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Abstract—We study the binary deletion channel where each
input bit is independently deleted according to a fixed probability.
We relate the conditional probability distribution of the output
of the deletion channel given the input to the hidden pattern
matching problem. This yields a new characterization of the
mutual information between the input and output of the deletion
channel. Through this characterization we are able to comment
on the the deletion channel capacity, in particular for deletion
probabilities approaching 0 and 1.

I. INTRODUCTION

A deletion channel with parameter d takes a binary se-
quence x := xn

1 = x1 · · ·xn where xi ∈ A = {0, 1} as
input and deletes each symbol in the sequence independently
with probability d. The output of such a channel is then
a subsequence Y = Y (x) = xi1 ...xiM

of x, where M
follows the binomial distribution Bi(n, (1 − d)), and the
indices i1, ..., iM correspond to the bits that are not deleted.
Despite significant effort [2], [3], [5], [9], [10], [11], [12], [14]
the mutual information between the input and output of the
deletion channel and its capacity are still unknown. Our goal
is to provide a more detailed characterization of the mutual
information for memoryless sources (extensions to strongly
mixing sources or Markovian sources seem likely). Through
this characterization we are able to comment on the channel
capacity for two special cases: d → 1 and d → 0. The latter
case was already discussed in [10], [9]. We derive our results
by relating the the conditional probability distribution of the
output of the deletion channel given the input to the so called
hidden pattern matching analyzed recently in [1], [7].

Following [4], the channel capacity of the deletion channel
with deletion probability d is

C(d) = lim
n→∞

1
n

sup
PXn

1

I(Xn
1 ;Y (Xn

1 )),

where PXn
1

is the distribution of Xn
1 , and I(Xn

1 ;Y (Xn
1 ))

is the mutual information between the input and output of
the deletion channel. Many bounds have been derived for the
capacity (see the survey article by Mitzenmacher [11]).

Let x = xn
1 ∈ {0, 1}n and w = w1w2 . . . wm ∈ {0, 1}m,

m ≤ n, be binary sequences. Let Ωx(w) denote the number
of occurrences of w as a subsequence (i.e., not consecutive
symbols) of x, that is,

Ωx(w) =
∑

1≤i1<i2<···<im≤n

I[xi1=w1]I[xi2=w2] · · · I[xim=wm], (1)

where IA = 1 if A is true and zero otherwise. The problem of
counting subsequences in a text is known as the hidden pattern
matching problem and was studied in [1], [7]. In this paper,
to derive our results we first represent the mutual information
between the input and output of a deletion channel in terms
of the count ΩX(w) for a random sequence X .

Theorem 1. For any random input Xn
1 , the mutual informa-

tion satisfies

I(Xn
1 ;Y (Xn

1 ))=
∑
w

dn−|w|(1− d)|w|
(
E[ΩXn

1
(w)log ΩXn

1
(w)]

− E[ΩXn
1

(w)] log E[ΩXn
1

(w)]
)
, (2)

where the sum is over all binary sequences of length ≤ n.

From Theorem 1, we have I(Xn
1 ;Y (Xn

1 )) =
S1(Xn

1 , Y (Xn
1 ))− S2(Xn

1 , Y (Xn
1 )) := S1 − S2 where

S1 =
∑
w

dn−|w|(1− d)|w|E[ΩXn
1

(w) log ΩXn
1

(w)], (3)

S2 =
∑
w

dn−|w|(1− d)|w|E[ΩXn
1

(w)] log E[ΩXn
1

(w)]. (4)

In this paper, we focus on memoryless distributions on Xn
1 ,

however, it appears that most of our results extend to larger
classes (Markovian). Suppose that X1X2 . . . is an i.i.d. se-
quence of Bernoulli random variables with parameter p. For

such sequences, let I(d, p) = lim
n→∞

1
n
I(Xn

1 ;Y (Xn
1 )), and

λ(d, p) = limn→∞
1
nS1(Xn

1 , Y (Xn
1 )).

Theorem 2. For all 0 ≤ d ≤ 1, and 0 ≤ p ≤ 1, the limit
I(d, p) as well as the non-negative limits λ(d, p) and

lim
n→∞

1
n
S2(Xn

1 , Y (Xn
1 )) = H(1− d)− (1− d)H(p)

exist, and

I(d, p) = λ(d, p) + (1− d)H(p)−H(1− d)

where, H(·) is the binary entropy function. Further-
more, I(d, p) = infn≥1

1
nI(Xn

1 ;Y (Xn
1 )), and λ(d, p) =

supn≥1
1
nS1(Xn

1 , Y (Xn
1 )).

From Theorem 2, I(d, p) ≤ I(X1
1 ;Y (X1

1 )) = H(p)(1−d).
When optimized over p, this upper bound matches the capacity
asymptotically for d→ 0 but not for d→ 1, as our next result
(Theorem 3) shows. This also implies that λ(d, p) ≤ H(1−d).
Note that for d→ 1 it is just known that C(d) = Θ(1−d) [2],



[11], [12]. Our next result is a bound on I(d, p) that implies
that, in contrast to the case d→ 0, i.i.d. distributions over the
inputs Xn

1 do not asymptotically achieve capacity as d→ 1.

Theorem 3. For all p ≥ 0, as d→ 1

I(d, p) ≤ K(1− d)4/3 log
1

1− d
where the constant K > 0 is absolute.

Finally we demonstrate the strength of our method by re-
proving Kanoria and Montanari’s [10] expansion for I(d, p)
for d → 0 leading to C(d) = I(d, 1/2) + O(d3/2−ε) =
1 + d log d − Ad + O(d3/2−ε) (cf. Theorem 4), where A =
log(2e) −

∑
`≥1 2−`−1` log `. Note that the symmetric mem-

oryless distribution is asymptotically optimal in this regime.

II. PROOF OF THEOREM 1 AND CAPACITY BOUND

In this section, we first prove Theorem 1 and then present
a simple proof of the fact that C(d) ≤ 1− d.
A. Proof of Theorem 1

To prove Theorem 1, we relate hidden pattern matching to
the deletion channel through the following observation. For all
xn

1 ∈ An

P (Y (Xn
1 ) = w|Xn

1 = xn
1 ) = Ωxn

1
(w)dn−|w|(1− d)|w|. (5)

We use X and Y to abbreviate Xn
1 and Y (Xn

1 ) respectively.
Using (5), we will compute H(Y ) and H(Y |X) and use
I(X;Y ) = H(Y ) − H(Y |X) to prove the theorem. We
first compute H(Y ). Observe that, from (5) P (Y = w) =∑

x∈An P (X = x)Ωx(w)dn−|w|(1− d)|w| which leads to

H(Y ) = −
∑
w

dn−|w|(1− d)|w|
(
E[ΩXn

1
(w)] log E[ΩX(w)]

+ E[ΩX(w)] log(dn−|w|(1− d)|w|)). (6)

Next, we compute the conditional entropy H(Y |X). Notice
that for x ∈ An and y ∈ Am we have P (x, y) =
P (x)Ωx(y)dn−m(1−d)m. Combining this with (5) we obtain

H(Y |X) = −
∑
w

dn−|w|(1− d)|w| (E[ΩX(w) log ΩX(w)]

+ E[ΩX(w)] log dn−|w|(1− d)|w|). (7)

The theorem follows from (6) and (7).

B. Upper Bound for the Capacity

It is well known that the capacity C(d) of a deletion channel
with deletion probability d can be bounded from above by the
capacity of an erasure channel with the erasure probability d
(e.g., see [3]). We provide a direct proof of this fact. To do
so, we first compute the expectation of ΩX(w).

Lemma 1. For any random Xn
1 , and all binary sequences w

E
[
ΩXn

1
(w)
]

=
(
n

|w|

)
Pn(w),

where

Pn(w)=
1(
n
|w|
) ∑
i1<···<im

P (Xi1 = w1, Xi2 = w2, ..., Xim
= wm)

with
∑
|w|=m Pn(w) = 1. In particular, if X is memoryless,

then Pn(w) = P (w) where P (w) is the probability that
X1X2...X|w| = w (see [1] for dynamic X).

Proof: Taking expectation on both sides of (1) we have∑
1≤i1<···<im≤n

P (Xi1 = w1, · · · , Xim = wm) =
(
n

|w|

)
Pn(w).

proving the lemma.

Lemma 2. For any distribution on the input binary ran-
dom sequence Xn

1 , and and deletion probability d ≥ 0,
I(Xn

1 ;Y (Xn
1 )) ≤ n(1− d).

Proof: Following Theorem 1, we can write
I(Xn

1 ;Y (Xn
1 )) = S1 − S2 where S1 and S2 are defined in

(3)–(4). Since ΩX(w) ≤
(

n
|w|
)

we first have

S1 ≤
∑
w

dn−|w|(1− d)|w| log
(
n

|w|

)
E[ΩX(w)]

and this in combination with Lemma 1 gives us

I(Xn
1 ;Y (Xn

1 ))

≤ −
∑
w

dn−|w|(1− d)|w|
(
n

|w|

)
Pn(w) logPn(w)

=−
n∑

m=0

dn−m(1− d)m

(
n

m

)∑
|w|=m

Pn(w) log(Pn(w)). (8)

Since for all m ≥ 0, Pn(w) is a probability distribution over
w ∈ Am, we have

∑
|w|=m Pn(w) log(1/Pn(w)) ≤ log 2m =

m, and consequently
n∑

m=0

∑
|w|=m

dn−m(1− d)m

(
n

m

)
m = n · (1− d).

Substituting this in (8) completes the proof, and also estab-
lishes an upper bound of C(d) ≤ 1− d for the capacity.

III. MEMORYLESS INPUT DISTRIBUTIONS

We now restrict the channel input distributions to be mem-
oryless over A with p denoting the probability of “0”. We
prove Theorems 2 and 3 in this section.

A. Proof of Theorem 2

The next lemma follows from the definition ΩX(w).

Lemma 3. For all binary sequences w, and all xn+k ∈ An+k

Ωxn+k
1

(w) =
∑

w1w2=w

Ωxn
1
(w1)Ωxn+k

n+1
(w2), (9)

where the sum is taken over all pairs w1, w2 such that their
concatenation w1w2 equals w.

We also require the following lemma.

Lemma 4. Let zm and am, 1 ≤ m ≤ M , be non-negative
numbers. Then we have

M∑
m=1

zm log
∑M

m=1 zm∑M
m=1 am

≤
M∑

m=1

zm log
zm

am
. (10)



Proof: Apply the inequality log x ≤ x− 1.

Lemma 5. Let X1X2 . . . be a memoryless random binary
sequence. Then

I(Xn+k
1 ;Y (Xn+k

1 )) ≤ I(Xn
1 ;Y (Xn

1 )) + I(Xk
1 ;Y (Xk

1 )).

Proof: We abbreviate ΩXn
1

(w1) by α(w1) and
ΩXn+k

n+1
(w2) by β(w2). Applying (9) and (10) we obtain

ΩXn+k
1

(w) log ΩXn+k
1

(w)− ΩXn+k
1

(w) log E
[
ΩXn+k

1
(w)
]

=
∑

w1w2=w

α(w1)β(w2) log

∑
w1w2=w α(w1)β(w2)∑

w1w2=w E [α(w1)β(w2)]

≤
∑

w1w2=w

α(w1)β(w2) log
α(w1)β(w2)

E [α(w1)β(w2)]

=
∑

w1w2=w

α(w1)β(w2)
(

log
α(w1)

E [α(w1)]
+ log

β(w2)
E [β(w2)]

)
(11)

where the last equality follows holds as α(w1) and β(w2)
are independent. Let now cn = I(Xn

1 ;Y (Xn
1 )). Then, by

Theorem 1

cn+k =
∑
w

dn+k−|w|(1− d)|w|
(
E
[
ΩXn+k

1
(w)log ΩXn+k

1
(w)
]

−E
[
ΩXn+k

1
(w)
]

log E
[
ΩXn+k

1
(w)
])
.

Hence by taking expectations of (11) and using the relation

1 =
∑
w1

dn−|w1|(1− d)|w1|E[ΩXn
1

(w1)]

=
∑
w

dn−|w|(1− d)|w|
(
n

|w|

)
Pn(w)=

n∑
`=0

dn−`(1− d)`

(
n

`

)
(and a similar relation for the sum over w2) we immediately
derive cn+k ≤ cn + ck. Note that we have used the property
that Xn

1 and Xn+k
n+1 are independent and that Xn+k

n+1 has the
same distribution as Xk

1 .
By Fekete’s lemma [13] the following corollary follows.

Corollary 1. I(d, p) = infn≥1
1
nI(Xn

1 ;Y (Xn
1 )).

In particular, I(d, p) ≤ 1
nI(Xn

1 ;Y (Xn
1 )) for all n ≥ 1. If

we apply this for n = 1, 2 we find

I(d, p) ≤ (1− d)H(p), and

I(d, p) ≤ d(1− d)(H(p) + p2 + q2 − 1) + (1− d)2H(p),

where q = 1−p. For example, by looking at the second bound
we observe that sup0≤p≤1 I(d, p) ≤ 1−d

2 + (1 − d)2 which
implies that memoryless input distributions do not meet the
general upper bound 1−d when d→ 1. Actually we will show
that sup0≤p≤1 I(d, p) is much smaller as d→ 1 (Theorem 3).

We now prove Theorem 2. As above, we write
I(Xn

1 ;Y (Xn
1 )) = S1 − S2. Also, given two sequences an

and bn, an ∼ bn if an/bn → 1 as n→∞.

Lemma 6. If Xn
1 is a memoryless binary sequence with

parameter p, then S2 ∼ n · (H(1− d)− (1− d)H(p)) as
n→∞.

Proof: By Theorem 1 and Lemma 1, and by the trivial
observation

∑
|w|=m P (w) = 1, we have

S2 =
∑
w

dn−|w|(1− d)|w|
(
n

|w|

)
P (w) log

(
n

|w|

)
+
∑
w

dn−|w|(1− d)|w|
(
n

|w|

)
P (w) logP (w)

=
n∑

m=0

dn−m(1− d)m

(
n

m

)
log
(
n

m

)
+

n∑
m=0

dn−m(1− d)m

(
n

m

) ∑
|w|=m

P (w) logP (w).

The second term above can be computed directly. By the
definition of the entropy we have

∑
|w|=m P (w) logP (w) =

−mH(p). Consequently,

n∑
m=0

dn−m(1− d)m

(
n

m

) ∑
|w|=m

P (w) logP (w)

= −
n∑

m=0

dn−m(1− d)m

(
n

m

)
mH(p) = −n(1− d)H(p).

In order to evaluate the first term we apply the results of [6],
[8] about the so called binomial sums. Notice that

n∑
m=0

dn−m(1− d)m

(
n

m

)
log
(
n

m

)
∼ nH(1− d).

This completes the proof of the lemma.
The next step is to show a similar property for S1, namely

that S1 ∼ n ·λ(d, p), where λ(d, p) is a non-negative constant.
The problem is to obtain some information about λ(d, p), but
for this we would need precise information about the behavior
of ΩX(w).

Lemma 7. Suppose that X1X2 . . . is a binary memoryless
sequence and an = S1(Xn

1 , Y (Xn
1 )). Then an+k ≥ an + ak.

Proof: We have

ΩXn+k
1

(w) log ΩXn+k
1

(w) =

( ∑
w1w2=w

ΩXn
1

(w1)ΩXn+k
n+1

(w2)

)

× log

( ∑
w̃1w̃2=w

ΩXn
1

(w̃1)ΩXn+k
n+1

(w̃2)

)
≥

∑
w1w2=w

ΩXn
1

(w1)ΩXn+k
n+1

(w2) log
(

ΩXn
1

(w1)ΩXn+k
n+1

(w2)
)

=
∑

w1w2=w

ΩXn
1

(w1)ΩXn+k
n+1

(w2) log ΩXn
1

(w1)

+
∑

w1w2=w

ΩXn
1

(w1)ΩXn+k
n+1

(w2) log ΩXn+k
n+1

(w2)



and consequently

an+k =
∑
w

dn+k−|w|(1− d)|w| E
[
ΩXn+k

1
(w)log ΩXn+k

1
(w)
]

≥
∑
w

∑
w1w2=w

dn+k−|w1|−|w2|(1− d)|w1|+|w2|

× E
[
ΩXn

1
(w1)ΩXn+k

n+1
(w2) log ΩXn

1
(w1)

]
+
∑
w

∑
w1w2=w

dn+k−|w1|−|w2|(1− d)|w1|+|w2|

× E
[
ΩXn

1
(w1)ΩXn+k

n+1
(w2) log ΩXn+k

n+1
(w2)

]
.

Hence, as in Lemma 5, we obtain that an+k ≥ ak + an.
The superadditivity property of Lemma 7 provides the

following convergence result.

Lemma 8. If X = Xn
1 is a binary memoryless sequence, then

there exists a non-negative constant λ(d, p) ≤ H(1− d) such
that S1 ∼ n · λ(d, p) as n→∞.

Proof: Since ΩX(w) is a non-negative integer we cer-
tainly have S1 ≥ 0. Furthermore, since ΩX(w) ≤

(
n
|w|
)

it
follows (as in the proof of Lemma 6) that

S1 ≤
∑
w

dn−|w|(1−d)|w| E[ΩX(w)] log
(
n

|w|

)
∼ nH(1−d).

Hence (using the notation an = S1(Xn
1 , Y (Xn

1 )))

0 ≤ λ(d, p) := sup
n≥1

an

n
≤ H(1− d).

By another application of Fekete’s lemma [13] the sequence
an/n has a limit that equals the supremum sup(an/n). We
have used the property an+k ≥ an + ak here.

The proof of Theorem 2 is a combination of Lemma 6 and
Lemma 8. The lower bound on λ(d, p) follows from the fact
that I(d, p) ≥ 0.

Remark (Extension to Mixing Sources): Most results of this
section hold for more general distributions. For example, from
the proof of Lemma 6 we conclude that

S2 ∼ n ·
(
H(1− d)− (1− d)H(P̄ )

)
where P̄ is the limit of P̄n which was defined in Lemma 1
(provided the limit exists). A distribution P (Xn

1 ) is said to
correspond to a strongly mixing source [13] if for all m ≤ n,
there exist constants c1, c2 such that

c1P (Xm
1 )P (Xn

m+1) ≤ P (Xn
1 ) ≤ c2P (Xm

1 )P (Xn
m+1).

For such distributions, Lemma 7 generalizes to an+k ≥ an +
ak +K1 for some constant K1, hence Lemma 8 holds as well.

B. Proof of Theorem 3: d→ 1

We consider the expression in (2). We first note that the
empty word does not contribute to the sum (2). Next we
consider words of length 1. If w = 0 and if X = Xn

1 consists
of m zeroes and n−m ones then ΩX(w) = m. The situation

is completely symmetric if w = 1. Hence the contribution of
words of length 1 to I(Xn;Y (Xn)) is

T1 :=dn−1(1− d)

(
n∑

m=1

mlogm
(
n

m

)(
pmqn−m+pn−mqm

))
− dn−1(1− d) (np log(np) + nq log(nq))

where q = 1− p. By using the inequality

logm = log(np) + log
(

1 +
m− np
np

)
≤ log(np) +

m− np
np

we obtain that
n∑

m=1

m logm
(
n

m

)
pmqn−m

≤
n∑

m=1

m

(
log np+

m− np
np

)(
n

m

)
pmqn−m

= log(np)np+
npq

np
= np log(np) + q.

Putting all parts together we obtain that T1 ≤ dn−1(1− d) ≤
(1− d).

Let T2 denote the subsum of (2) corresponding to those
terms with |w| ≥ 2. By using the trivial estimate ΩX(w) ≤(

n
|w|
)

and taking absolute values we obtain the upper bound

T2 ≤ 2
n∑

`=2

dn−`(1− d)`

(
n

`

)
log
(
n

`

)
≤ 2

n∑
`=2

dn−`(1− d)`n
`

`!
log n`

= 2dn log n
∑
`≥2

(
n(1− d)

d

)` 1
(`− 1)!

≤ 2dn log n
n(1− d)

d

(
en(1−d)/d − 1

)
.

If n(1 − d) = o(1) this leads to T2 ≤ C1n
2(1 − d)2 log n

for some absolute constant C1 > 0. Summing up and using
Corollary 1, we obtain that

I(d, p) ≤ 1
n
I(Xn

1 ;Y (Xn
1 )) ≤ 1− d

n
+ C1n(1− d)2 log n.

Finally by choosing n = b(1 − d)−1/3c we derive the upper
bound

I(d, p) ≤ K (1− d)4/3 log
1

1− d
for an absolute constant K > 0.

C. Lower Bound for d→ 0
Finally, we comment on the case d → 0 that has been

already solved in [10] and [9] where it is shown that
I(d, 0.5) = 1 + d log d − Ad + O(d2−ε) as d → 0 and
C(d) = I(d, 0.5)+O(d3/2−ε). The approach presented in [10]
is quite different from ours. However, we can use our methods
to obtain corresponding bounds. In particular, we easily obtain
the following lower bound for I(d, p).



Theorem 4. As d→ 0,

I(d, p) ≥(1− d)H(p) + d log d− d log(e)

+ d(q2f(p) + p2f(p)) +O
(
d2−ε

)
(12)

for every ε > 0, where f(x) denotes the function f(x) =∑
`≥2 x

` ` log ` and q = 1− p. Furthermore, as d→ 0,

I(d, p) ≤ H(p) + d log d+O(d log log(1/d)). (13)

Proof: The lower bound for I(d, p) follows from ideas
similar to those in the proof of Theorem 2. Instead of taking
the limit of an/n defined in Lemma 7 we derive lower bounds
for an/n for certain n. We will only consider words w with
|w| = n− 1. Then

an ≥ d(1− d)n−1
∑

|w|=n−1

E[ΩX(w) log ΩX(w)].

Suppose for the moment that w has the form w =
0i11j10i21j2 · · · 0iK 1jK , where ir, jr ≥ 1; this means that
w1 = 0 and wn−1 = 1 (the other cases can be handled in
completely the same way). If |w| = n − 1, then we have
ΩX(w) = ` (for some ` > 2) if and only if there exists r with

ir = `− 1 and X = 0i11j1 · · · 1jr−10ir+11jr · · · 0iK 1jK

or there exists r with

jr = `− 1 and X = 0i11j1 · · · 0ir 1jr+10ir+1 · · · 0iK 1jK .

Hence, by expanding E[ΩX(w) log ΩX(w)],∑
|w|=n−1

E[ΩX(w) log ΩX(w)]

=
∑
`≥2

` log `
∑

|w|=n−1

P (w)
∑
r≥1

(pI[ir(w)=`−1]+qI[jr(w)=`−1]),

where ir(w) denotes the length of the r-th 0-run in w and
jr(w) the length of the r-th 1-run in w. Now let Z be a
new random variable defined on words w of length n − 1 as
Z = Z(w) =

∑
r≥1(pI[ir(w)=`−1] + qI[jr(w)=`−1]). Then we

just have to compute the expected value

E[Z] =
∑
r≥1

(pP[ir = `− 1] + qP[jr = `− 1]).

Recall that the expected value E
[
I[ir=`−1]

]
= P[ir = ` − 1]

has to be computed according the probability distribution of
word W (of length n− 1).

Next, note that the probability distribution of the length-
k 0-run is given by pkq/(1 − q) = pk−1q and that the
number of runs in a string of length n is approximately pqn.
Consequently

E[Z] ∼ npq
(
pp`−2q + qq`−2p

)
and finally∑
|w|=n−1

E[ΩX(w) log ΩX(w)] ∼ n
∑
`≥2

` log `
(
p`q2 + q`p2

)
= n

(
q2f(p) + p2f(q)

)
.

Now we choose n = bd−εc which ensures that (1−d)n−1 =
1 + O(d1−ε). From the definition of λ(d, p) and (3), this
implies that

λ(d, p) ≥ d(q2f(p) + p2f(q)) +O(d2−ε).

Since H(1− d) = −d log d− (1− d) log(1− d) = −d log d+
d log(e) +O(d2) we obtain the lower bound (12).

For the upper bound we proceed as in the proof of Theo-
rem 3. We start with S1. Let S1,n−1 denote the subsum of S1

corresponding to words of length n− 1. Then it follows from
the above calculations that S1,n−1 = O(nd) (actually we can
be much more precise). Furthermore, it follows as in the proof
of Theorem 3 that S1 − S1,n−1 = O

(
log nd2n2

)
if dn→ 0.

Finally, for S2 we have (see Lemma 6)

S2 = −n(1−d)H(p)+d(1−d)n−1n log n+O
(
log nd2n2

)
.

Consequently, we obtain for n = n(d) = bd−1/ log d−1c

I(d, p) ≤ S1 − S2

n
= (1− d)H(p)−(1− d)n−1d log n+O(d) +O

(
log nd2n

)
= H(p) + d log d+O(d log log(1/d)).

This completes the proof of the theorem.
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