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Abstract—Conventional wisdom states that the minimum ex-
pected length for fixed-to-variable length encoding of an n-block
memoryless source with entropy H grows as nH+O(1). However,
this performance is obtained under the constraint that the code
assigned to the whole n-block is a prefix code. Dropping this
unnecessary constraint we show that the minimum expected
length grows as

nH − 1

2
log n + O(1)

unless the source is equiprobable.

I. INTRODUCTION

Lossless symbol-by-symbol compressors are required to sat-
isfy the condition of “unique decodability” whereby different
input strings are assigned different compressed versions. Since
any uniquely decodable code must assign lengths to the various
symbols that satisfy Kraft’s inequality, while a prefix code is
guaranteed to exist with those symbol lengths, it is enough
to restrict attention to prefix codes without loss of generality.
Achieved by the Huffman code, an exact expression for the
minimum average length of a prefix symbol-by-symbol binary
code is unknown (cf. [20] for an asymptotic analysis); Shannon
[19] showed it to be upper bounded by the entropy (in bits) of
the probability distribution of the symbols plus one bit, while
Macmillan [15] showed it to be lower bounded by the entropy.
However, the paradigm of symbol-by-symbol compression is
severely suboptimal even for memoryless sources. For exam-
ple, they are unable to exploit the redundancy of biased coin
flips. The conventional conceptual (not algorithmic) approach
to deal with this inefficiency is to partition the source string
of length n into blocks of length k and apply the symbol-
by-symbol approach at the block level. The resulting average
compressed length per source symbol is equal to the entropy
of each symbol, H(X), plus at most 1/k bits if the source
is memoryless, or more generally, equal to the entropy of
k consecutive symbols divided by k plus at most 1/k bits.
Thus, to achieve the best efficiency, we can let k = n, apply a
Huffman code to the whole n-tuple and the resulting average
compressed length behaves as

Ln = nH(X) +O(1). (1)

where the O(1) term belongs to [0, 1].

As argued in [23], it is possible to attain average compressed
length lower than (1). The reason is that it is unnecessary,
and in fact wasteful, to impose the prefix condition on a
code that operates at the level of the whole file to be
compressed. Applying prefix codes to n-block supersymbols
is only optimal in terms of the linear growth with n (it
attains the entropy rate for stationary ergodic sources); how-
ever, as far as sublinear terms, this conventional approach
incurs loss of optimality. The optimal fixed-to-variable length
code∗ performs no blocking on the source output; instead
the optimal compressor for a length-n output chooses an
encoding table that lists all source realizations of length n in
decreasing probabilities (breaking ties using a lexicographical
ordering on the source symbols) and assigns, starting with
the most probable, the binary strings of increasing lengths
{∅, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, . . .}. Note that
such a code would not work if applied symbol-by-symbol
(or block-by-block) as the decompressor would not be able
to recover losslessly the original source string.

Such optimal codes have been previously considered under
the rubric of one-to-one codes, but because of their misguided
standing as non-uniquely decodable symbol-by-symbol codes,
they have failed to attract much attention.

In the rest of this paper, Section II deals with the nonasymp-
totic analysis of one-to-one codes. Section III deals with the
asymptotic analysis of the minimum average length, L∗n, of
codes for memoryless sources with known distributions. Under
the assumption that the the source is not equiprobable, we
show that

L∗n = nH(X)− 1
2

log2 n+O(1). (2)

for large n.

II. NONASYMPTOTIC ANALYSIS OF ONE-TO-ONE CODES

Consider a probability distribution PX on a set of ordered
elements X . Define πX : X 7→ {1, . . . , |X |} by πX(a) <
πX(b) if PX(a) > PX(b) or if PX(a) = PX(b) and a < b.
Thus, πX(x) = ` if x is the `-th most probable element in

∗Optimal code not just in the sense of average length but in the sense that
the cumulative distribution function of its length is larger than or equal to that
of any other code.



X according to distribution PX , with ties broken according to
the ordering in X . It is easy to verify that

PX(x)πX(x) ≤ 1 (3)

for all x ∈ X : if (3) failed to be satisfied for x0 ∈ X ,
there would be at least πX(x0) masses strictly larger than
1/πX(x0).

The one-to-one code assigns to x the shortest binary string
(ties broken with the ordering 0 < 1) not assigned to any
element y with πX(y) < πX(x). Thus, we obtain the simple
but important conclusion that the length of the encoding of
x is blog2 πX(x)c. Finding an expression for the minimum
average length

L(X) = E[blog2 πX(X)c] (4)

as a function of PX appears to be challenging. For X
equiprobable on a set of M = |X | elements, it can be shown
that the average length of the one-to-one code is (cf. [13])

L(X)

=
1
M

M∑
i=1

blog2 ic (5)

= blog2Mc+
1
M

(
2 + blog2Mc − 2blog2 Mc+1

)
(6)

which simplifies to

1
M

M∑
i=1

blog2 ic =
(M + 1) log2(M + 1)

M
− 2 (7)

when M + 1 is a power of 2.
A simple upper bound first noticed in [26] is obtained as

L(X) = E[blog2 πX(X)c] (8)
≤ E[log2 πX(X)] (9)

≤ E
[
log2

1
PX(X)

]
(10)

= H(X) (11)

where (10) follows from (3). Various lower bounds have been
proposed in [1]–[3], [8], [14], [16], [24], [25]. Distilling the
main ideas in [1], the following result gives the tightest known
bound.

Theorem 1: Define the monotonically increasing function
ψ : R+ 7→ R+ by

ψ(x) = x+ (1 + x) log2(1 + x)− x log2 x (12)

Then,

ψ−1 (H(X)) ≤ L(X) (13)

Proof: For brevity denote Y = blog2 πX(X)c, and Z =
Y + 1

H(X) = H(X|Y ) +H(Y ) (14)
≤ E[Y ] +H(Y ) (15)
= E[Y ] +H(Z) (16)
= E[Y ] + E[Z]h(1/E[Z])−D(PZ ||G1/E[Z])(17)
≤ ψ(E[Y ])) (18)

where
• (14) ⇐= Y is a deterministic function of X;
• (15) ⇐= H(X|Y = k) ≤ k bits;
• (17) uses the binary entropy function h(·) and the diver-

gence with respect to a geometric (positive) distribution
Gp(k) = p(1− p)k−1;

• (18) ⇐= D(‖) ≥ 0.

Weakening the bound in (13) by

ψ(x) ≤ x+ log2(e+ ex)

and using the upper bound (11) we obtain the bound in [1]:

H(X)− log2(H(X) + 1)− log2 e ≤ E[blog2 πX(X)c] (19)

Another way of weakening (13) is to use the monotonic
increasing nature of (1 + x) log(1 + x) − x log x and (11) to
conclude

L(X) ≥ H(X)− (1 + L(X)) log2(1 + L(X)) (20)
−L(X) log2 L(X) (21)

≥ H(X)− (1 +H(X)) log2(1 +H(X)) (22)
−H(X) log2H(X)

which is the bound found in [2].

III. ASYMPTOTIC MINIMUM AVERAGE LENGTH

We assume henceforth that the source is memoryless with
distribution PX . We abbreviate the minimum average length
of the encoding of an n-tuple of the source by

L∗n = L(Xn). (23)

The minimum average length for a binary memoryless
source with bias p has been investigated in great detail (up
to o(1) term) in [22]. For fair coin flips (p = 1

2 ), the exact
result can be obtained from (6) letting M = 2n:

L∗n = n− 2 + 2−n(n+ 2), (24)

in contrast to

Ln = n (25)

obtained with the Huffman code operating on n-tuples (or
single bits).

If p 6= 1
2 , [22] shows that

L∗n = nh(p)− 1
2

log2 n+O(1) (26)

and in fact [22] characterizes the O(1) explicitly showing that
its behavior depends on whether log2

1−p
p is rational.

Our main result is presented next; its proof is outlined in
Section IV.

Theorem 2: For a memoryless source with finite alphabet
A, the minimum expected length of a lossless binary encoding
of Xn is given by

L∗n = bn log2 |A|c+ o(1). (27)



if the source is equiprobable, and by

L∗n = nH(X)− 1
2

log2 n+O(1) (28)

if the source is not equiprobable.

IV. PROOF OF THEOREM 2

Expression (27) for non-redundant sources follows from (6).
Henceforth, we assume that the source is not equiprobable.
We abbreviate |A| = m, denote by p1, . . . pm the atoms of
PX such that

p1 ≤ p2, . . . pm−1 ≤ pm,

and we denote

Bi = log
pm

pi
(29)

for i = 1, . . . ,m − 1. Note that the entropy of PX can be
expressed as

H(X) = log
1
pm

+
m−1∑
i=1

piBi (30)

Let k = (k1, . . . , km) such that k1 + · · ·+ km = n denote
the type of an n-string; the probability of each such string is
equal to

pk = pk1
1 · · · pkm

m . (31)

Denote the set of all types of n-strings drawn from an alphabet
of m elements by

Tn,m = {(k1, . . . , km) ∈ Nm, k1 + · · ·+ km = n} (32)

We introduce an order among types:

l � k iff pl ≥ pk.

and we sort all types from the smallest index (largest proba-
bility) to the largest. This can be accomplished by observing
that pl ≥ pk is equivalent to

l1B1 + · · ·+ lm−1Bm−1 ≤ k1B1 + · · ·+ km−1Bm−1. (33)

There are (
n

k

)
=
(

n

k1, . . . , km

)
sequences of type k and we list them in lexicographic order.
Then the optimum code assigns length blog ic to the ith
sequence (1 ≤ i ≤ mn) in this list. Denote the number of
sequences more probable than or equal to type k as

Ak :=
∑
l�k

(
n

l

)
. (34)

Using somewhat informal but intuitive notation, k + 1 and
k − 1 denote the next and previous types, respectively, in
the sorted list of the elements of Tn,m. Clearly, starting from

position Ak the next
(

n
k+1

)
sequences have probability pk+1.

Thus the average code length can be computed as follows

L∗n =
∑

k∈Tn,m

pk
Ak∑

i=Ak−1+1

blog ic

=
∑

k∈Tn,m

pk
(n
k)∑

i=1

blog(Ak − i)c

=
∑

k∈Tn,m

pk
(n
k)∑

i=1

blogAk(1− i/Ak)c

=
∑

k∈Tn,m

(
n

k

)
pk logAk +O(1),

= logAnp +O(1), (35)

where (35) follows along the same lines as [9], [12]. Thus we
need to evaluate

Anp =
∑

pl≥pnp

(
n

l

)
. (36)

Let now

li = npi + xi (37)

for i = 1, . . . ,m−1. Then, by (33) the summation set in (36)
can be written as

pl ≥ pnp ↔ B1x1 + · · ·+Bm−1xm−1 ≤ 0. (38)

Thus

Anp =
∑
x

(
n

np + x

)
(39)

where the summation is over the hyperspace B1x1 + · · · +
Bm−1xm−1 ≤ 0.

The next step is to use Stirling’s formula

n! =
√

2πn · nne−n(1 +O(1/n)) (40)

to estimate the summands in (39). A long computation whose
details are omitted reveals that(

n

np + x

)
=

1
(2π)(m−1)/2

1
√
p1 · · · pm

1
n(m−1)/2

2nH(X)

·
(
pm

p1

)x1

· · ·
(

pm

pm−1

)xm−1 (
1 +O(1/

√
n)
)

· exp
(
− x2

1

2np1
− · · · −

x2
m−1

2npm−1
− (x1 + · · ·+ xm−1)2

2npm

)
=

(
1 +O(1/

√
n)
)
C

2nH(X)

n(m−1)/2

· exp (B1x1 + · · ·+Bm−1xm−1)

· exp
(
− 1

2n
xT Σ−1x

)
(41)



where Σ is an appropriately chosen invertible covariance
matrix, and

x = (x1, . . . , xm−1)

We are now in the position to evaluate the sum (39). First,
we split it into two sums:
• a sum over the (m− 2)-dimensional hyperplane B1x1 +
· · ·+Bm−1xm−1 = 0 which we denote as Dm−2

• a sum over B1x1 + · · ·+Bm−1xm−1 < 0.
Introducing the notation:

bT = [B1, . . . , Bm−1], (42)

(39) together with (41) yields (C in different lines need not
be the same constant)

Anp

=
C2nH(X)

n(m−1)/2

( ∑
bT x=0

exp
(
− 1

2n
xT Σ−1x

)

+
∑

bT x<0

exp
(

bT x− 1
2n

xT Σ−1x
))

.

(43)

Clearly, the second sum is bounded since it is an exponential
sum for B1x1 + · · ·+Bm−1xm−1 < 0.

Furthermore, the multidimensional normal distribution inte-
gral [10] leads us to conclude that∫

Dm−2
exp

(
− 1

2n
xT Σ−1x

)
= Cn(m−2)/2. (44)

Combining it, and using Euler-Maclaurin formula for replacing
discrete sums by integrals, we finally arrive at

logAnp = log
(
C

2nH(X)

n(m−1)/2
n(m−2)/2 +O

(
2H(X)

n(m−1)/2

))
= nH(X)− 1

2
log n+O(1) (45)

In view of (35) this completes the proof of Theorem 2.

Example. To illustrate our methodology, we explain it in some
details for the case of m = 3 symbols with probability p1 <
p2 < p3. We need to evaluate (with B1 = log(p3/p1) and
B2 = log(p3/p2)) the following

Anp1,np2 =
∑

k1B1+k2B2≤np1B1+np2B2

(
n

k1, k2

)
.

As before, we denote k1 = np1 + x and k2 = np2 + y to
arrive at(

n

np1 + x, np2 + y

)
=

1√
2πp1p2p3n

2nH(p

(
p3

p1

)x(
p3

p2

)y

× exp
(
− x2

2np1
− y2

2np2
− (x+ y)2

2np3

)
(1 +O(1/

√
n).

Then (cf. Figure 1)

Anp =
∑

B1x+B2y≤0

(
n

np1 + x, np2 + y

)

normal

geometric

np2

np1

k2

k1

O n( )

Fig. 1. Illustration for m = 3

.

∼ 2nH(X)

n
√

2πp1p2p3

∑
B1x+B2y=0

exp
(
− x2

2np1
− y2

2np2
− (x+ y)2

2np3

)

= O(
√
n)

2nH(X)

n
= C

2nH(X)

√
n

,

where the last equality follows from the normal approximation
on the line B1x+B2y = 0 (this part contributes O(

√
n)), and

the first approximation is a consequence of geometric decay of
the multinomial coefficient away from the line B1x+B2y = 0,
that is, for B1x+B2y < 0. This is illustrated in Figure 1.
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