
Deinterleaving Markov Processes:
the Finite-Memory Switch Case

Gadiel Seroussi
Hewlett-Packard Laboratories

Palo Alto, CA, USA
Email: gseroussi@ieee.org

Wojciech Szpankowski
Purdue University,

West Lafayette, IN, USA
Email: spa@cs.purdue.edu

Marcelo J. Weinberger
Hewlett-Packard Laboratories

Palo Alto, CA, USA
Email: marcelo.weinberger@hp.com

Abstract—We study the problem of deinterleaving a set of
finite-memory (Markov) processes over disjoint finite alphabets,
which have been randomly interleaved by a finite-memory switch,
extending previous results obtained for the case of a memoryless
switch [1]. The deinterleaver has access to a sample of the
resulting interleaved process, but no knowledge of the number
or structure of the Markov processes, or of the switch. We
study conditions for uniqueness of the interleaved representation
of a process, showing that certain switch configurations can
cause ambiguities in the representation, in addition to those
caused by memoryless component processes, which were known
in the memoryless switch case. We show that a deinterleaving
scheme based on minimizing a penalized maximum-likelihood
cost function is strongly consistent also in the finite-memory
switch case, in the sense of reconstructing, almost surely as the
observed sequence length tends to infinity, a set of component and
switch Markov processes compatible with the original interleaved
process. Furthermore, under certain conditions on the structure
of the switch, we show that the scheme recovers all possible
interleaved representations of the original process. Experimental
results are presented demonstrating that the proposed scheme
performs well in practice, even for relatively short input samples.

I. INTRODUCTION

Problems in applications such as data mining, computer se-
curity, and genomics, often require the identification of streams
of data from different sources, which may be intermingled or
hidden (sometimes purposely) among other unrelated streams.
The source identification problem studied in this paper is
motivated by these applications (more detailed descriptions
of the applications can be found in [2], [3]).

Let A1, A2, . . . , Am be finite, nonempty, disjoint alpha-
bets, let A = A1 ∪A2 ∪ · · ·Am, and Π = {A1, A2, . . . , Am}.
We refer to the Ai as subalphabets, and to Π as a partition, of
A. For a ∈ A, we denote by AΠ(a) the alphabet Ai ∈ Π such
that a ∈ Ai. The notation is extended to strings; for a string ut

over A, we write AΠ(ut) = AΠ(u1),AΠ(u2), . . . ,AΠ(ut).
Also, for A′ ⊆ A, and a string u over A, we denote
by u[A′] the string over A′ obtained by deleting from u
all symbols that are not in A′. Consider m independent,
finite-memory (Markov) component processes P1, P2, . . . , Pm,
defined, respectively, over A1, A2, . . . , Am, and of respec-
tive orders k1, k2, . . . , km, i.e., for 1 ≤ i ≤ m and any
sequence xt = x1 x2 . . . xt ∈ (Ai)

t, t > ki, we have
Pi(xt|xt−1) = Pi(xt|xt−1

t−ki
), and we assume that ki is the

least integer for which this property holds. Consider also a

finite-memory switch process Pw, of order kw, independent
of the component processes, and defined over the alphabet
Π.1 We define the interleaved Markov process (IMP) P ∆

=
IΠ(P1, P2, . . . , Pm;Pw) as follows: Given zt ∈ At, t ≥ 1,
and assuming AΠ(zt)=Ai, we have

P (zt|zt−1) = Pw(Ai|AΠ(zt−1))Pi(zt|zt−1[Ai]) . (1)

For simplicity, in (1), we assume that every conditioning string
over Ai (including the empty string λ), defines a state of Pi,
and similarly for Pw. This is accomplished, for instance, by
defining an arbitrary but fixed initial state for each process.2

Together with the convention P (λ) = 1, these assumptions
and (1) completely define the process P . Intuitively, at each
time instant t, a subalphabet Ai ∈ Π is selected according to
Pw, which updates its state, and the next output sample zt is
selected from Ai according to the corresponding process Pi,
which also updates its state. The states of the other component
processes remain unchanged.

Given a sample zn from P , the problem of interest is to
reconstruct the alphabet partition Π, and, consequently, the
original sequences from the Markov processes, and the se-
quence of switch selections. As a byproduct of our interleaving
scheme, we will also recover the orders of all the finite-
memory processes involved.

We refer to IΠ(P1, P2, . . . , Pm;Pw) also as an IMP
representation of P . We say that a partition Π′ of A
is compatible with P , denoted Π′ ∼ P , if there exist
finite-memory processes P ′1, P

′
2, . . . , P

′
m′ , P ′w such that P =

IΠ′(P ′1, P
′
2, . . . , P

′
m′ ;P ′w). An IMP may be compatible with

more than one partition, i.e., we may have Π ∼ P and Π′ ∼ P
with Π 6=Π′. We refer to this situation as an ambiguity in
the IMP representation of P . For conciseness, in the sequel,
unless specified otherwise, P = IΠ will denote the IMP
IΠ(P1, P2, . . . , Pm;Pw), with Π = {A1, A2, . . . , Am}, and

1Markov processes are assumed to be time-homogeneous and ergodic,
but not necessarily stationary, as we assume fixed initial states. Marginal
probability notations (e.g., Pi(u) for a string u) represent the steady-state
probabilities of their arguments. We further assume that all symbols a ∈ A
(and thus all subalphabets A ∈ Π) occur infinitely often, and their steady
state marginal probabilities are positive.

2The simplifying assumption on the initial states is not essential, and all the
results of the paper carry to the cases of more general initial state distributions.
Given our ergodicity assumptions, the initial conditions of the system are, in
effect, immaterial to the main results of the paper.

P ′ = IΠ′ will denote the IMP IΠ′(P ′1, P
′
2, . . . , P

′
m′ ;P ′w), with

Π = {A′1, A′2, . . . , A′m′}.
The deinterleaving problem was studied, for the case of

memoryless switches, in [1], where a complete characteriza-
tion of ambiguities for this case was presented, and a deinter-
leaving scheme based on minimizing a penalized maximum-
likelihood (ML) cost function was proposed, and shown to be
strongly consistent. In this paper, we extend the results of [1] to
general finite-memory switches. We first study, in Section III,
the issue of representation uniqueness and ambiguities. We
show that the ambiguity landscape is significantly more in-
tricate in the finite-memory switch case, as ambiguities may
arise from a so-called alphabet domination phenomenon that
cannot occur in the memoryless switch case, in addition to am-
biguities due to memoryless component processes, which were
identified in [1]. Even when focusing on the latter type of am-
biguity, the characterization turns out to be more complex for
switches with memory, as ambiguous representations involving
memoryless processes can arise from parameter dependencies
in the switch. In Section IV we present our deinterleaving
scheme, which, as in [1], is based on minimizing a penalized
ML cost function. We show that the scheme is strongly
consistent in the sense of producing, almost surely as n→∞,
a partition compatible with P . In the domination-free case
(i.e., when the switch is such that alphabet domination does
not arise), the scheme produces, almost surely, a canonical
partition from which all IMP representations of P can be
derived. In Section V, we present experimental results showing
that the proposed scheme performs well in practice, even for
relatively short input samples.

The deinterleaving problem for the case where all processes
involved are of order one had been previously studied in [2],
where an approach was proposed that could identify a valid
IMP presentation of P with high probability as n→∞ (the
approach as described cannot identify multiple valid solutions
when they exist). For the case of a switch with memory,
the scheme of [2] imposes the condition that every state of
the switch have a self transition of positive probability. This
condition implicitly eliminates alphabet domination, but is
stronger than needed to do so, or to preclude ambiguities. An
experimental comparison of ML-based deinterleaving with the
scheme of [2] for the memoryless switch case was presented
in [1], showing a much faster convergence for the ML-based
scheme. As [2] does not specify the choices of certain crucial
practical parameters, an implementation of the scheme for
switches with memory was not readily available, and a similar
comparison is omitted here.

II. ADDITIONAL DEFINITIONS, NOTATION

We denote by ord(PM) the minimal order of a finite-
memory process PM over an alphabet A, and by S(PM) the
set of states of PM , represented as k-tuples over A, where
k = ord(PM). We allow for some conditional probabilities
PM (uk|uk−1

0) to be zero. Thus, some k-tuples uk may be non-
reachable (i.e., PM (uk) = 0); such k-tuples are excluded from
S(PM) (all states are assumed to be reachable and recurrent).

Consider the IMP P = IΠ(P1, P2, . . . , Pm;Pw). We define
the vector k = (k1, k2, . . . , km, kw), where kj = ord(Pj) for
j ∈ {1, 2, . . . ,m,w}; we refer to k as the order vector of P .

We will generally denote sequences (or strings) over A with
lower case letters, e.g., u ∈ A∗, and sequences over Π with
upper case letters, e.g., U ∈ Π∗. For a sequence Un ∈ Πn,
and a sequence un ∈ An, we say that un is consistent with
Un if ui ∈ Ui, 1 ≤ i ≤ n. Clearly, if Pw(Un) > 0, there
exist sequences un consistent with Un with P (un) > 0;
conversely, every sequence un with P (un) > 0 defines a
sequence Un = AΠ(un) ∈ Πn, such that un is consistent
with Un and Pw(Un) > 0.

III. UNIQUENESS OF IMP REPRESENTATIONS

A. Alphabet domination
Let A, B be arbitrary subalphabets in Π. We say that A

dominates B (relative to Pw) if there exists a positive integer L
such that for all U ∈ Π∗, if Pw(U) > 0, then U [{A,B}] does
not contain any run of more than L consecutive occurrences
of B. In other words, Pw is such that if we have seen
L occurrences of B without seeing one of A, then with
probability one Pw will emit an occurrence of A before it
emits another occurrence of B. We denote the domination
relation of A over B as A A B, dependence on Pw being
understood from the context; when A does not dominate B,
we write A 6A B (thus, for example, A 6A A). We say that A is
dominant (in Π, relative to Pw) if either m = 1 (i.e., Π = {A})
or A A B for some B ∈ Π, and that A is totally dominant
if either m = 1 or A A B for all B ∈ Π \ {A}. If A A B
and B A A, we say that A and B are in mutual domination,
and write AA@B. It is readily verified that domination is an
irreflexive transitive relation. When no two alphabets are in
mutual domination, the relation defines a strict partial order
(see, e.g., [4]) on the finite set Π. We shall make use of the
properties of this strict partial order in the sequel.

Domination can occur only if some transition probabilities
in Pw are zero (therefore, it never occurs when Pw is memory-
less). It is readily verified, for instance, that if ord(Pw)=1 and
Pw(A|A)>0 for all A∈Π, then no domination arises. However,
this condition, which was imposed in [2], is too stringent to
eliminate domination, and as a condition for uniqueness. More
examples of domination and its effect on ambiguities will be
presented in Example 1 below.

The main properties of the domination relation are formally
studied in the full version of the paper. The following informal
statement about an IMP P = IΠ summarizes some important
properties, which derive immediately from our ergodicity and
independence assumptions, and are drawn upon repeatedly in
our study of IMP ambiguities.

Fact 1: If A1 6A A2, the interleaved system can always
take a trajectory (of positive probability) where it reaches an
arbitrary state s of P1, and then, without returning to A1, visits
any desired part of A2 any desired number of times (while the
state of P1 remains, of course, unchanged). The last part of
the trajectory is independent of s, or even of the fact that A1

was visited in the first part.

2

B. Conditions for uniqueness

In this subsection, we derive sufficient conditions for the
uniqueness of IMP representations, and show how ambiguities
may arise when the conditions are not satisfied.

The following terminology will help in the discussion of
non-unique IMP representations. Let Π and Π′ be partitions
of A. We say that two alphabets Ai, Aj ∈ Π share an alphabet
A′` ∈ Π′ if A′` intersects both Ai and Aj . We say that Ai ∈ Π
splits in Π′ if A′j ⊆ Ai whenever A′j ∈ Π′ and A′j ∩ Ai 6= φ
(thus, Ai is partitioned into subalphabets in Π′).

Lemma 1: Assume that Π ∼ P , Π′ ∼ P , and Π 6= Π′.
Assume also that A1 6∈ Π′, A1 is not totally dominant, and
A1 does not dominate any alphabet Aj , j 6= 1 that shares
some A′` with A1. Then, P1 is memoryless.

Proof outline: Assume A1 shares A′` with Aj . Let a ∈
A1 ∩ A′`, and s ∈ S(P1). The assumption that A1 6A Aj , and
the properties summarized in Fact 1 guarantee the existence of
strings U, V ∈ Π∗ and u, v ∈ A∗ such that u is consistent with
U , u[A1] = ũs for some ũ ∈ A∗1, A1 does not occur in V ,
Pw(A1|UV) > 0, v is consistent with V and is independent
of s, and |v[Aj ∩ A′`]| ≥ ord(P ′`). Computing probabilities
according to the two given IMP representations, IΠ and IΠ′ ,
of P , we obtain

P (a|uv) = P1(a|s)Pw(A1|UV) = P ′`(a|v[A′`])P
′
w(A′`|U ′V ′),

where U ′V ′ = AΠ′(uv). It follows that P1(a|s) is indepen-
dent of s. Using similar tools, and relying also on the fact that
A1 is not totally dominant, this independence can be proved
also for the case where a ∈ A′` ∈ Π′ and A′` ⊆ A1, thus
establishing the fact that P1 is memoryless.

Corollary 1: Assume that Π ∼ P , Π′ ∼ P , Π 6= Π′, A1 6∈
Π′, and A1 is not dominant. Then, P1 is memoryless.

In the sequel, we assume that Pw is such that no two
alphabets in Π are in mutual domination. As discussed in
Section III-A, this ensures that A defines a strict partial order
on Π. We classify alphabets in Π into layers Li, i≥0, using
the following procedure, which starts with i=0 and Π̂=Π:

1) Let Li consist of all the alphabets in Π̂ that do not dom-
inate other alphabets in Π̂ (i.e., the minimal elements in
Π̂ for the partial order A). Since Π̂ is finite and A is a
strict partial order, Li is not empty.

2) Let Π̂ = Π̂ \ Li.
3) If Π̂ 6=φ, increment i and go to Step 1. Otherwise, stop.
Theorem 1: Assume that, for an IMP P = IΠ,
i) no two alphabets in Π are in mutual domination,

ii) no alphabet in Π is totally dominant, and
iii) none of the processes Pi is memoryless.

Then, if P = IΠ′ for some partition Π′, we must have Π = Π′.
Proof: Let r denote the largest index i attained in Step 3

above, i.e.,
Π = L0 ∪ L1 ∪ · · · ∪ Lr . (2)

We prove, by induction on i, that Li ⊆ Π′ for 0 ≤ i ≤ r. By
the definition of L0, alphabets Ai ∈ L0 are not dominant.
Thus, by Corollary 1, we must have Ai ∈ Π′, since Ai

is not memoryless by assumption (iii). Hence, L0 ⊆ Π′.

A B
1



1

D

C
1 

1 *A

AD

*B

BD
(1) (1)

1

 (1)



1



(a) (b)

(1)

Fig. 1. Switches for non-unique IMP representation.

Assume now that the induction claim has been proven for
L0, L1, . . . , Li, i < r. Let Aj be any alphabet in Li+1. It
follows from the definition of the layers Li′ that Aj only
dominates alphabets in layers Li′ , i′ ≤ i. By our induction
hypothesis, alphabets in these layers are elements of Π′, and,
thus, they do not share with other alphabets. Thus, Aj does
not dominate any alphabet Ah with which it shares any A′`.
By Lemma 1, we must have Aj ∈ Π′, since Aj is neither
totally dominant nor memoryless by the assumptions of the
theorem. Hence, Li+1 ⊆ Π′, and our claim is proven. Thus, it
follows from (2) that Π ⊆ Π′, and, since both Π and Π′ are
partitions of the same alphabet A, we must have Π = Π′.

Example 1: We consider alphabets A,B,D, and C =
A ∪ B, and respective associated processes PA, PB , PD, PC .
Part (a) of Fig. 1 shows a switch Pw of order 1 over
Π = {C,D}. Here, PC is in itself an interleaved process PC =
I{A,B}(PA, PB ;PC

w) with PC
w (A|A) = 1−µ, PC

w (B|A) = µ,
PC

w (A|B) = 1, for µ ∈ (0, 1) and PB chosen as a memoryless
process so that PC has finite memory. Part (b) shows a switch
P ′w of order two over Π′ = {A,B,D}. State ∗A (resp. ∗B)
represents all states that end in A (resp. B). It is readily
verified that P = IΠ(PC , PD;Pw) = IΠ′(PA, PB , PD;P ′w).
C is totally dominant in IΠ, and there are no memoryless
processes nor mutually dominating alphabets in IΠ; A, on the
other hand, is totally dominant in IΠ′ .

C. Ambiguities due to memoryless components

In this subsection, we remove Condition (iii) of Theorem 1,
while strengthening Conditions (i) and (ii) by excluding all
forms of alphabet domination. We characterize all the repre-
sentations of an IMP when ambiguities, if any, are due solely
to memoryless components. The characterization generalizes
that of [1] for a memoryless switch.

We say that a partition Π′ is a refinement of Π if every
subalphabet Ai ∈ Π splits into one or more subalphabets
in Π′. Let k be a nonnegative integer, and consider the
sets S = Πk and S ′ = (Π′)k (where, by convention,
Π0 = (Π′)0 = {λ}). When Π′ is a refinement of Π, we define
the mapping ΨΠ,Π′,k : S ′ → S as follows: for k = 0, we have
ΨΠ,Π′,0(λ) = λ, and for k > 0 and all B′1B

′
2 . . . B

′
k ∈ S ′, we

have ΨΠ,Π′,k(B′1B
′
2 . . . B

′
k) = Ai1Ai2 . . . Aik , where Aij is

the unique element of Π such that Bj ⊆ Aij . We will omit
some or all of the subscripts Π,Π′, k of Ψ when clear from
the context.

Lemma 2: Let Π = {A1, A2, . . . , Am}, and consider the
refined partition Π′ = {B1, B2, A2, . . . , Am} of A (i.e., A1 =
B1 ∪ B2). Let P = IΠ(P1, P2, . . . , Pm;Pw), where P1 is
memoryless, and let P ′ = IΠ′(P

(1)
1 , P

(2)
1 , P2, . . . , Pm;P ′w),

where both P (1)
1 and P (2)

1 are memoryless. Then, there exist

3

initial state assignments such that P = P ′ if and only if the
following conditions hold:

P
(j)
1 (b) =

P1(b)

P1(Bj)
, b ∈ Bj , j ∈ {1, 2}, (3)

S(P ′w) = {S′ ∈ (Π′)kw
∣∣Ψ(S′)∈S(Pw)}, (4)

where kw=ord(Pw), and for all A∈Π′ and S′∈S(P ′w), with
S=Ψ(S′),

P ′w(A|S′) =

{
Pw(A|S), A = Ai, i ≥ 2,

Pw(A1|S)P1(Bj), A = Bj , j = 1, 2 .
(5)

Lemma 2 is interpreted as follows: since, given IΠ,
P

(1)
1 , P

(2)
1 , and P ′w can always be defined to satisfy (3)–(5), an

IMP P with a nontrivial memoryless component always admits
alternative representations where the alphabet associated with
the memoryless process has been split into disjoint parts (the
split may be into more than two parts, if the lemma is applied
repeatedly). We refer to such representations as memoryless
refinements of the original representation IΠ. Using the lemma
repeatedly, we conclude that P admits a refinement where
all the memoryless components are defined over singleton
alphabets. We will refer to this representation as maximally
refined. On the other hand, the memoryless components P (1)

1

and P (2)
1 of P ′ can be merged if and only if P ′w satisfies the

constraint
P ′w(B2|S′) = γP ′w(B1|S′) (6)

for a constant γ independent of S′ ∈ S(P ′w). When (6) holds,
we set P1(B1) = 1/(1 + γ) and P1(B2) = γ/(1 + γ), and
P1, Pw are defined implicitly by (3)–(5). Notice that the con-
straint (6) is trivially satisfied when the switch is memoryless.
Thus, in this case, memoryless component processes can be
split or merged arbitrarily to produce alternative IMP represen-
tations, as noted in [1]. When the switch has memory, splitting
is always possible, but merging is conditioned on (6). We refer
to a representation where no more mergers of memoryless
processes are possible as minimally refined. We refer to the
partition associated with a minimally refined representation as
canonical (relative to P).

We say that the representations IΠ and IΠ′ of an IMP P
coincide up to memoryless components if the set of component
processes of positive order is the same in both representations.
The following lemma follows from the conditions imposed by
Lemma 2 on representations that coincide up to memoryless
components. The proof is given in the full paper.

Lemma 3: Let IΠ and IΠ′ be IMP representations of a
process P that coincide up to memoryless components, and
such that both are minimally refined. Then, Π = Π′.

We denote the canonical partition associated with an IMP
P = IΠ by (Π)∗P . Also, we say P is domination-free if there
is no alphabet domination in any IMP representation of P .

Theorem 2: Let P = IΠ and P ′ = IΠ′ be IMPs over
A. Assume, furthermore, that P and P ′ are domination-free.
Then, P = P ′ if and only if (Π)∗P = (Π′)∗P ′ .

Proof: Assume P = P ′. Since there are no dominant
alphabets in either representation, it follows from Corollary 1

that the representations must coincide up to memoryless com-
ponents. It then follows from Lemma 3 that (Π)∗P = (Π′)∗P =
(Π′)∗P ′ . The “if” part follows directly from Lemma 2 and the
definition of a minimally refined partition.

Theorem 2 states that, in the domination-free case, all the
IMP representations of a process are those constructible by
sequences of the splits and mergers allowed by Lemma 2.
The theorem extends the results in [1], since it reduces to the
characterization of ambiguities therein when the switches are
memoryless.

IV. DEINTERLEAVING SCHEME

Let P = IΠ be an IMP with associated order vector k =
(k1, k2, . . . , km, kw). Define αi = |Ai|. Similarly to [1], it can
be shown that given Π and k, there exists a finite-state machine
(FSM) Fk(Π) (in general, with infinite memory), with at most
Q(Π,k) =

∑m
i=1(αi − 1)αki

i + (m − 1)mkw free statistical
parameters, such that Fk(Π) generates P .

Given a finite alphabet A, a sequence ut ∈ At, and a
nonnegative integer k, denote by Ĥk(ut) the kth order (unnor-
malized) empirical entropy of ut, Ĥk(ut) = − logPML

k (ut),
where PML

k (ut) is the ML (or empirical) probability of ut

under a kth order Markov model with a fixed initial state.
Let zn be a sequence over A. We define the deinterleaved

sequence vector DΠ(zn) = (z1, z2, . . . , zm,Zw), where zi =
zn[Ai], 1 ≤ i ≤ m, and Zw = AΠ(zn) ∈ Πn . Given the
partition Π, and an order vector k, we define the cost of zn

relative to Π and k as

CΠ,k(zn) =

m∑
i=1

(
Ĥki

(zi) + β(αi − 1)αki
i log n

)
+Ĥkw(Zw) + β(m− 1)mkw log n , (7)

where β is a nonnegative (penalization) constant. For conve-
nience, we set the penalty terms in (7) all proportional to log n,
rather than the term corresponding to zi being proportional to
log |zi|. Given our assumptions on Pw, |zi| will, almost surely,
be proportional to n, so this simplifying assumption does not
affect the main asymptotic results.

Given a sample zn from an IMP P , our deinterleaving
scheme estimates a partition Π̂(zn), and an order vector
k̂(zn), for the estimated IMP representation of P . The desired
estimates are obtained by the following rule:

(Π̂(zn), k̂(zn)) = arg min
(Π′,k′)

CΠ′,k′(zn), (8)

where (Π′,k′) ranges over all pairs of partitions of A
and order vectors k′. In the minimization, if CΠ′,k′(zn) =
CΠ′′,k′′(zn), for different pairs (Π′,k′) and (Π′′,k′′), the tie
is broken first in favor of the partition with the smallest number
of alphabets. Notice that although the search space in (8) is
defined as a Cartesian product, once a partition Π′ is chosen,
the optimal process orders k′j are determined independently
for each j ∈ {1, 2, . . . ,m,w}, in a conventional penalized
ML Markov order estimation procedure (see, e.g., [5]). Also,
it is easy to verify that the optimal orders k̂j must be O(log n),
reducing the search space for k′ in (8).

4

Theorem 3: Let P = IΠ. Then, for suitable choices of
the penalization constant β, Π̂(zn) is compatible with P , and
k̂(zn) reproduces the order vector of the corresponding IMP
representation IΠ̂, almost surely as n → ∞. Furthermore, if
P is domination-free, we have

Π̂(zn) = (Π)∗P a.s. as n→∞ .

Theorem 3 states that our scheme, when presented with
a sample from an interleaved process, will almost surely
recover an alphabet partition compatible with the process. If
the interleaved process is domination-free, the scheme will
recover the canonical partition of the process, from which all
compatible partitions can be generated via repeated applica-
tions of Lemma 2.

The following lemma will be useful in proving the first
claim of Theorem 3. The proof, omitted here, follows along
lines similar to those of the proof of Theorem 2 in [1].

Lemma 4: Let P = IΠ, and let k = (k1, k2, . . . , km, kw)
be the corresponding order vector. Let Π′ be a partition of
A incompatible with P , and k′ an arbitrary order vector of
dimension |Π′| + 1. Then, for a sample zn from P , and for
any choice of β ≥ 0, we have

CΠ′,k′(zn) > CΠ,k(zn) a.s. as n→∞ .

The following lemma, in turn, will be useful in establishing
the second claim of Theorem 3.

Lemma 5: Let Π, Π′, IΠ and IΠ′ be as defined in Lemma 2,
so that IΠ′ is a memoryless refinement of IΠ. Let k =
(0, k2, . . . , km, kw) be the order vector corresponding to IΠ,
and k′ = (0, 0, k2, . . . , km, kw) that of IΠ′ . For a sample zn

from P , and an appropriate choice of β, we have: if kw > 0,
then

CΠ′,k′(zn) > CΠ,k(zn) a.s. as n→∞ , (9)

while if kw = 0, then
CΠ′,k′(zn) = CΠ,k(zn) . (10)

Proof outline: Since Π′ is a refinement of Π, we have
PML

Π′ (zn) ≥ PML
Π (zn), where PML

Π and PML
Π′ denote maximum

likelihood probabilities with respect to the representations IΠ

and IΠ′ , respectively. It is not hard to see that PML
Π (zn) coin-

cides with the ML probability of yet another representation
of the same process, namely one with partition Π′, same
component processes as IΠ′ , but a switch process with state
set S(Pw) (where states of S(P ′w) have merged according to
the mapping Ψ) and such that the ratio of the conditional
probabilities of B1 and B2 is independent of the conditioning
state. This model has the same number of parameters as IΠ.
Thus, the comparison between CΠ′,k′(zn) and CΠ,k(zn) is
equivalent to a comparison between penalized ML probabil-
ities for two switch models on alphabets of size m + 1, one
which is Markov of order kw, and one with the above merger
in the state set and the additional constraint on the conditional
probabilities of B1 and B2, when the true process is on the
merged state set and does satisfy the additional constraint.
The Markov process of order kw is therefore refined in two
ways to create the alternative (true) model, and the penalized

ML comparison corresponds to an MDL-like test of the two
models. When kw = 0, the refinement is trivial, implying (10).
When kw > 0, the first type of refinement (i.e., on the state
set) is addressed in [6], where the strong consistency of this
type of test is shown. The second type of refinement (i.e.,
ignoring a constraint on the conditional probabilities) can be
analyzed with similar tools, yielding (9).

Proof outline for Theorem 3: The first claim of the the-
orem is proved along the same lines as the proof of Theorem
3 in [1], separating the error event into two categories: one
involving a bounded number of erroneous hypotheses, and
one in which the number of parameters in each erroneous
hypothesis is large. The first category is handled by Lemma 4,
whereas the second category is handled as in [6]. The second
claim of the theorem is proved by applying Lemma 5, which
implies that in the domination-free case, the canonical partition
beats other compatible partitions with more sub-alphabets.
When kw>0, this follows from (9), while when kw=0, it
follows from (10) and our tie-breaking convention.

V. EXPERIMENTAL RESULTS

n (a) (b)
500 8.5% 48.0%

1000 54.0% 96.0%
2500 99.5% 100.0%
5000 100.0% 100.0%

10000 100.0% 100.0%

Fig. 2. Experimental results

We report on experiments
showing the practical perfor-
mance of the proposed deinter-
leaver. In the experiments, we
measured deinterleaving success
ratio for sequences of various
lengths. For each length, 200 sequences were tested. Each
sequence was generated by an IMP with m=3, sub-alphabet
sizes α1=4, α2=5, α3=6, component Markov processes of
order one with randomly chosen parameters, and a switch
of order one with uniform single-symbol marginal distribu-
tion. We compare results for two variants of the proposed
scheme. Variant (a) implements (8) via exhaustive search over
all partitions. Since this is rather slow, variant (b) uses a
randomized gradient descent-like heuristic, which is much
faster, and achieves virtually the same performance (for shorter
sequences, the heuristic sometimes finds the correct partition
even when it is not the one that minimizes cost; this explains
the slightly better performance compared to the exhaustive
search). Figure 2 lists the percentage of sequences correctly
deinterleaved by each variant for each sequence length.
Acknowledgment. W. Szpankowski’s work was partially done while
visiting HP Labs, Palo Alto, CA, and also supported by NSF STC
Grant CCF-0939370.

REFERENCES
[1] G. Seroussi, W. Szpankowski, and M. J. Weinberger, “Deinterleaving

Markov processes via penalized ML,” in ISIT, 2009, pp. 1739–1743.
[2] T. Batu, S. Guha, and S. Kannan, “Inferring mixtures of Markov chains,”

in COLT, 2004, pp. 186–199.
[3] N. Landwehr, “Modeling interleaved hidden processes,” in ICML ’08:

Proceedings of the 25th International Conference on Machine Learning.
New York, NY, USA: ACM, 2008, pp. 520–527.

[4] R. P. Stanley, Enumerative Combinatorics. Cambridge: Cambridge
University Press, 1997, vol. 1.

[5] I. Csiszár and P. C. Shields, “The consistency of the BIC Markov order
estimator,” Annals of Stat., vol. 28, pp. 1601–1619, 2000.

[6] M. J. Weinberger and M. Feder, “Predictive stochastic complexity and
model estimation for finite-state processes,” Journal of Statistical Plan-
ning and Inference, vol. 39, pp. 353–372, 1994.

5

