.

Proof Consider the sequence of neigborhoods B(p, 1/m).
Because p is not deceptive, we can find a sequence of measures
qm such that

lim sup
n→∞

sup
p′∈B(p,1/m)

1
n
Dn(p′||qm) ≤ δm +

1
m
,

where limm→∞ δm → 0. The lemma is satisfied by the
measure that assigns probability to any sequence x

q∗(x) =
∑
m≥1

qm(x)
m(m+ 1)

. 2

B. Main result

Our main result relates deceptive measures to d.w.c.

Theorem 2. P∞ is d.w.c iff no p ∈ P∞ is deceptive. 2

Remark We prove that P∞ is insurable iff some neigh-
borhood (as defined here) of every p ∈ P∞ is tight. 2

From Lemma 8, we therefore obtain

Corollary 3. If P∞ is d.w.c, then P∞ is insurable. 2

IV. NECESSARY PART

This side of the characterization follows very naturally from
the definition of deceptive measures.

Theorem 4. P∞ is d.w.c only if no p ∈ P∞ is deceptive.
Proof We prove the contrapositive of the statement above.
Namely we show that if some p ∈ P∞ is deceptive, then
∃η > 0 and δ > 0 such that ∀ indicator schemes Φ, there is
some p′ ∈ P∞ such that p′(Φ is δ−premature) > η.

To pick η, choose any α > 0, and pick η = 1− α. Since p
is deceptive, we can pick a δ that is > 0 and

< lim
ε→0

lim sup
n→∞

sup
p′∈B(p,ε)

1
n
Dn(p′||q).

The rest of the proof applies for all measures q and all indicator
schemes Φ. For all n ≥ 1, let

Rn
def= {xn : Φ(xn) = 1}

be the set of sequences of length n on which Φ has entered
and let N ≥ 4/α be a number such that p(RN ) > 1− α/2.

Set1 ε = 1
16(ln 2)N8 . Applying Lemma 7 to distributions over

length-N sequences induced by p and any p̃ ∈ P∞ such that

1Please note that in the interest of simplicity, we have not attempted to
provide the best scaling for ε or the tightest possible bounds in arguments
below

J (p, p̃) ≤ ε, we have

p̃(RN ) ≥ 1− α/2− 2
N
≥ 1− α. (3)

Note that
inf
q

lim sup
n→∞

sup
p′∈B(p,ε)

1
n
Dn(p′||q)

is non-increasing with ε, and that the limit as ε → 0 is > δ.
Therefore, we can choose n > N and p̃ ∈ B(p, ε) such that

p̃(Rn) ≥ 1− α and
1
n
Dn(p̃||q) > δ.

This in turn means for the choice of η and δ above,
p̃(Φ is δ−premature ) > η. Because Φ and q were arbitrary,
the theorem follows. 2

V. SUFFICIENT PART

When no p ∈ P∞ is deceptive, we construct a measure q
such that given any confidence η > 0 and accuracy δ, there
is a indicator scheme Φ that is δ−premature with probability
≤ η.

From Lemma 1, if no p ∈ P∞ is deceptive, there is for
each p ∈ P∞ a neighborhood B(p, ε

p
) such that

lim sup
n→∞

sup
p′∈B(p,εp )

1
n
Dn(p′||q∗) < δ.

We pick such a neighborhood B(p, ε
p
) for each p ∈ P and

call it the reach of p. The reach of p will play the role of the
set of measures in P∞ for which it will be okay to eventually
set indicators assuming p is in force.

A. Topology of P with the `1 metric

To prove that P∞ is d.w.c if no measure is deceptive, we
will need to find a way to cover P with countably many sets
of the form B(p, ε

p
) above. Unfortunately, J (p, q) is not a

metric, so it is not immediately clear how to go about doing
this. On the other hand note that J (p′, p) ≤ |p − p′|1/ ln 2,
where |p − p′|1 denotes the `1 distance between the single
letter marginals of p and p′ (see Lemma 6 in the Appendix).
Therefore, we can instead bootstrap off an understanding of
the topology induced on P by the `1 metric.

The topology induced on P by the `1 metric is Lindelöf,
i.e. any covering of P with open sets in the `1 topology has
a countable subcover (see [12, Defn. 6.4] for definitions and
properties of Lindelöf topological spaces). See [10] for the
proof of why P is Lindelöf.

B. Sufficient condition

We now have the machinery required to prove that if no
p ∈ P∞ is deceptive, then P∞ is d.w.c.

Theorem 5. If no p ∈ P is deceptive, then P∞ is d.w.c.
Proof The proof is constructive. For any confidence 0 < η <
1 and accuracy δ, we obtain an indicator scheme Φ such that
for all p ∈ P∞,

p(Φ is δ−premature ) < η.



Wherever we use `1 distances |p− τ |1, it will be understood
that we mean the one dimensional marginals of the measures
p and τ respectively.

For p ∈ P , define the following set

Qp =
{
τ : |p− τ |1 <

εp
2(ln 2)2

16

}
,

where εp is the reach of p, and τ above is any distribution
over N (not necessarily in P). We will call Qp as the zone of
p. The set Qp is non-empty when εp > 0.

For large enough n, the set of sequences of length n with
empirical distribution in Qp will ensure that the indicator
scheme Φ to be proposed enters with probability 1 when
p is in force. Note that if εp > 0 is small enough then
Qp ∩ P ⊂ B(p, ε

p
)—we will assume wolog that εp > 0 is

always taken so that Qp ∩ P ⊂ B(p, ε
p
).

Since no p ∈ P is deceptive, none of the zones Qp are
empty and the space P of distributions can be covered by the
sets Qp ∩ P , namely

P = ∪p∈P(Qp ∩ P).

From Section V-A, we know that P is Lindelöf under the `1
topology. Thus, there is a countable set P̃ ⊆ P , such that P
is covered by the collection of relatively open sets

{Qp̃ ∩ P : p̃ ∈ P̃}.

We let the above collection be denoted by QP̃ . We will refer to
P̃ as the quantization of P and to elements of P̃ as centroids
of the quantization, borrowing from commonly used literature
in classification.

We index the countable set of centroids, P̃ (and reuse the
index for the corresponding elements of QP̃ ) by ι : P̃ → N.

a) Description of q∗: For each p̃ ∈ P̃ , from Lemma 1
we have a measure q̃ such that

lim sup
n→∞

sup
p′∈B(p̃,ε

p̃
)

1
n
Dn(p′||q̃) < δ.

Let ι(q̃) be the label assigned to the corresponding p̃ in the
above enumeration of P̃ . Then for all sequences x

q∗(x) =
∑
q̃

q̃(x)
ι(q̃)(ι(q̃) + 1)

Observe again from Lemma 1 and the above quantization that
for all p ∈ P∞,

lim sup
n→∞

1
n
Dn(p||q∗) < δ.

Moreover for all p̃ ∈ P̃ ,

lim sup
n→∞

sup
p′∈B(p̃,ε

p̃
)

1
n
Dn(p||q∗) < δ. (4)

We now construct the indicator scheme Φ having the
property that for all p ∈ P∞,

p(Φ is δ−premature ) < η.

b) Preliminaries: Consider a length-n sequence xn on
which Φ has not entered thus far. Let the empirical distribution
of the sequence be q, and let

P ′τ := {p′ ∈ P̃ : τ ∈ Qp′}

be the set of centroids in the quantization of P (elements of
P̃) which can potentially capture τ . Note that τ in general
need not belong to P̃ or P .

If P ′τ 6= ∅, we will further refine the set of distributions
that could capture τ further to Pτ ⊂ P ′τ as described
below. Refining P ′τ to Pτ ensures that models in P ′τ do not
δ−prematurely capture sequences.

Let p be the model in force, which remains unknown. The
idea is that we want sequences generated by (unknown) p to
be captured by those centroids of the quantization P̃ that have
p in their reach. We will require (5) below to ensure that the
probability (under the unknown p) of all sequences that may
get captured by centroids p′ ∈ Pτ not having p in its reach
remains small. In addition, we impose (6) as well to resolve
a technical issue since τ need not, in general, belong to P .

For p′ ∈ P ′τ , let the reach of p′ be ε
p′ , and define

D
p′ :=

εp′
4(ln 2)4

256
.

In case the underlying distribution p happens to be out of the
reach of p′ (wrong capture), the quantity D

p′ will later lower
bound the distance of the empirical τ in question from the
underlying p.

Specifically, we place p′ in Pτ if n satisfies

exp
(
−nD

p′/18
)
≤ η

2C(p′)ι(p′)2n(n+ 1)
, (5)

and
2F−1

τ (1−
√
D
p′/6) ≤ logC(p′), (6)

where for any 0 < γ < 1, F−1
τ (1− γ) is the 1− γ percentile

of τ as defined in [10]. where C(p′) is

C(p′) := 2
2

„
supr∈B(p′,ε

p′
)F
−1
r (1−

q
D
p′
/6)

«
.

Note that C(p′) is finite from Lemma 8 and because p′ is not
deceptive. See [10] for why the above equations look this way.

c) Description of Φ: For the sequence xm with type τ , if
Pτ = ∅ the scheme does not enter yet. If Pτ 6= ∅, let pτ denote
the distribution in Pτ with the smallest index. All sequences
with prefix xm are then said to be trapped by pτ .

From (4),

lim sup
n→∞

sup
p′∈B(pq,εpq )

1
n
Dn(p||q∗) < δ,

therefore the set

N
pτ

= {n : sup
p′∈B(pq,εpq )

1
n
Dn(p||q∗) ≥ δ}

is finite. If m ≥ maxN
pτ

, we set Φ(xm) = 1, 0 else.



d) Φ enters with probability 1: First, we verify that
the scheme is trapped with probability 1, no matter what
distribution p ∈ P is in force. From the previous paragraph,
this also means that Φ enters with probability 1.

To see that the scheme is trapped with probability 1 no
matter which p ∈ P is in force, please see an identical
argument in [10].

e) Probability Φ δ−premature ≤ η: We now analyze the
scheme. Consider any p ∈ P . Among sequences on which Φ
has entered, we will distinguish between those that are in good
traps and those in bad traps. If a sequence xn is trapped by
p′ such that p ∈ B(p′, ε

p′ ), p′ is a good trap. Conversely, if
p /∈ B(p′, ε

p′ ), p′ is a bad trap.
(Good traps) Suppose a length-n sequence xn is in a good

trap, namely, it is trapped by a distribution p′ such that p ∈
B(p′, ε

p′ ). In this case, we therefore have

p(Φ is δ−premature) = 0.

(Bad traps) We can show that the probability with which
sequences generated by p fall into bad traps ≤ η using an
argument identical to [10]. Pessimistically, we assume that Φ
is δ−premature on every sequence that falls into a bad trap.
The theorem follows. 2

APPENDIX

The proofs of all these Lemmas can be found in [10]

Lemma 6. Let p and q be probability distributions on N.
Then

1
4 ln 2

|p− q|21 ≤ J (p, q) ≤ 1
ln 2
|p− q|1 .

If, in addition, r is a probability distribution on N, then

J (p, q) + J (q, r) ≥ J 2(p, r)
ln 2
8
. 2

Lemma 7. Let p and q be probability distributions on
a countable set A with J (p, q) ≤ ε. Let pN and qN be
distributions over AN obtained by i.i.d. sampling from p and q
respectively (the distribution induced by the product measure).
For any RN ⊂ AN and α > 0, if pN (RN ) ≥ 1− α, then

qN (RN ) ≥ 1− α− 2N3
√

4ε ln 2− 1
N
. 2

Lemma 8. If a class P∞ has bounded strong redundancy,
then for any γ > 0

sup
p∈P

F−1
p (1− γ) <∞.

Proof Note that since P∞ has bounded strong redundancy,
it follows that there is a distribution q over N such that

sup
p∈P

D(p||q) <∞,

and we define R = supp∈P D(p||q). It follows that for all
p ∈ P and any m,

p(
∣∣∣∣log

p(X)
q(X)

∣∣∣∣ > m) ≤ (R+ (2 log e)/e)/m,

To see the above, note that if S is the set of all numbers such
that p(x) < q(x), a well-known convexity argument shows
that ∑

x

p(x) log
p(x)
q(x)

≥ p(S) log
p(S)
q(S)

≥ − log e
e

.

We prove the lemma by contradiction. Pick m so large that
(R+ (2 log e)/e)/m < γ/2. For all p, we show that

p
(
x : x ≥ F−1

q (1− γ/2m+1)
)
≤ γ.

To see the above, observe that we can split the tail x ≥
F−1
q (1 − γ/2m+1) into two parts—(i) numbers x such that

log p(x)
q(x) > m. This set has probability < γ/2 under p.

(ii) remaining numbers x such that log p(x)
q(x) < m. This set

has probability ≤ γ/2m+1 under q, and therefore probability
≤ γ/2 under p. The lemma follows. 2
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