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Abstract—We propose a classification test to discriminate
Markov sources [19] based on the joint string complexity. String
complexity is defined as the cardinality of a set of all distinct
words (factors) of a given string. For two strings, we define
joint string complexity as the set of words that are common
to both strings. In this paper we analyze the average joint
complexity when both strings are generated by a Markov source
and provide fast converging asymptotic expansions. We also
present some experimental results showing its usefulness to texts
discrimination.

I. INTRODUCTION

In the last decades, several attempts have been made to
capture mathematically the concept of “complexity” of a
sequence, i.e. the number of different factors contained in a
sequence. In other words, if X is a sequence and I(X) its set
of factors (distinct subwords), then the cardinality |I(X)| is the
complexity of the sequence. For example, if X = aabaa then
I(X) = {ν, a, b, aa, ab, aba, aab, abaa, aabaa} and |I(X)| =
9 (ν denotes the empty string). Sometimes the sequence
complexity is called the I-complexity of the sequence [5]. The
notion is connected with quite deep mathematical properties,
including the rather elusive concept of randomness in a string
(see e.g., [3], [13], [14]).

In general, information contained in a string cannot be
measured in absolute and a reference string is required. To
this end we introduced in [4] the concept of joint complexity,
or J-complexity, of two strings. The J-complexity is the
number of different factors common to two sequences. In other
words the J complexity of sequence X and Y is equal to
J(X,Y ) = |I(X)∩ I(Y )|. We denote Jn,m the average value
of J(X,Y ) when length of X is n and length of Y is m. In
this paper we study in this paper its growth when n = m.

The J-complexity is an efficient way of evaluating similarity
degree of two sequences. For example, genome sequences
of two dogs will contain more common words than genome
sequences of a dog and a cat. Similarly, two texts written
in the same language have more common words than texts
written in very different languages. Also the J-complexity is
larger when languages are close (e.g. French and Italian), than
when languages are very different (e.g. French and English).
Furthermore, texts in the same language but on different
topics (e.g. Law and cooking) have smaller J complexity

than texts on the same topic (e.g. medicine). Therefore the
J-complexity is a pertinent tool for automated monitoring of
social networks. But for this purpose the J-complexity should
discriminate well short texts. This requires a precise analysis
of the joint complexity, which we offer in this paper (see also
[8]) together with some experimental results (cf. Figures 1 and
2) confirming usefulness of the joint string complexity to texts
discrimination.

In [4] it is proved that the J-complexity of two texts
built from two different binary memoryless sources grows like
γ nκ√

α logn
, for some κ < 1 and γ, α > 0 which depend on the

parameters of two sources. When the sources are identical,
then the J-complexity growth is O(n), hence κ = 1. When
the texts are identical (i.e, X = Y ), then the J-complexity
is identical to the I-complexity and it grows as n2

2 [11].
Therefore the J-complexity can already be used to detect
”copy-paste” between texts; indeed the presence of a common
factor of length O(n) would inflate the J complexity by a
term O(n2).

We should point out that experiments show that the com-
plexity estimate as above for memoryless sources converges
very slowly. Therefore, joint complexity is not really mean-
ingful even when n ≈ 109. Furthermore, memoryless sources
are not appropriate for modeling text generation. In this paper
we extend the J-complexity estimate to Markov sources of
any order on a finite alphabet. Although Markov models are
no more realistic, say for DNA sequence, than memoryless
sources, but for text generation it seems to be fairly realistic.

In this paper we derive a second order asymptotics for
J-complexity of the following form γ nκ√

α logn+β
. for some

β > 0. This new estimate converges more quickly, and usually
works for texts of order n ≈ 102; thus it can be used for
short text such as tweets. In fact, for some Markov sources
our analysis indicate that J-complexity oscillates with n. This
manifestates in the factor P

(
1

α logn+β

)
appearing in the J

complexity, where P is a specific polynomial determined
via saddle point expansion. This additional term even further
improves the convergence for small values of n.

In view of these facts, we can use the J complexity to dis-
criminate between two identical/non-identical Markov sources
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Fig. 1. Joint complexity of an English text vs French, Greek, Polish, and
Finnish texts.

[19]. We introduce the discriminant function as follows

d(X,Y ) = 1− 1

log n
log J(X,Y )

for two sequences X and Y of length n. This discriminant
allows us to determine whether X and Y are generated by the
same Markov source or not by verifying whether d(X,Y ) =
O(1/ log n)→ 0 or d(X,Y ) = 1−κ+O(log log n/ log n) >
0, respectively when the length of X and Y are both equal
to n. In this conference paper we mainly concentrate on
the analysis of J-complexity leaving further analysis of the
discriminant d(X,Y ) to a forthcoming full paper. However,
we present below some experimental evidence of how useful
our discriminant is for real texts.

In Figure 1 we compared the joint complexity of an English
text to the same length texts written in French, Greek, Polish
and Finnish. It is easy to see that even for texts of lengths
smaller than a thousand one can discriminate between these
languages. On the other hand, in Figure 2 we plot the joint
complexity between real and simulated texts in French, Greek,
Polish, English and Finnish. Clearly, the joint complexity of
such texts grows like O(n) as predicted by theory. In fact,
computations show that with Markov models of order 3 for
English versus French we have κ = 0.44; versus Greek: κ =
0.26; versus Finnish κ = 0.04; and versus Polish: κ = 0.01,
which is consistent with the results on Figure 1. (In fact, they
agree with theoretical results of Theorem 3 discussed below.)

Single string complexity was studied extensively in the
past. The literature is reviewed in [11] where precise analysis
of string complexity is discussed for strings generated by
unbiased memoryless sources. Another analysis of the same
situation was also proposed in [4] where for the first time the
joint string complexity for memoryless sources is presented. It
was evident from [4] that precise analysis of the joint complex-
ity is quite challenging due to intricate singularity analysis and
infinite number of saddle points. In this paper we deal with
the joint string complexity for Markov sources. To the best
of our knowledge this problem was never tackled before. As
expected, its analysis is very sophisticated but at the same time
quite rewarding. It requires generalized (two-dimensional)
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Fig. 2. Joint complexity of real and simulated texts (3rd Markov order) of
English, French, Greek, Polish and Finnish language.

depoissonization and generalized (two-dimensional) Mellin
transforms. In fact, we discovered new oscillation phenomena.

II. MAIN RESULTS

A. Models and notations
We begin by introducing some general notation. Let ω and σ

be two strings over alphabet A. We denote by |ω|σ the number
of times σ occurs in ω (e.g., |abbba|bb = 2). By convention
|ω|ν = |ω|+ 1, where ν is the empty string.

Throughout we denote by X a string (text) whose complex-
ity we plan to study. We also assume that its length |X| is equal
to n. Then the string complexity is I(X) = {ω : |X|ω ≥ 1}.
Observe that

|I(X)| =
∑
σ∈A∗

1|X|σ≥1,

where 1A is the indicator function of a boolean A. Notice that
|I(X)| is equal to the number of nodes in the associated suffix
tree of X [18] (see also [6]).

Now, let X and Y be two sequences (not necessarily of the
same length). We define the joint complexity as the cardinality
of the set J(X,Y ) = I(X)∩I(Y ). The joint semi-complexity
is the cardinality of the set S(X,Y ) = I2(X) ∩ I2(Y ) In
fact, the joint semi-complexity corresponds to the number of
common nodes in two suffix trees built from X and Y . We
have

|J(X,Y )| =
∑
σ∈A∗

1|X|σ≥1 × 1|Y |σ≥1 .

We now assume that both strings X and Y are generated
by two independent Markov sources of order r (we will only
detail the analysis for order 1, but extension to arbirary order
is straightforward). We assume that source i, for i ∈ {1, 2}
has the transition probabilities Pi(a|b) from state b to state a,
where (a, b) ∈ Ar. We denote by P1 (resp. P2) the transition
matrix of Markov source 1 (resp. source 2). The stationary
distributions are respectively denoted by π1(a) and π2(a) for
a ∈ Ar.

Let Xn and Yn be two strings of respective length n and
m, Xn generated on Markov source 1, and Ym generated on
Markov source 2. We write Jn,m = E(|J(Xn, Yn)|) − 1 for
the joint complexity, i.e. omitting the empty string.



B. Summary of Main Results

We say that a matrix M = [mab](a,b)∈A2 is rationally
balanced if ∀(a, b, c) ∈ A2: mab + mca −mcb ∈ Z. We say
that a positive matrix M = [mab] is logarithmically rationally
balanced when the matrix log∗(M) = [lab] where `ab =
log(mab) when mab > 0 and lab = 0 otherwise. Furthermore,
we say that two matrices M = [mab](a,b)∈A2 and M′ = [m′ab]
are logarithmically commensurable when matrices log∗(M)
and log∗(M′) are commensurable. That is, there exist a
nonzero pair of reals (x, y) such that x log∗(M)+y log∗(M′)
is logarithmically rationally balanced.

We now present our main theoretical results in a series of
theorems each treating different cases of Markov sources.

Theorem 1: Consider the average joint complexity of two
texts of length n generated by the same general stationary
Markov source.
(i) [Noncommensurable Case.] Assume that P1 = P2 are not
logarithmically rationally balanced. Then

Jn,n =
2 log 2

h
n+ o(1) (1)

where h is the entropy rate of the source.
(ii) [Commensurable Case.] Assume that P1 = P2 are loga-
rithmically rationally balanced. Then there are periodic terms
and ε > 0 such that: Jn,n = 2 log 2

h (1 +Q0(log n)) +O(n−ε)
where Q0(.) is a periodic function of small amplitude.

Now we consider sources that are not the same and have re-
spective transition matrices P1 and P2. The transition matrices
are on Ar ×Ar where r denotes the order of the underlying
Markov sources. If (a, b) ∈ Ar × Ar, we denote by Pi(a|b)
the (a, b) coefficient of matrix Pi. For a tuple of complex
numbers (s1, s2) we define P(s1, s2) as the matrix whose
(a, b) coefficient is (P1(a|b))−s1(P2(a|b))−s2 .

We first consider the case when matrix P(s1, s2) is nilpotent
[12].

Theorem 2: If P(s1, s2) is nilpotent, then there exists γ0
and ε > 0 such that limn→∞ Jn,n = γ0.

This result is not surprising and rather trivial since the
common factors can only occur in a finite window at the
beginning of the strings.

Throughout, now we assume that P(s1, s2) is not nilpotent.
We denote by K the set of real tuple (s1, s2) such that
P(s1, s2) has the main eigenvalue equal to 1. Let

κ = min
(s1,s2)∈K

{−s1 − s2}

(c1, c2) = arg min
(s1,s2)∈K

{−s1 − s2}.

Easy algebra proves that κ < 1.
Theorem 3: Assume P(s1, s2) is not nilpotent and either

c1 > 0 or c2 > 0.
(i) [Noncommensurable Case.] We assume that P2 is noncom-
mensurable. Let c0 < 0 such that (c0, 0) ∈ K. There exists γ1
and ε > 0:

Jn,n = γ1n
−c0(1 +O(n−ε)) (2)

(ii) [Commensurable Case.] Let now P2 be logarithmically
rationally balanced. There exists a periodic function Q1(.) of

small amplitude such that Jn,n = γ1n
−c0(1 + Q1(log n) +

O(n−ε).
The case where both c1 and c2 are between −1 and 0 is the

most intricate to handle. We summarize our results next.
Theorem 4: Assume that c1 and c2 are between −1 and 0.

(i) [Noncommensurable Case.] When P1 and P2 are noncom-
mensurable, then there exists α2, β2 and γ2 such that

Jn,n =
γ2n

κ

√
α2 log n+ β2

(1 + o(1)) . (3)

(ii) [Commensurable Case.] Let P1 and P2 be logarithmically
commensurable matrices. Then there exist a double periodic
function Q2(.) of small amplitude such that:

Jn,n =
γ2n

κ

√
α2 log n+ β2

(1 +Q2(log n) + o(1)).

III. THEORETICAL ANALYSIS

In this section we present a sketch of ideas that proves our
main results. The technique we use in fact allows us to prove
much stronger (refined) results presented at the end of this
section.

A. Equivalence Suffixes and independent strings

We have the identity:

Jn,m =
∑

w∈A∗−{ν}

P (w ∈ I(Xn))× P (w ∈ I(Xn) ≥ 1) .

(4)
We know that from [6], [15] that there is a close formula
for

∑
n P (|Xn|w ≥ 1)zn = P1(w)z

(1−z)Dw(z) which is, in the
memoryless case.

Dw(z) = (1− z)(1 +Aw(z)) + P1(w)z|w| , (5)

where P (w) is the probability that w is prefix of Xn, and
Aw(z) is the autocorrelation polynomial of word w. For the
Markov source, we omit the expression which carries extra
indices to keep track with the Markov correlations with the
starting symbols of the words (for a complete description of
the parameters see [6], [15]).

Although being a closed formula, this expression is not easy
to manipulate. To make the analysis tractable we notice that
w ∈ I(Xn) is equivalent to the fact that w is at least prefix
of one of the n suffices of Xn. If the suffices would have
been n independent infinite strings then P (w ∈ I(Xn)) would
be equal to 1 − (1 − P1(w))n whose generating function is

P1(z)z
(1−z)(1−z+P1(w)z) , which rather the same as P1(w)z

(1−z)Dw(z) but
with Aw(z) = 0 and z|w| = z.

We define I1(n) (resp. I2(n)) as the set of prefixes of n
independent strings built on source 1 (resp. 2). Let

Cn,m =
∑

w∈A∗−{ν}

P (w ∈ I1(n))P (w ∈ I2(n)) .

Using the techniques of [6], [15]) we prove that
Lemma 1: For some ε > 0

Jn,n = Cn,n
(
1 +O(n−ε)

)
+O(1). (6)



A proof of this lemma follows from [6], [15], and will be
given in the journal version of this paper.

B. Functional equations

Let a ∈ A. We denote Ca,m,m the quantity
∑
w∈aA∗ P (w ∈

I1(n))P (w ∈ I2(n)). Notice that Ca,m,n = 0 when n = 0 or
m = 0. Using the Markov nature of the string generation, the
quantity Ca,n,m for n,m ≥ 1 satisfies the following recurrence
for all b ∈ A

Cb,n,m = 1 +
∑
a∈A

∑
na,ma

(
n

na

)(
m

ma

)
×(P1(a|b))na(1− P1(a|b))n−na

×(P2(a|b))ma(1− P2(a|b))m−maCa,na,ma ,

where na denotes the number of strings among the n inde-
pendent strings on source 1 which have symbol a that follows
symbol b as second character. Quantity ma is the counterpart
on source 2. The unconditional average Cn,m satisfies for
n,m ≥ 2

Cn,m = 1 +
∑
a∈A

∑
na,ma

(
n

na

)(
m

ma

)
πna1 (a)(1− π1(a))n−na

×πma2 (a)(1− π2(a))m−maCa,n,m.

We introduce the double Poisson transform of Ca,n,m

Ca(z1, z2) =
∑
n,m≥0

Ca,n,m
zn1 z

m
2

n!m!
e−z1−z2 (7)

translates the above recurrence into the following functional
equation:

Cb(z1, z2) = (1− e−z1)(1− e−z2)

+
∑
a∈A

Ca (P1(a|b)z1, P2(a|b)z2) . (8)

Furthermore, the cumulative double Poisson transform

C(z1, z2) =
∑
n,m≥0

Tn,m
zn1 z

m
2

n!m!
e−z1−z2 (9)

which satisfies

C(z1, z2) = (1− e−z1)(1− e−z2)

+
∑
a∈A

Ca(π1(a)z1, π2(a)z2) . (10)

C. DePoissonization

Using [7], [8], [18] we prove
Lemma 2 (DePoissonization): When n and m tend to in-

finity:

Cn,m = C(n,m)(1 +O(
1

n
) +O(

1

m
)) .

This equivalence is obtained by proving some growth proper-
ties of C(z1, z2) when (z1, z2) are complex numbers.

D. Same Markov sources

We first give a general result when the Markov sources are
identical: P1 = P2 = P. In this case equation 8 can be
rewritten with ca(z) = Ca(z, z):

cb(z) = (1− e−z)2 +
∑
a∈A

ca (P (a|b)z) . (11)

This equation is directly solvable by introducing the Mellin
transform c∗a(s) =

∫∞
0
ca(x)xs−1dx defined for −2 < <(s) <

−1 and which satisfies the equation for all b ∈ A.

c∗b(s) = (2−s − 2)Γ(s) +
∑
a∈A

(P (a|b))−sc∗a(s) . (12)

Introducing c∗(s) the Mellin transform of C(z, z) we get the
identity:

c∗(s) = (2−s − 2)Γ(s) +
∑
a∈A

(π(a))−sc∗a(s) .

Thus

c∗(s) = (2−s − 2)Γ(s)
(
1 + 〈1(I−P(s))−1|π(s)〉

)
(13)

where 1 is the vector of dimension |A| made of 1’s, I is the
identity matrix, and P(s) = P(s, 0) = P(0, s), π(s) is the
the vector made of coefficients π(a)−s and 〈.|.〉 denotes the
inner product.

By applying the methodology of Flajolet [2], [18], the
asymptotics of c(z) for | arg(z)| < θ is given by the residues
of the function c∗(s)z−s which occurs on s = −1 and
s = 0 and which are respectively 2 log 2

h z and −1 − 〈1(I −
P(0, 0))−1π(0)〉. The first residues comes from the singularity
of (I − P(s))−1 on s = −1. This lead to the formula of
Theorem 4. When P is logarithmically rationally balanced
then there are additional poles on a countable set of complex
numbers sk regularly spaced on the same imaginary axes
containing −1 and such that P(sk) has eigenvalue 1. These
poles contributes to the periodic terms of Theorem 4.

Computations show that a Markov model of order 3 for En-
glish text has entropy: 0.944221; French entropy s 0.934681;
Greek: 1.013384, Polish: 0.665113; and Finnish entropy is
0.955442. This is consistent with Figure 2

E. Different Markov sources

In this section we identify the constants in Theorems 3
and 4.

Since P1 6= P2 we cannot get a functional equation for
the Ca(z, z)’s, we thus have to deal with the two variables z1
and z2. We define the double Mellin transform C∗a(s1, s2) =∫∞
0

∫∞
0
Ca(z1, z2)zs1−11 zs2−12 dz1dz2 and simiarly C∗(s1, s2)

the double Mellin transform of C(z1, z2). And thus we have
the identity

C∗b (s1, s2) = Γ(s1)Γ(s2) (14)

+
∑
a∈A

(P1(a|b))−s1(P2(a|b))−s2C∗a(s1, s2)



and

C∗(s1, s2) = Γ(s1)Γ(s2)
(
1 + 〈1(I−P(s1, s2))−1|π(s1, s2)〉

)
(15)

where π(s1, s2) denotes the vector made of coefficients
π1(a)−s1π2(a)−s2 . In fact to be defined the Mellin transform
we need to apply it on C(z1, z2) − ∂

∂z1
C(0, z2)z1e

−z1 −
∂
∂z2

C(z1, 0)z2e
−z2 but we omit this technical detail.

The inverse Mellin transform is

C(z, z) =
1

(2iπ)2

∫
<(s1)=ρ1

∫
<(s2)=ρ2

C∗(s1, s2)z−s1−s2ds1ds2 .

(16)
where (ρ1, ρ2) belongs to the definition domain of C∗(s1, s2).

We denote L(s) the function of complex s such that
P(s, L(s)) has eigenvalue 1. The function is meromorphic
and has several branches; one branches describes the set K
when s is real. Via the formula of residues we can get rid of
variable s2 by letting ρ2 moving to some non negative value
M :

C(z, z) =
1

2iπ

∫
<(s1)=ρ1

µ(s1)Γ(s1)Γ(L(s1))z−s1−L(s1)ds1

+O(zρ1−M )

where µ(s) is the residue of function 〈1(I −
P(s,s2))−1π(s1, s2)〉 at point (s, L(s)), actually it is
equal to 1

∂
∂s2

λ(s1,s2)
〈1|ζ(s1, s2)〉〈u(s1, s2)|π(s1, s2)〉, where

λ(s1, s2) is the eigenvalue which has value 1 at (s, L(s))
and u(s1, s2) and ζ(s1, s2) are the respective left and right
eigenvector with the convention that 〈ζ(s1, s2)|u(s1, s2)〉 = 1.

The expression is implicitly a sum since the function L(s) is
meromorphic, but we retain only the branch where λ(s1, s2)
is the main eigenvalue of P(s1, s2) for the leading term in
the expansion of C(z, z). For more details see [8] where the
analysis is detailled in the case where P2 corresponds to the
uniform memoryless case, i.e. P2 = 1

|A|1⊗ 1.
The point here is to move the integration line for s1 from

ρ1 to c1 which corresponds to the position the minimum
of function −s1 − L(s1) (actually κ). We only consider the
case where L(c1) = c2 < 0 (the other case is obtained by
symmetry). The poles are due to the function Γ(.). The first
encountered pole is s1 = −1 but this pole cancels with the
technical arrangement discussed earlier.

Let assume c1 > 0, therefore we meet a second pole on
s = 0 and the residue, equal to µ(0)Γ(c0)z−c0 since L(0) =
c0. This quantity turns out to be the leading term of C(z, z)
since the integration on <(s1) = c1 is in O(zκ). This prove
theorem 3. In the case P2 is commensurable, there exists ν
such that λ(s, L(s) + ikν) = 1 and therefore terms in zc0+ikν

give a periodic contribution.
The most tricky part is when −1 < c1 < 0. In this case

we get an estimate in O(zκ) but to get precise estimate one
must use of the saddle point methods on s = c1 since the
integration is of the form

∫
<(s)=c1 µ(s) exp(−(s+L(s))A)ds

and A = log z →∞. We naturally get an expansion

C(z, z) =
eκAµ(c1)√
(α2A+ β2

(
1 +O(

1√
A

)

with α2 = L′′(c1) and β2 = µ′(c1)
µ(c1)

. In fact the saddle point
expansion is extendable to any oder of 1√

A
. This proves the

theorem 4 in the general case. For the case where P1 and
P2 are logarithmically commensurable, the line <(s1) = c1
contains an infinite number of saddle points that contribute in
a double periodic additional term.
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