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Abstract—We study the minimax redundancy of universal for family S as follows
coding for large alphabets over memoryless sources and prest
two main results: We first complete studies initiated in Orlitsky R;,(S) = min sup max [L(Cy, x7) + log P(z7)] . 1)
and Santhanam [11] deriving precise asymptotics of the mimhax Cn Pes
redundancy for all ranges of the alphabet sizes. Second, we Our goal is to derive precise results for the worst case
consider the minimax .r.edundar)cy of a source model in which minimax redundancyR* (M) for memoryless sources/,
some symbol probabilities arefixed The latter model leads to L . . .
an interesting binomial sum asymptotics with super-exponetial Whe_n the alphabet size: varies withn. We also StUd_y this
growth functions. Our findings could be used to approximate Minimax redundancy when some of the parameterdizeel
numerically the minimax redundancy for various ranges of tre  Suchconstrainedfamilies of sources arise in applications in
sequence length and the alphabet size. These results are abied  which we do have partial knowledge of the data generating
by analytic teqhnlques such as tree-like generating funains and mechanism and, consequently, we want to pay a redundancy
the saddle point method. . .
corresponding to the smallest possible number of parameter
(see, e.g., [17] for another example of a constrained family
The worst case minimax redundanéy; (S), for a family
Many applications of universal compression concefsf sourcesS was studied by Shtarkov [14] who found that,
sources such as speech and image whose alphabets are ligggering the integer length constraint (cf. [4]),
often comparable to the length of the source sequences. Yet
most analyses of universal schemes deal with finite, pgssibl
binary, alphabets with exception of [1], [8], [10], [12], 1L
[13]. In this work, we study the worst-case minimax redun-
dancy (regret) for unbounded alphabets and present predisgS = M, we writed,, ,,, := log D,, ., (M) for R} (My),
asymptotic results as the size of the alphabet and the lerigtiihat is,
the source sequence grow to infinity. To recall, the reduaglan
of universal codes for a class of sources determines by how _ _ n
much the actual code length exceeds the optimal code length. dnm = 108 Dnm(Mo) = log ; pse% Plet)
In the minimax scenario one designs the best code for the _ ) b
source with the worst redundancy. Such minimax redundancy" this paper, we first consider the minimax redundancy over

comes in two flavors: average minimax or worst case minimak€ alphabetd U B with |A| = m and |B| = M, where the
We investigate here the latter. symbol probabilities of3 are fixed whilem may be large.

A fixed-to-variable code”, : A" — {0,1}* is an injective We shall denote such a family of constrained (memoryless)

mapping from the sed” of all sequences of length over SOUrCES k?yMO-l We also writedy,m, v = 10g Dy, v, for
the finite alphabet4 of size m = |A| to the set{0,1}* Such a minimax redundancy, and prove
of all binary sequences. A sourd@ generates a sequence LU
of length n, denoted as} € A", and we writeL(C,,, z7) Dym,m = Z (k)pk(l —p)" "Dy 2
for the code length forz}. The source entropyd,(P) = k=0
—2_qn P(27)log P(27) is the absolute lower bound on thewherep = 1 — P(B) and Dy, ,,, = 2% In order to estimate
expected code length, wheles := log, throughout the paper it asymptotically we need a quite precise understandingef t
will denote the binary logarithm. Thgointwise redundancis  asymptotic behavior oD,, .,, for largen andm.

The minimax redundancy,, ,,, for large alphabet sizen
was studied by Orlitsky and Santhanam [11] who established
n) andn = o(m), as

I. INTRODUCTION

R;(S) =log [ > sup P(af)
o Pes

R,(Cy, P;x}) = L(Cy, x7) + log P(x}).

In practice, one can only hope to have some knowledge aboﬁ‘?ﬁd'ng term asymptotics fam = o
famlly of sourcesS that gene_rates real data (e.g., memOryleSSlNote that the families of source$t, and /\70 are defined over different
SOL!rceS/\/IO)' Followmg Da\{lsson [3] .and Shtarkov [14] Wealphabets. In addition, the family1 is constrained in that the probabilities
define the worst case (maximal) minimax redundaR¢yS) of symbols in take fixed values.



well as bounds forn = ©(n). In this paper, using techniquesthe subsequencein alphabetB. In summary, using (3),
of analytic information theory, in Theorem 1 we first complet

the study of [11] and provide precise asymptotics for albjes Dyt = Z Pu()
of m. Then, in Theorem 2, we use this precise asymptotics ”:(AUB)
to deal with the binomial sum (2) and extract asymptotics of o n  \n—ip ‘
dn.m. v for largen and unboundedh. B =\ ;ﬂ, ZBi(l 0" Fn-i(y) ()
The study of the minimax redundancy ovérJ 3 expressed " ve =<
i i i ¢ i n —i i 3
in (2) Iea_ds to_an interesting problem for the so cablétbmial _ Z ( ) (1-q)" g Z Bu_i(y)
sumsdefined in general as o \! yeAn—i
n i — i _ 5
S.(n) = B =) F k), sinced g Pi(2) = ¢". BUt Dy = D5 can—i Pui(y),
s) zk: (k)p =P 71 (k) which finally leads to Equation (2). Thisyexpression is our

) ] - ) ) ) starting point to estimat®,, ,,, »s. For this we need a robust
where0<p<1 is a fixed probability and is a given function. asymptotic expression fab,, ., that is, the minimax redun-

In general, asymptotics gfdo not imply an asymptotic expan-qancy relative toM, for large m and a wide range of,
sion for S¢(n). In [5], [9], asymptotics ofS;(n) were derived yiscussed next.

for the polynomiallygrowing functionf(z) = O(z%). In OUr In view of the above, we focus now on finding asymptotics
case, whenn grows withn, we encounter sub-exponentialys 1 (Mo) for large m andn — oco. Recall that this

exponential and super-exponential functigfistherefore, we  qinimax redundancy is also given by [15], [4]
need more precise information aboyitto extract precise

asymptotics ofSy(n). Our second main result, Theorem 2, ,  _ Z n 2 . A Fm b
presents asymptotics of (2). Our findings are obtained by ™" e ki,.-y km n n ’
analytic methods of analysis of algorithms [7], [16]. ! " (4)

wherek; is the number of times symbale A occurs in a
string of lengthn.
Let us consider the minimax redundandy, ., = Itis argued in [15] that such a sum can be analyzed through

Dmm,M(ﬂO) over the alphabetl U B, where|A| = m and the so—calledree generating functiarLet us define
|B| = M, for a class of constrained (some parameters are o Lk 1
fixed) memoryless sourc@o. Specifically, the probabilities B(z) = sz = 1—71“(2)’ (5)
of symbols inA, denoted by, ..., p.., are allowed to vary k=0 "
(unknown), while the probabilitieg,, . .., qas of the symbols where T'(z) satisfiesT'(z) = ze7*) and alsoT(z) =
in B are fixed (known). Furthermorg,= ¢ + -+ +qa and S~ K>k (cf. [16]). Defining a new tree-like generating
p=1-q. We assume thdt < ¢ < 1 is fixed (independent of function, namely
n). To simplify our notation, we also write = (p1,...,Pm) S
andq:(ql,...,qM). Dm(z):Z%Dn,mzn,
Assume that a memoryless source generates a sequence of o v
lengthn that, for simplicity, we denote as:= =7 € (AUB)™.

II. MAIN RESULTS

we notice that (4) and the convolution formula for geneiatin

The minimax redundancy relative &1, takes the form functions (cf. [16]) immediately implies
ze(AuB)r P z€(AUB)™

Let [2"] f(z) denote the coefficient of” in f(z). Then, we

where P, (z) = sup,, P(z) is the maximum-likelihood (ML) finally arrive at

estimator ofP(x) over M. Our goal is to derive asymptotics D. . — n! "] [B(2)]™ . ©6)

of D, . for largen and unboundedh. o
Let us simplify (3). Considet € (AUB)™ and assume that We can re-write it in a simpler form by defining(z) =

¢ symbols are from5 and the remaining: — ¢ from A. We B(z/e) and applying Stirling’s formula, leading to

denote by: € B’ the subsequence ofconsisting ofi symbols e 1 n m

from B. Similarly, y € A"~ is a subsequence of over A. Dnm = V2mn (14 0(n™) ["] [8(2)] (7)

For any such paify, z), there are(}) ways of interleaving since[z"]3(z) = e "[z"]B(z).

them, all leading to the same empirical probability. The ML We first recall the asymptotic expansion B, ,,,(M,) for

probability P, () of 2 can be proved to be fixedm. To extract asymptotics for this case, we observe [2]
. i A that the singular expansion &f(z) around its singularity =
Pn(x) = (1_Q) Pn—z(y)Pl(Z)a e_l is

that is, it is the product of the probability of the subsequeen 5\ _ 1 1 ﬁ (1= e2) O((1 —

y under ML parameters times the (given) probability(z) of () 2(1 — ez) + 3 24 (1= ez)++0((1 —e2)).



Then, an application of the Flajolet and Odlyz&mgularity [9]. If Dy ., = 2%+~ has a polynomial growth, (i.eD,, ,,, =

analysis[7], [16] yields [15] (cf. also [18], [19]) 2dnm = O(n(m=1/2) whenm is fixed), then we can use
m— n the asymptotic expansion derived in [5], [9] to concludet tha
dn,m(Mo) :=log Dy m(Mo) = 5 log (5) Dy.m.t ~ Dyp.m. However, whenn varies withn as in our

2 - — polynomial growth ofD,, ,,, s does not hold any more and we
r(3)/) 303 -3 Vn 3/2 e _
need to compute asymptotics anew. We summarize our second
for largen and fixedm, wherel is the Euler gamma function. main result in the theorem below whose proof is sketched in
Let us now focus on the asymptotic expansioniof ,, the next section.
whenm grows withn. In this case, the singularity analysis Theorem 2:Consider a family of memoryless sourcés,
does notapply, and rather one must use thaddle point over the(m + M)-ary alphabetd U B with fixed probabilities
method[7], [16] for (7) since form large the factor3™(z) qi,...,qn Of the symbols inB, such thaly = ¢; +...qu is

r(m 5 1 study, the problem is much more interesting. In particulze,
—Hog( ﬁ)) L IEm V2, ( )(8)

grows. bounded away fror and1. Letp = 1—g4. Then, the minimax
We next summarize our first main findings delaying theedundancyl,, ,, ar = log Dy, ., 1 takes the form
proof until the next section. (ip) If m is fixed, then
Theorem 1:F(_)r_ memoryless sourcest, over an mary g dppm +O(1/n) (14)
alphabet the minimax redundancy behaves asymptotically as’ m o 1 n N
follows: = M on () + 10w ([ ) + 0/m)
(i) For m = o(n) (%)

whered,,, ., is given by (8) withn replaced bynp.

m—1 no.m
dnm(Mo) = —5—log =+ - loge +o(m). (9) (i) If m,, = O(n?), where we writem,, to explicitly show the

(i) For m = an, definez, as the smallest root of dependence of: on n, then, for0 <4 < 1/2,
B'(z0) 1 d B mnp—l1 ( np ) <log2n)
=_. nym,M = +0 . (15
“B0) @ (10) i 2 * Minp nt=20 (19)
Then, while for 1/2 <6 < 1,
dp,m(Mo) =nlog (@) —% log(aA(20)+25 2)+0(1/n), dpm,m = m2”1’ log <£p > +0 (n%*1 logn) . (16)
0 np
(11)
where (i) If m, = an, then
ﬁ’(z)]’ B"(2)8(z) - [8'(2)]? 5 (20)(1 —
Alz) = = . _ (=) —p)
( ) |:6(Z) 62('2) dn,m,k{ = nlog< %0 —|—p> (17)
(iif) For n = o(m) —% log(aA(zo) + 25 2) + O(1/n)
m
dn,m(Mo) = nlog P loge + O(1/n). (12) wherez, and A(z) are defined in Theorem 1(ii).

Remark 1. The leading terms of the asymptotic expansior@) Let n = o(m) and let"s < = for all k < n. Then,

for m = o(n) andn = o(m) (i.e., (9) and (12)) were derived 2
by Orlitskg/ Lnd Santha(ma?m in [11]. For the case= an, = nlog( ) Fnlogp+ Ofmax{n’/m,1}) (18)

the methodology of [11] allowed only to extract the growtifor largen.

rate, i.e.,d,, ,, = ©(n) but not the constant in front of. In passing, let us explain intuitively the asymptotics Inehi
Numerical computations reveal that this constant, which Theorem 2. As discussed above, we deal here with the
specified in (10) and (11), is well approximated b6 binomial sum (2) that in general can be written as

for 0.1 < a < 10 (e.g.,0.78 for o = 0.5 and1.19 for a = 1). n B
550 = 3 ()= o450

k

for a general functiory. In our casef(k) = Dy, . Observe
that whenf grows polynomially, the maximum under the sum
d M) — m—1 log 1y 1 o™ occurs around = np, and to find asymptotics we need to sum
n.m(Mo) 5 9% T 5 10875 + vn)’ only within the ranget+/n aroundnp. This basically explains
case (i). Whemn = an, the growth off (k) = Dy, = O(A¥)
Now, we are in a position to discuss the second main top&exponential, and we need all the terms in order to recdner t
of this paper, namely, asymptotic expansion of the minimasymptotics. Finally, for case (iii) the functiof(k) = Dy .,
redundancyD,, ., as relative toM,, given by Equation (2). As grows super-exponentially, and the asymptotics of therhiab
mentioned, sums like (2) are known as thiaomial sum[5], sum are determined by the last term, thatkis; n.

Remark 2. For the casen = o(n) if we additionally know
thatm = o(y/n), then we can improve (9) to



1. ANALYSIS Thus, we are left with evaluating the integral(n). The

In this section we prove Theorems 1 and 2 using analyfitandard Laplace’s method and Gaussian integral lead to our
tools (Theorem 1) and elementary analysis (Theorem 2). final formula

1
A. Proof of Theorem 1 Li(n) = 2wnm exp [mInB(z9) — (n + 1) In 2]
Z
We first prove Theorem 1. The starting point is Equation (6), " 01
which we re-write as follows: X (1 +0 <7>) . (20)
l nl min(m, n)
Dnm = ﬁ[z IIBR)™ =e ﬁ[z IB(z/e)] To complete the proof of Theorem 1 we need to estimate
_ \/%(1 +0(1/n)[z"[8(2)]™, zp for various ranges ofn andn.
where we used Stirling’s formula an defingé:) := B(z/e). CASE: m =o(n).
Thus, it suffices to extract the coefficient 4t of 57 (z). In this case, it is easy to see that
In order to find asymptotics of:"|[3(z)]™ we apply the . m _ S~
Cauchy coefficient formula [7], [16], that is, =1 2n + m(1 Olym/n))
n m 1 B (2 and
IBE = e d 2 o
mJ oz hzo) = —log— + —loge+ o(m)
1 0 2 BT 28
3 explmInG(a) - (0 + 1) 2)dz el 1
— 5 s W) a1+ O )
e
where This proves Theorem 1(i) after substituting in (20).
h(z) =mInB(z) — (n+1)Inz. CASE: n = am.

Sincen is large, we apply the saddie point method [7), [16], 1 (S 63520 is an asymptotc soluton of (10), and the

to evaluate asymptotically the integral. Lef be the unique
root of h/(zg) = 0, that is, 9 1
Blz) n+l 27Th7’T’7(1z )~ > +00/n).
o = : (19) 0 ad(z0) + 25
B(zo) m

Observe that Taylor's expansion bfz) is

This completes the proof of Theorem 1(ii).

1 - 5 CASE: n = o(m).
h(z) = h(zo) + 5 (2 = 20)"h"(20) + O((z = 20)") In this casez ~ 0. More precisely,
where _(n+1)e
W' (z0) = mA(z0) +n+1/22, 20 = ————(1+O(n/m)),
and and then
CAOIE
A(z) = 50 | h(zo) = nlog(m/n) + log(m/n) —loge + O(1/n).
To evaluate the integral we split it into two parts, and Finally, after somewhat long calculations, we arrive at
i i i — 0.
15, using the substitution = zg + " log m log(n/m) + O(n/m).
1 1 (™ i
I(n) = 5— ]{eh(z)dz =5 ehzote ™) g Putting everything together, we prove Theorem 1(iii).
_ 1 ohote®) gp 4 i/ Shlzo+e®) g B. Sketch of the Proof of Theorem 2
2m 2 6¢[—60,60] In order to prove Theorem 2 we need to evaluate the
= Ii(n) + I2(n). binomial sum
We choosd)y = n~2/5. In order to assess the second integral Sp(n) = <”> k(1 — pyn—*k
= pr(L=p)" " f(k) (21)
I,(n) we observe, as in [6], that fdt ¢ [—6, 6] ! zk: k
13(e?)] < |B8(e")] for f(k) = Dy.m, that grows faster than any polynomial
. for m — oo. However, for completeness, we first present a
leading to

simple derivation of asymptotics for polynomially (and sub

Ln) = i/ =t ) gp — 0 (Il(n)e*ml/s) _ exponentially) growingf proving Theorem 2) and Theo-
2 0¢[—00,00] rem 2(i).



CASE: m,, = o(n). Since we requirég: < 2= for all k¥ < n we find
For this case, we only sketch the proof. A complete proof for

sub-exponential growth (i.eD,, ., = O(e*v™)) is available ,np (n>pkq"_ka .

through depoissonization along the same line of arguments a k o

in [9]. n K n
Let us first assume that(n) = D, ,,, for fixed m, that is, Z (Z) (p%) e (p% 4 q)

f(n) = Cn(m=Y/2(1 4+ O(1/n)), where in the sequel’ is k=1 " "

used to denote arbitrary constants that take appropriftesa which completes the proof of Theorem 2(iii).

in each use. Expandl(z) aroundz = np to find

2

f(x) = f(np) + (x —np)f (np) + wf”(np’) This work was partially done when W. Szpankowski was
2 visiting Hewlett-Packard Laboratories, Palo Alto. Thigtear

for some0 < p’ < p. Observe now tha$;(n) can be viewed was also supported by the NSF STC Grant CCF-0939370,

as Sy(n) = E[f(X)] where X is a binomially distributed NSF Grants DMS-0800568 and CCF-0830140, AFOSR Grant

random variable. Thus FA8655-08-1-3018, and Grant MNSW 1967/B/T02/2009/37

n,Mn

k=1
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Var (X)
2

Sy(n) E[f(X)] = f(np) +
f(np) +O(nf"(n))

providednf”(n) = o(f(np)). The last condition is obviously
satisfied form fixed, and hence Theorem gYiholds. A more
detailed analysis can be found in [5], [9].
Let us now consider part (i) of Theorem 2, that is we assumé!
thatm = O(n’) for some0 < § < 1. Notice thatf(k) = 4
1og2 n

Diom, = Ck™= =D (1 4+ O(1/n)). Then o
5
f”(np) =0 (f(np)m> )

[6]
and Theorem 2(i) follows fof < § < 1/2. Assuming now [7
1/2 < § < 1, we need a different approach since the error
term O((log® n)/n'~2%) dominates. Observe that we always!8]
have

" (np')
(22)

(1]
(2]

El

o) < Syt < momg ()40 ).

It is easy, however cumbersome, to compute the maximum[%)?]
the right-hand side. Applying Stirling’s formula, we find tou[11]
that it is achieved at

[12]
E* = np + O(n® logn)
and then the above inequalities become [13]
\/;T—nf(np) < Sp(n) < OVAf(p)O(n® 'logn) 114
which suffices to prove (16) of Theorem 2(i). 1
CASE: m = an. [16]
This case is easy since

N [17]

f(n) =Dy, = <M) aA(zo) + zal(l—i—O(l/n)).
“o [18]
This directly implies Theorem 2(ii). [19]

CASE: n = o(m).
Actually, in this case the proof is quite simple. Observd tha

f(n) =Dy =C (%)n (1+0(1/n)).

through Poznan University of Technology.
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