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Abstract—In 1993 Boncelet introduced a block arithmetic In its simplest form, Boncelet builds a parsing tree by

scheme for entropy coding that combines advantages of strem  gplitting a fixed number of leaves (codewords) into subtrees
arithmetic coding with algorithmic simplicity. It is a vari able- of predetermined number of leaves. The number of leaves

to-fixed length encoding in which the source sequence is p&t . . . o
tioned into variable length phrases that are encoded by a fixa@ in each subtree is proportional to the probability of the

length dictionary pointer. The parsing is accomplished though ~alphabet symbols. For example, for a binary alphabet with
a complete parsing tree whose leaves represent phrases. $hi probabilitiesp; andp, = 1 — p; the expected phrase length

tree, in its suboptimal heuristic version, is constructed y a q(n) satisfies the following recurrence (other parameters such

simple divide and conquer algorithm, whose analysis is the 55 yariance, generating function of the phrase length Ifulfil
subject of this paper. For a memoryless source, we first derev . .
similar recurrences)

the average redundancy and compare it to the (asymptoticaf)
optimal Tunstall's algorithm. Then we prove a central limit
theorem for the phrase length. To establish these results, av d(n) =1+ pid([pin +6]) + pad ([p2n — 0])

apply powerful techniques such as Dirichlet series, MellifPerron  where isd is a constant. This equation is an example of a
formula, and (extended) Tauberian theorems of Wiener-lkelara. generatiscrete(represented by the floor and ceiling functions)
divide and conquer recurrendiat we studied extensively in
. INTRODUCTION [11]. We shall adopt it here in order to present a comprekensi
We present a comprehensive analysis of a data compressioalysis of the Boncelet’s algorithm performance inclgdis
algorithm due to Boncelet [3] known aBlock Arithmetic redundancy and limiting distribution of the phrase length.
Coding (BAC). Boncelet's algorithm is a variable-to-fixed A question arises how the Boncelet algorithm compares to
data compression scheme. To recall, a variable-to-fixegthenthe (asymptotically) optimal Tunstall algorithm. In Theor 1
encoder partitions a source string overqarary alphabet4d and Corollary 1 we provide an answer by first computing the
into a concatenation of variable-length phrases. Eachsphraedundancy of the Boncelet scheme (i.e., the excess of code
belongs to a given dictionary of source strings. A uniquelgngth over the optimal code length) and compare it to the
parsable dictionary is represented bgamplete parsing tree redundancy of the Tunstall code. Then in Theorem 2 we also
i.e., a tree in which every internal node has =il children prove that the phrase length of Boncelet's scheme obeys the
nodes. The dictionary entries correspond to ldmvesof the central limit law, as the Tunstall algorithm [10].
associated parsing tree. The encoder represents eacld parskiterature on Boncelet's algorithm ardiscretedivide and
string by a fixed length binary code corresponding to itsonquer recurrences is very scarce. To the best of our knowl-
dictionary entry. There are several well known variable-tedge, there is no precise redundancy analysis for the Bet'xel
fixed algorithms; e.g., Tunstall and Khodak schemes (cf], [L&lgorithm. In [3] some bounds on the average phrase length
[17], [25]). Boncelet's algorithm is based ondivide and are derived. The Central Limit Law for the phrase length
conquerstrategy, and therefore is fast and easy to implemeptesented in Theorem 2 is new, too. Furthermore, we believe
Arithmetic entropy coders have been intensively studied our contribution goes beyond analyzing precisely Bontelet
literature [9], [20], [21]. They are stream coders: an adoit algorithm performance. We accomplish it by developing a
long input sequence outputs a corresponding output streanethodology for solving generdliscretedivide and conquer
One disadvantage is that long input blocks are prone to trecurrences (cf. [11]). The literature @ontinuousdivide and
effect of transmission errors. Furthermore, in some applicconquer recurrence is very extensive [1], [6], [5], however
tions the encoding and decoding are too complicated to thee discrete version of the recurrence has received mush les
done in real time. On the other hand, Tunstall variable-taitention. Flajolet and Golin [13] and Cheung et al. [4] use
fixed length scheme requires searching a codebook to find gimilar techniques to ours, however, their recurrencesareh
most probable input sequence for the next splitting. To cisimpler and restricted tp; = 0.5 (see also [12], [16]). We
cumvent these difficulties, Boncelet designed a simpleddiviapply a combination of methods such as Tauberian theorems
and conquer scheme that we briefly describe next. and Mellin-Perron techniques.



[I. MAIN RESULTS proof requires powerful tools of analytic combinatoricElsu

Let us start with a succinct description of the Boncelet alg§S Dirichlet series [2], [24] and complex asymptotics [24].
rithm in terms of its parsing tree. We consider a memoryless©OUr first result concems the average redundancy of Bon-
source over a general alphabétof sizem with probabilities celt’s algorlthm. To present it succinctly, we need to idiroe
of symbols denoted gs; fori =1,...,m. some properties of;.

For fixed n (representing the number of leaves in the Definition 1: We say thatlog(1/p1),...,log(1/pm) are
parsing tree and hence also the number of distinct phrased@ionally related if there exists a positive real numbér
codewords), the algorithm in each step createsubtrees of SUch thatlog(1/p), ... .log(1/p,) are integer multiples of
predetermined number,, of leaves (phrases). This continued that is, log(1/p;) = n;L, n; € Z, (I < j <
recursively until less tham leaves are left. For example, for a™) Where ged(ni,...,ny,) = 1. Similarly, we say that
binary alphabet, at the roatis split into two subtrees with the 108(1/P1), .., log(1/p,) areirrationally related if they are

number of leaves, respectively, equalitp = |pyn + 8| and Not rationally related. . .
na = [pan — 8] for somes € (0, 1) that satisfie2p; +6 < 2. Example. If m = 1, then we are always in the rationally

Let {v1,...v,)} denote phrases of the Boncelet code th&glated case. In the binary case= 2, the numbersog(1/p1),

correspond to the paths from the root to leaves of tae(1/p2) are rationally related if and only if the ratio
parsing tree, and let(vy),..., £(v,) be the correspond- 108(1/p1)/log(1/p2) is rational.

ing phrase lengths. Furthermore, (if;, iz, . . . ,ig,)) (With  Theorem 1:Consider anm-ary memoryless source with
i; € {1,...,m}) encodes the path from the root to phrasgositive probabilitiesp; > 0 and the entropy rated =
vp We SetP(vk) = pipi, * Diy,,,- ThENP(v1),...,P(vn) S p;log(1/p;). Let d(n) = ED, denote the expected
sum up tol and represent a probability distribution on thehrase length of the binary Boncelet code.

phrases that corresponds to the distribution of phrases {irif log(1/p;),...log(1/p,) are irrationally related, then

a memoryless source. We denote By, the length of a 1 o

phrase corresponding to the probability distributinthat is, d(n) = =logn — = + o(1), (5)
P[D,, = £(vx)] = P(vg). Its probability generating function

is defined asC(n,y) = EyP» = 3", P(v;)y"*7). For a where H,

binary alphabet, the Boncelet splitting procedure leadthéo a=FE(0)-H- BYia (6)

following recurrence orC'(n,y) for n > 2 m . -
9 (n,y) - Hy = " pi 1og2pi, and E’(0) is the derivative ats =

C(n,y) =p1yC(lpin+98],y)+p2yC ([pen — ] ,y) (1) 0 of the Dirichlet seriesE(s) defined in (14) of Section lIl
(for a binary alphabet) representing the discrete natutbef
recurrence.

(i) If log(1/p1),...log(1/p,,) are rationally related, then

with initial conditionsC(0,y) = 0 andC(1,y) = 1 and some
d. Then the average phrase lengilin), defined ask D,, :=
d(n) = >27_, P(vj) £(v;) = C'(n,1) satisfies the following
recurrence d(n) = 1 logm _ & U(logn) .
= gy logn — ————+0(n™") ()
d(n) =1+pid([pin+0]) +pad([pon = 01) @) ¢, somen > 0, where¥(t) is a periodic function of bounded
with d(0) = d(1) = 0. In general, for anm-ary alphabet Vvariation that has usually an infinite number of discontiesi

recurrence (2) becomes For practical data compression algorithms, it is important
m to achieve low redundancy defined as the excess of the code
Cn,y) =y > pC([pin+8],y) (3) length over the optimal code lengti¥. For variable-to-fixed
; codes, the average redundancy is expressed as [10], [22]
where[z] is the quantized value af; in our case it is replaced R — logn H— logn
either by the floor function or the ceiling function. " ED, d(n)

~These recurrences (1)—(3) are special cases of a genga} previous results imply immediately the following.
divide and conquer recurrence of the following form: For corollary 1: Let R, denote the redundancy of the Boncelet

m>1,letpy,...,pm, b1,..., by anddy, ..., b, be positive ¢qde.
real numbers such that; < 1 for 1 < j < m. Then given (i) If log(1/p,),...log(1/pm) are irrationally related, then
T(0) <T(1) for n > 2 we set
Ha 1
T(n) =an+ Y _b;T(lpn+6;])+> T ([pjn+5}]) _ o ogn ogn
j=1 j=1 with « defined in (6).

(4) (i) If log(1/p1),...log(1/pm) are rationally related, then
where (a,,)n>2 iS @ knownnon-negativeand non-decreasing
sequence. We also assume @t +0; < 2 and2p; +46; < 1 R, = Ha+ Y(logn) +o (L) 9)
(for 1 < j < m). In the next section (cf. [11]) we present logn logn
in Theorem 3 a general solution of (4); we note that ithere¥(¢) is a periodic function of bounded variation.



We should compare the redundancy of Boncelet's algorithBoth approaches rely on the singular behavioﬂ:(()ﬁ). From
to asymptotically optimal Tunstall algorithm. From [10R2] this representation it is clear that the asymptotic behravio

we know that the redundancy of the Tunstall code is T'(n) will depend on the the the singular behaviorAffs) and
H H 1 the roots of (10) (that includey).
RT = —logH— =2 ) +o0 Actually, we have to deal with three different situations.
logn 2H logn

o _ _ _ - If o, < so, then the asymptotics df'(n) is driven by the
for |rr_at|0nal case; in the rathnal case there is also aog@i recurrence; in the case, = s, there is an interaction between
term in the leading asymptotics. the internal structure of the recurrence and the sequepce

Example. Considen = 1/3 andgq = 2/3. Then one computes (resonance); and in the casg > sy the asymptotic behavior

a = E'(0) — H — £2 ~ 0.322 while for the Tunstall code of a, dominates.

—log H — 2 ~ 0.0496. In [11] we proved a Master Theorem for our general discrete
2H divide and conquer recurrence that we state below in slightl
Finally, we deal with the limiting distribution of the phras simplified form.
length D,,. The proof is presented in the next section. Theorem 3 DISCRETEMASTER THEOREM): Let T'(n) be
Theorem 2:Consider a memoryless source generating the divide and conquer recurrence defined in (4), whgre
sequence of lengthh parsed by the Boncelet algorithm. Ifand b, are non-negative with; +- b > 0 and the sequence
(p1,.--,pm) is not uniformly distributed, then the phrasga,),>> is non-negative and non-decreasing. bet denote

length D,, satisfies the central limit law, that is, the abscissa of absolute convergence of the Dirichlet sserie
Dy, — Llogn A(s) and sy the real root of (10). lfo, > sy > 0 assume
4 — N(0,1), further thata,, is given bya,, = Cn(logn)® with C' > 0
(% — %) logn andmin{c, a} > 0 (that is,c, = 0).

i) If log(1/p1),...,log(1/py) are irrationally related, then

where N (0, 1) denotes the standard normal distribution, an (n) becomes as — oo

logn H, 1
ED, = —— +0(1), Var D,, ~ (———)logn Ci+0(1)
H o H if o, < 0 andso < 0,
for n — oo. Cylogn + Ch +o(1)
IIl. ANALYSIS AND ASYMPTOTICS if o4 < s9 andsg =0,

Cs(logn)** - (14 o(1))

We first present a general solution to out general discrete .
if 0q =89 =0,

divide and conquer recurrence (4). We use analytic tools, in

particular Dirichlet series. For our purpose, we define the Can® - (1+o0(1))

if 0, < spandsg > 0,

following Dirichlet series
wing bir ! Csn*o (log n)™+1 - (14 o(1)) (12)
~ =T +2)—T(n+1) ~ | = Gn2— Ant1 if 0, =50>0anda # —1,
T(s) = Zl ns , Als) = Zl ns : Csn® loglogn - (1 + o(1))
"= " if 0, =50>0anda = —1,
Recall thatu,, is non-negative and non-decreasing and we also ¢ (1ogn)*(1 + o(1))
assume thali; > 0 andb; > 0. If the sequence,, is constant if 0, =0 andsy <0,
(for n > ny) we seto, = —00. OtherW|se_We seb, = C7 n% (logn)® - (14 o(1))
inf{o : a, = O(n?)}. Theng, is the the abscissa of absolute if 0, > so andao, > 0,
convergencer, of A(s). Furthermore, lets, be the unique o
real solution of the equation where the explicitly computable constants
o Cy,C5,C3,C4,C5,C6,C7 are positive andCy is real.
Z(b' L) pt =1 (10) (i) If log(1/p1),...,log(1/py) are rationally related, then
3TV Py =

} T(n) behaves as in the irrationally related case with the
=t following two exceptions:
By using the Arka-Bazzi theorem [1] it follows thadt(n) =

O(nmaxiso.oa}te) for every e > 0. This means that the

Dirichlet seriesT'(s) converges fofR(s) > max{sg, o, }. We

Cylogn + Us(logn) +o(1) if o, < sp andsg = 0,
Py(logn)n® - (1+0(1)) if 0, < sp andsy >0,

: (13)
will prove below that we actually have whereC;, is positive and¥,(t), U4 (t) are periodic functions
- g(s) + B(s) with period L (with usually countably many discontinuities).
T(s) = 157 (b; +V,)p (11) We now briefly summarize main steps to establish Theo-
‘]71( J i) Dj

rem 3 and then provide a proof of Theorem 2.
for some analytic functiorB(s) that is analytic forR(s) >

max{so, 0.} — 1. For the precise asymptotic analysis, wé- Sketch of Proof of Theorem 3
appeal to the Tauberian theorem by Wiener-lkehara [7],,[19] We first apply the recurrence relation (4) to find the Diri¢hle
and an analysis based on the Mellin-Perron formula [2],.[24eriesT (s). To simplify our presentation, we assume thiat=



0, that it, we consider only the floor function on the right handingularity ats = o, (if o, > so) and a proper continuation

side of the recurrence (4). We thus obtain

T(s) = A(s)+

ns
=1

+2m:bj§:T(ij(n+2)+5jJ)—T(ij(n+1)+5jj).

et kt2-5
n= Li—’_ — jJ -2
pj
for some integelk. For thisk we have|p;(n+1) +4,] =
kE+1 and |p;(n+2)+4;| = k+ 2. For later use we split
betweenk < 0 andk > 1. Hence, setting

T(k+2) —T(k+1)
Gj(s) = )
3pj+5jz—2§k§0 (V%;(;jJ_z)
we obtain
= T (|pj(n+2)+6;]) — T (lp;(n+1) +
Zl (Lp;( ) .J)ns (Lps( ) +51)

ZT(k+2)—-T(k+1)
= (5] -)

We now compare the last sum p@f(s) and obtain

+

Tk+2)-Tk+1) =Tk+2)-Tk+1)

P ([%J—z) P (k/p;)°

where
E;i(s) = i(T(k +2)=T(k+1))
k=1
1 1
o)
Defining

:Zm:bjE,-(s) and G(s ZbG
j=1

we finally obtain the relation (cf. (11)
T(s) = A+ G — BGs)
1= 01 bp5
The same procedure applies if some of #jeare positive
leading to

(15)

~ . A(s)+G(s) - E(s)
Tl =1- >t (b + )y

with a slightly modified function€Z(s) and E(s).
By our previous assumptions, we know the analytic beh

iors of A(s) and (1 =21 b; pj) . A(s) has a pole-like

(16)

to a complex domain that contains the (punctuated) line
R(s) = 04, 8 # 04, cOmpare with [11]. On the other
hand, (1 — Z;":l b; pj)*1 has a polar singularity at = sg
(and infinitely many other poles on the link(s) = s

if the numberslog(1/p;) are rationally related), and also a
meromorphic continuation to a complex domain that contains
the lineR(s) = so. Heuristically, the asymptotic behavior (of
the partial sums) of the coefficients @f(s) is reflected by
the singular behavior of’(s). Recall thatT'(n) = O(n?)
implies that the serieg’(s) converges fofit(s) > o. Hence,

if s = o is a singularity ofT'(s), then we expect thal'(n)
behaves (more or less) likeZ. Actually there is a very precise
correspondence by Tauberian theorems (of Wiener-lkehmara a
Delange, see [7], [11], [19]) i is the only singularity on the
line R(s) = 0. Hence, Tauberian theorems can be applied if
thelog(1/p;) are irrationally related. In the rationally related
case the problem is more subtle but can be handled with the
help of the Mellin-Perron formula stated next (Theorem 4).

In our formulation we use Iverson’s notatid#] which is
1 if P is a true proposition and else.

Theorem 4 (see [2])For a sequencec(n) define the
Dirichlet seriesC(s) = > "7 | <) and assume that abscissa
of absolute convergence, is finite or —oo. Then for all
oc>o0,andallz >0

c(l=)) oy L
;c(n) + T[[:v €eZ] = Th_r)moo i) C(s)? ds.

Note that the Mellin-Perron formula enables us to obtain
precise information about the functict{v) = »° ., c(n)
if we know the behavior of:C(s). In our context we have
c¢(n) =T(n+2)—T(n), that is,

T(n)=T(2)+ lim — / C-HTT(S)@ ds (17)

T—oo 271 T

wheref(s) is given by (15). Informally, one shifts the line
of integration to the left and collects the contributionenfr
the residues of the (polar) singularities at= o,, s = so
and s = 0; if the log(1/p;) are rationally related there are
infinitely many polar singularities on the lifg(s) = so that
contribute to the periodic tern¥(¢). Details can be found in
[11].

B. Proof of Theorem 2

Finally we indicate the proof of Theorem 2 for the non-
symmetric binary case. For simplicity, we shall wriidor p;
andq for po =1 —p # p;.

We recall thatU(n, y) satisfies the recurrence (1) with initial
conditionsC(0,y) = 0 and C(1,y) = 1. It is clear that for
every fixed positive real number we can apply Theorem 3.
However, we have to be careful since we need an asymptotic

ayv-

representation fo€'(n,y) uniformly for y in an interval that
containsl in its interior. Note thaC'(n,1) = 1.



For the proof of Theorem 2, one has to consider tH&y the convergence theorem for the Laplace transform or

Dirichlet series

Cls,1) :Z C(n+2,y)—C’(n—|—1,y).

nS

n=1
For simplicity we just consider here the cage> 1. Then
C(s,y) converges fofR(s) > so(y), wheresy(y) denotes the
real zero of the equatiop(p**! + ¢°*1) = 1. We find

Goncharov theorem (see [24]) this proves the normal limitin
distribution asn — oo and also convergence of (centralized)
moments.
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—1)— E(s,
Cls,y) = 1(3 y(p.)9+l _,_(qsfz)’

where E(s,y) converges fofR(s) > so(y) — 1 and satisfies
E(0,y) =0 and E(s, 1) = 0.

Then by the Wiener-lkehara theorem only the residue dtl
so(y) contributes to the main asymptotic leading term. (Recal
that we just consider the cage> 1 and the irrationally related
case). We thus have

(y=1) = Bls.u)m-3/2
sL—ypt gt OV

 ((y—1) — E(s0(y),y))(n — 3/2)%®) )
N —So(y)(log(p)pSO(y)Jrl + 1Og(q)q50(y)+1)) (1 + (1))

(7]
The essential but non-trivial observation is that this gstptic
relation holds uniform for in an interval around. In order (8]
to make this precise we can use the Mellin-Perron formulg,

from Theorem 4
C —C(2 — et C L%)S d
(n,y) = (,y)+2 . (5,9) s
™ c—100 S

and apply the methods presented in [11] which can be madg
uniform in y; this works for the irrationally related case aj ]
well as for the rationally related case. Hence we find (in i
cases)

(3]
(4
(5]
(6]

C(n,y) ~ Res <

[10]

[13]
C(n,y) = (1+ Oy — 1))n*@ (1 + o(1))

14

uniformly for realy that are contained in an interval arounc[l ]
1; note that the casg < 1 can be handled similarly and leadd15]
to the same result. Finally by using the local expansion (16]

o) = L+ (5~ ) - 1P +0(-1°). (18)

and by settingy = e¢!/(°s™""* e obtain 18]

s 1 Hy 1\¢ 3/ 19
n*W = exp <Et logn + <ﬁ — E) 35 +O0(t°/ 10g”)>[ ]
[20]

and consequently
[21]

B {eDnt/\/m} —C (7% et/\/m)
[22]

2
exp <%t logn + <% - %) %) (14 o(1)).
Hence, we arrive at
E {etwn—% 1ogn>/¢m} — o~ (t/H)VIogoR {ew/m
(19)

[23]
[24]

[25]

M
T

e (

) +o(1).
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