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Abstract—Information theory traditionally deals with the
problem of transmitting sequences over a communication chan-
nel and find the maximum number of messages that transmitter
can send so that the receiver recovers these messages with
arbitrarily small probability of error. However, databases of
various sorts have come into existence in recent years that
require to transmit new sources of data (e.g., graphs and sets)
over communication channels. In this paper, we investigate a
communication model where we need to transmit an Erdős-
Rényi graph to a destination over a Binary Symmetric Channel
(BSC). We find the capacity of such a channel, called Structural
Binary Symmetric Channel (SBSC), to be C = 1− h(ǫ) where
ǫ is the error bit rate and h(ǫ) is the binary entropy.

I. INTRODUCTION

In 2003 Brooks [2] observed that there is no information

theory that gives us a metric for information embodied in

structure. Such investigations should be of particular interest

to biology as recently opined by P. Nurse [8] (e.g., in

biology information is often coded in structure, for example

of a protein). Nurse argued that focusing on information

flow will help to understand better how cells and organisms

work. This opens unbounded opportunities for information

theory to extend its scope beyond its original goals, that of

communication and storage. We suggest [3], [10] to broaden

information theory to study finite size data structures (e.g.,

graphs, sets, social networks), that is, to develop information

theory of data structures beyond first-order asymptotics. In

Fig. 1. Effect of BSC Channel on Graphs

particular, in [3] as the first step in understanding structural

information, we explore structures on graphs, specifically, we

study unlabeled graphs (or structures) and defined structural

entropy characterizing graph compression.

In this paper, we move one step further and investigate

how much structural information can be recovered when

a structure (unlabeled graph) is transmitted over a noisy

channel, as shown in Figure 1. Observe that – due to graph

symmetry – an unlabeled graph transmitted over a noisy

channel can have the same structure on the receiving side

even if errors occur, as illustrated in the next example.

Example. Let us consider a graph on four vertices G1 =
{A,B,C,D} presented on the left-side of Figure 2. On the

Fig. 2. Two identical unlabeled graphs

right-hand side we draw graph G2 on the same set of vertices

with labels A and B switched. Thus both graphs have the

same structure (i.e., the same unlabeled graph). Observe that

the adjacency matrices of these two graphs are quite different.

In fact, we can obtain graph G2 as an output of a binary

symmetric channel with input G1 and the following error

matrix:
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Thus a natural question arises: how much “structural infor-

mation” can be reliably transmitted over a noisy channel?

More precisely, here we analyze a communication system

presented in Figure 3. Input messages consist of (unlabeled)

Erdős-Rényi graphs G(n, p) (i.e., structures S) over n vertices

in which edges are added independently and randomly with

probability p. These input graphs are encoded as adjacency

matrices (sequences of length
(

n
2

)

) by a graph encoder. Adja-

cency matrices are transmitted through a Binary Symmetric

Channel (BSC) bit by bit. The graph decoder decodes the

received matrices (sequences), then forms the estimation of

the transmitted structure. We assume that the graph decoder

knows the number of vertices of the transmitted graphs,

hence the received graphs are random graphs over n vertices.

Observe that some edges of the transmitted graphs can be

deleted or added, therefore the transmitted and received

graphs may differ even if they unlabeled graphs – or struc-

tures – are indistinguishable. We shall see that the received

graphs G′ are still Erdős-Rényi graphs. In short, in our setting

an unlabeled transmitted graph is correctly decoded if the



Fig. 3. Model of Graph Transmission over BSC Channel

transmitted and received graphs have the same structure (i.e.,

adjacency matrix). We call such a system the Structural

Binary Symmetric Channel (SBSC), and study its capacity.

The main result of this paper is presented next.

Theorem 1: Capacity of the structural Binary Symmetric

Channel SBSC(ǫ) is

C = 1− h(ǫ)

where ǫ is the error bit rate and h(ǫ) = −ǫ log ǫ − (1 −
ǫ) log(1− ǫ) is the binary entropy.

The literature on structural compression (entropy) and

transmission of structures over noisy channel is quite limited.

In 1984, Turan [11] raised the question of finding an efficient

coding method for general unlabeled graphs on n vertices,

suggesting a lower bound of
(

n

2

)

− n logn + O(n) bits. In

1990, Naor [7] proposed such a representation that is optimal

up to the first two leading terms when all unlabeled graphs

are equally likely. Naor’s result is asymptotically a special

case of ours when p = 1/2. Finally, in a recent paper

Kieffer et al. [6] presented a structural complexity of a binary

tree. The structural entropy was introduced in [3] where the

first provable (asymptotically) optimal graph compressor for

Erdős-Rényi graph models was presented. To the best of our

knowledge structural binary symmetric channels were not

discussed in open literature.

II. STRUCTURAL ENTROPY AND MUTUAL INFORMATION

Given n distinguishable vertices, a random graph is gener-

ated by adding edges randomly according to some distribu-

tion. Such a random graph model G produces a probability

distribution on graphs, and the graph entropy H(G) is defined

naturally as

H(G) = E[− logP (G)] = −
∑

G∈G

P (G) logP (G)

where P (G) is the probability of a graph G. In [3], the

authors introduced a random structure model S for the

unlabeled version of a random graph model G. In such a

model, graphs are generated in the same manner as in G,

but they are thought of as unlabeled graphs. That is, the

vertices are indistinguishable, and the graphs having ”the

same structure” are considered to be the same even if their

labeled versions are different. Thus, we shall use the terms

unlabeled graphs and structures interchangeably.

The probability of S can be computed as

P (S) =
∑

G∼=S,G∈G

P (G) = M(S)P (G) (1)

where G ∼= S means that G and S have the same structure

(i.e., they are isomorphic), and M(S) denotes the number of

labeled graphs having common structure S. It is well known

that

M(S) =
n!

|Aut(S)|

where Aut(S) denotes automorphism of graph G such that

G ∼= S (so we also write Aut(G)). We recall that an

automorphism of a graph G is an adjacency preserving

permutation of the vertices of G. The structural entropy

H(S) of a random graph G is then defined as [3]

H(S) = E[− logP (S)] = −
∑

S∈G

P (S) logP (S)

where the summation is over all distinct structures.

In this paper, we introduce the structural mutual informa-

tion. When one transmits a sequence of structures (unlabeled

graphs) over a communication channel (e.g. SBSC channel),

then the received sequence represents structures of some

unlabeled graphs. The structural mutual information between

the transmitted structure S and received structure S′ is then

defined as

I(S;S′) = E

[

log
P (S, S′)

P (S)P (S′)

]

.

In order to estimate the mutual information, and ultimately

the capacity of the structural BSC, we need to specify the

input. We shall assume that we transmit structures or unla-

beled Erdős-Rényi graphs defined as follows. In the Erdős-

Rényi random graph model G(n, p), graphs are generated

randomly on n vertices with edges chosen independently with

probability 0 < p < 1. If a graph G in G(n, p) has k edges,

then P (G) = pk(1 − p)(
n

2
)−k. Let S(n, p) be the random

structure model (unlabeled graphs) corresponding to G(n, p).
Then, by (1) the probability of a structure S (unlabeled

version of S becomes P (S) = M(S) · pk(1− p)(
n

2)−k.

III. PRELIMINARY RESULTS

In this section we list some properties of the received

structures over SBSC. In particular, we show that such

a structure is still a random Erdős-Rényi graph. We also

estimate the structural entropy and the conditional entropy.

Lemma 1: Let G ∈ G(n, p) be transmitted over a BSC(ǫ)
channel and G′ be the received graph. Then

(i) G′ ∈ G′(n, p ∗ ǫ), where p ∗ ǫ := p(1− ǫ) + ǫ ∗ (1− p).
(ii) G′ = G⊕Z where Z ∈ G(n, ǫ), where ⊕ is the modulo-2

addition of the corresponding adjacency matrices.



(iii) The conditional probability P (G′|G) = P (Z), where

Z = Z1Z2...Zm are m =
(

n

2

)

independent Bernoulli random

variables with parameter ǫ.
(iv) The conditional entropy is

H(G′|G) =

(

n

2

)

h(ǫ).

Proof: We first prove (i). Assume U is an edge of the

transmitted graph G ∈ G(n, p) and V is the corresponding

edge of the received graph G′. Then

P (V = 1) = P (V = 1|U = 0)P (U = 0)+

P (V = 1|U = 1)P (U = 1) = ǫ(1− p) + (1− ǫ)p := p ∗ ǫ.

Every edge of the received graph appears with the probability

p ∗ ǫ, therefore the entire received graph is an Erdős-Rényi

graph G′(n, p ∗ ǫ).
For part (ii) we observe that since each graph G ∈ G(n, p)

is composed of m =
(

n

2

)

edges, we need m =
(

n

2

)

transmissions to send the entire graph through the BSC(ǫ)
channel. Each edge is subject to noise resulting in adding

Bernoulli random variables Zi to the corresponding edge

(binary bit representing the edge in the adjacency matrix),

where P (Zi = 1) = ǫ and P (Zi = 0) = 1 − ǫ. This can be

viewed as adding an Erdős-Rényi (noise) graph Z ∈ G(n, ǫ)
to the transmitted G ∈ G(n, p) graph. Therefore, G′ = G⊕Z
where G ∈ G(n, p), G′ ∈ G(n, p ∗ ǫ), and Z ∈ G(n, ǫ).

For (iii) observe that the transmitted graph instance G ∈
G(n, p) can be considered as a binary sequence X =
(X1, X2, ..., Xm) of length m =

(

n

2

)

. Similarly, the received

graph instance G′ ∈ G′(n, p ∗ ǫ) can be viewed as a binary

sequence Y = (Y1, Y2, ..., Ym). Therefore, we have:

P (G′|G) = P (Ym
1 |Xm

1 )
(a)
=

m
∏

k=1

P (Yk|Xk)

(b)
=

m
∏

k=1

P (Z = Zk)
(c)
= P (Z1Z2...Zm).

Here (a) follows form the memoryless property of the BSC

channel, (b) follows from (ii) since Yk = Xk ⊕ Zk; and (c)

follows from properties of the BSC channel.

For part (iv), we notice that from (iii), we know that

H(G′|G) = E[− logP (Z)] = E[− logP (Z1Z2....Zm)]

=

m
∑

k=1

E[− logP (Zk)] =

m
∑

k=1

H(Zk)

since Z1, Z2, ..., Zm are independent. On the other hand,

since Zk ∼ Bern(ǫ) for all k = 1, 2, ...,m, hence H(Zk) =
h(ǫ), where h(ǫ) = −ǫ log ǫ−(1−ǫ) log(1−ǫ) is the entropy

rate of memoryless binary source. Finally,

H(G′|G) =

(

n

2

)

h(ǫ)

for any fixed transmitted graph G ∈ G(n, p).
In the next lemma we present properties of the received

structures over a noisy channel.

Lemma 2: Under the same assumptions as in Lemma 1:

(i) Let {G1, G2, ..., GM(S)} be the set of all distinct labeled

graphs of G(n, p) with structure S, and {G′
1, G

′
2, ..., G

′
M(S′)}

be the set of all labeled graphs of G′(n, p ∗ ǫ) with structure

S′. Then for every k the set

{Gk ⊕G′
1, Gk ⊕G′

2, ..., Gk ⊕G′
M(S′)}

for k ∈ {1, 2, ...,M(S)} a is vertex-permutation of

{G1 ⊕G′
1, G1 ⊕G′

2, ..., G1 ⊕G′
M(S′)}.

(ii) Furthermore,

P (S′|S) =

M(S′)
∑

l=1

P (G′
l|G1)

where G1 is a graph with structure S, and

{G′
1, G

′
2, ..., G

′
M(S′)} is the set of graphs with structure S′.

(iii) The conditional entropy H(S′|S) satisfies

H(S′|S) ≥ logn!−
∑

S′∈G′

log |Aut(S′)|P (S′) +

(

n

2

)

h(ǫ).

Proof: We start with part (i). For any k ∈
{1, 2, ...,M(S)} since Gk and G1 have the same structure,

there exists a vertex-permutation πk such that πk(G1) = Gk.

Therefore, we have

{Gk ⊕G′
1, Gk ⊕G′

2, ..., Gk ⊕G′
M(S′)}

= {πk(G1)⊕G′
1, πk(G1)⊕G′

2, ..., πk(G1)⊕G′
M(S′)}

= {πk(G1 ⊕ π−1
k (G′

1)), ..., πk(G1 ⊕ π−1
k (G′

M(S′))}

where π−1 denotes the inverse vertex permutation of π.

Observe that since {G′
1, G

′
2, ..., G

′
M(S′)} is the set of all

different labeled graphs of G′(n, p∗ǫ) with structure S′, there-

fore {π−1
k (G′

1), π
−1
k (G′

2), ..., π
−1
k (G′

M(S′))} is the same set

as {G′
1, G

′
2, ..., G

′
M(S′)} although the later is a permutation

of the former. This also means that

{πk(G1 ⊕ π−1
k (G′

1)), ..., πk(G1 ⊕ π−1
k (G′

M(S′))}

is a permutation of

πk(G1 ⊕G′
1), πk(G1 ⊕G′

2), ..., πk(G1 ⊕G′
M(S′))}.

Therefore, {Gk⊕G′
1, Gk⊕G′

2, ..., Gk⊕G′
M(S′)} is a vertex-

permutation of {G1⊕G′
1, G1⊕G′

2, ..., G1⊕G′
M(S′)} for any

k ∈ {1, 2, ...,M(S)}.

Now we look at part (ii). Observe that

P (S, S′) =

M(S)
∑

k=1

M(S′)
∑

l=1

P (Gk, G
′
l)

=

M(S)
∑

k=1

P (Gk)

M(S′)
∑

l=1

P (G′
l|Gk).

Since G1, G2, ..., GM(S) have the same structure S,

P (G1) = P (G2) = ... = P (GM(S)). Therefore, we obtain

P (S, S′) = P (G1)

M(S)
∑

k=1

M(S′)
∑

l=1

P (G′
l|Gk) (2)



On the other hand, from part (i), we know that {Gk ⊕
G′

1, Gk ⊕ G′
2, ..., Gk ⊕ G′

M(S′)} are vertex-permutations

of {G1 ⊕ G′
1, G1 ⊕ G′

2, ..., G1 ⊕ G′
M(S′)} for any k ∈

{1, 2, ...,M(S)}. Therefore, for any k ∈ {1, 2, ...,M(S)}
we must have for all 1 ≤ i ≤ M(S′)

P (G′
i|Gk) = P (Z = Gk ⊕G′

i) =

(a)
= P (Z = πk(G1⊕G′

i))
(b)
= P (Z = G1⊕G′

i)) = P (G′
i|G1)

where Z ∈ G′(n, p ∗ ǫ). Here, (a) is a direct consequence

of (i), and (b) follows from the fact that any pair of graph

instances of the Erdős-Rényi noise graph G(n, ǫ), say G1+G′
l

and πk(G1 + G′
l) for any l ∈ {1, 2, ...,M(S′)} (which are

vertex-permutations of each other) have the same probability.

This means that for any k ∈ {1, 2, ...,M(S)}, we have

M(S′)
∑

l=1

P (G′
l|Gk) =

M(S′)
∑

l=1

P (G′
l|G1). (3)

From (2) and (3), we obtain

P (S, S′) = P (S)

M(S′)
∑

l=1

P (G′
l|G1)

since P (S) = P (G1)M(S). Hence,

P (S′|S) =

M(S′)
∑

l=1

P (G′
l|G1). (4)

For part (iii) we need to establish a bound on the condi-

tional entropy H(S′|S). For this we first consider the convex

function f(x) = x log x for x > 0. Applying Jensen’s

inequality, we have

f

(

∑M(S′)
k=1 P (G′

k|G1)

M(S′)

)

≤
1

M(S′)

M(S′)
∑

k=1

f(P (G′
k|G1).

Hence, by (4)

f

(

P (S′|S)

M(S′)

)

≤
1

M(S′)

M(S′)
∑

k=1

f(P (G′
k|G1).

Thus
P (S′|S)

M(S′)
log

(

P (S′|S)

M(S′)

)

≤
1

M(S′)

M(S′)
∑

k=1

P (G′
k|G1) logP (G′

k|G1)

or

P (S′|S) log

(

P (S′|S)

M(S′)

)

≤

M(S′)
∑

k=1

P (G′
k|G1) logP (G′

k|G1).

Therefore,

−
∑

S′∈G′

M(S′)
∑

k=1

P (G′
k|G1) logP (G′

k|G1)

≤ −
∑

S′∈G′

P (S′|S) log

(

P (S′|S)

M(S′)

)

. (5)

By Lemma 2 (iii)

−
∑

S′∈G′

M(S′)
∑

k=1

P (G′
k|G1) logP (G′

k|G1)

=
∑

G′∈G′

−P (G′|G1) logP (G′|G1) = H(G′|G1) =

(

n

2

)

h(ǫ).

Therefore, from (5), we obtain
(

n

2

)

h(ǫ) ≤ −
∑

S′∈G′

P (S′|S) log

(

P (S′|S)

M(S′)

)

= −
∑

S′∈G′

P (S′|S) logP (S′|S) +
∑

S′∈G′

P (S′|S) logM(S′)

for any fixed structure S. This further leads to

∑

S∈G

(

n

2

)

h(ǫ)P (S) ≤ −
∑

S∈G

∑

S′∈G′

P (S′|S) logP (S′|S)P (S)

+
∑

S∈G

∑

S′∈G′

P (S′|S) logM(S′)P (S)

= −
∑

S∈G

∑

S′∈G′

logP (S′|S)P (S, S′)

+
∑

S′∈G′

logM(S′)
∑

S∈G

P (S, S′)

= H(S′|S) +
∑

S′∈G′

logM(S′)P (S′).

In conclusion
(

n

2

)

h(ǫ) ≤ H(S′|S) +
∑

S′∈G′

logM(S′)P (S′). (6)

Since M(S′) =
n!

Aut(S′)
, from (6) we obtain

(

n

2

)

h(ǫ) ≤ H(S′|S) + logn!−
∑

S′∈G′

log |Aut(S′)|P (S′)

leading to

H(S′|S) ≥ − logn!+
∑

S′∈G′

log |Aut(S′)|P (S′)+

(

n

2

)

h(ǫ).

This completes the proof of (iii).

IV. PROOF OF THEOREM 1

We are now ready to prove our main result, namely

Theorem 1. We first establish an upper bound, and then derive

the corresponding lower bound.

Theorem 2: The capacity of structural Binary Symmetric

Channel BSC(ǫ) satisfies

C ≤ 1− h(ǫ).

Proof: Our goal is to estimate the mutual information

I(S;S′) = H(S′) − H(S′|S). We start with calculating

H(S′) of S′ ∈ G′(n, p ∗ ǫ). Observe that

P (S′) =
∑

G′∼=S′,G′∈G

P (G′) = M(S′)P (G′) (7)



where M(S′) = n!/|Aut(S′)| is the number of different

labeled graphs that have the same structure as S′. Therefore,

the structural entropy H(S′) of the random graph G′(n, p∗ǫ)
can be expressed as

H(S′) = E[− logP (S′)] = −
∑

S′∈G′

P (S′) logP (S′)

= −
∑

S′∈G′

P (S′) logM(S′)P (G′)

=
∑

S′∈G′

P (S′) log |Aut(S′)| −
∑

S′∈G′

P (S′) logn!

−
∑

S′∈G′

P (S′) logP (G′) = − logn!+

+
∑

S′∈G′

P (S′) log |Aut(S′)| −
∑

G′∈G′

P (G′) logP (G′)

= − logn! +
∑

S′∈G′

P (S′) log |Aut(S′)|+H(G′). (8)

Note that

H(G′) = −mE[logP (X1)] =

(

n

2

)

h(p ∗ ǫ)

where m =
(

n
2

)

edges. Thus

H(S′) = − logn!+
∑

S′∈G′

P (S′) log |Aut(S′)|+

(

n

2

)

h(p∗ǫ).

On the other hand, from Lemma 2 (iii)

H(S′|S) ≥ − logn!+
∑

S′∈G′

log |Aut(S′)|P (S′)+

(

n

2

)

h(ǫ).

Therefore, combining it with the fact that I(S;S′) =
H(S′)−H(S′|S), we have

I(S;S′) ≤

(

n

2

)

[h(p ∗ ǫ)− h(ǫ)] .

In summary

C = lim
n→∞

1
(

n

2

) max
0≤p≤1

I(S;S′) ≤ 1− h(ǫ)

which is the desired upper bound.

Now we establish the corresponding lower bound.

Theorem 3: The capacity of structural Binary Symmetric

Channel BSC(ǫ) satisfies

C ≥ 1− h(ǫ).

Proof: Observe that the capacity of the labeled graph

transmission over a BSC(ǫ) channel is

CL = lim
n→∞

max
0≤p≤1

1
(

n

2

)I(G;G′).

To compute the mutual information I(G;G′) = H(G′) −
H(G′|G), we first observe that by Lemma 1 (iv)

H(G′|G) =

(

n

2

)

h(ǫ). (9)

Moreover, when G is an Erdős-Rényi graph G(n, p), then G′

is an Erdős-Rényi graph G(n, p ∗ ǫ). Therefore, by (11) we

have

H(G′) =

(

n

2

)

h(p ∗ ǫ). (10)

Thus

I(G;G′) =

(

n

2

)

[h(p ∗ ǫ)− h(ǫ)].

Clearly,

lim
n→∞

max
0≤p≤1

1
(

n

2

)I(G;G′) = max
0≤p≤1

h(p ∗ ǫ)− h(ǫ)

hence CL = 1−h(ǫ). This means that we can transmit labeled

graphs up to the rate CL = 1−h(ǫ) per channel transmission

with the average error probability

P
(n)
1 (e) = P (G′ 6= G) → 0.

Now, re-consider the transmission model in Figure 1, i.e.,

S → G → G′ → S′. (11)

In this model (i.e., SBSC), it is clear that we can transmit

structures at the same transmission rates as labeled graph

case by performing the process (11) since the average error

probability in this case satisfies

0 ≤ P
(n)
2 (e) = P (S′ 6= S) ≤ P (G′ 6= G) = P

(n)
1 (e) → 0

since S′ 6= S implies G′ 6= G. Hence, P
(n)
2 (e) → 0.

Consequently, C ≥ CL = 1− h(ǫ).
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