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Abstract—We study the problem of deinterleaving a set of
finite memory (Markov) processes over disjoint finite alphabets,
which have been randomly interleaved by a memoryless random
switch. The deinterleaver has access to a sample of the resulting
interleaved process, but no knowledge of the number or structure
of the Markov processes, or the parameters of the switch. We
present a deinterleaving scheme based on minimizing a penalized
maximum-likelihood cost function, and show it to be strongly
consistent, in the sense of reconstructing, almost surely as the
observed sequence length tends to infinity, the original Markov
and switch processes. Solutions are described for the case where
a bound on the order of the Markov processes is available, and
for the case where it is not. We demonstrate that the proposed
scheme performs well in practice, requiring much shorter input
sequences for reliable deinterleaving than previous solutions.

I. INTRODUCTION

Problems in applications such as data mining, computer se-
curity, and genomics, often require the identification of streams
of data from different sources, which may be intermingled or
hidden (sometimes purposely) among other unrelated streams.
The source identification problem studied in this paper is
motivated by these problems (more detailed descriptions of
the applications can be found in [1], [2]).

Consider m independent finite-memory (Markov) sources
P1, P2, . . . , Pm, defined over disjoint finite alphabets
A1, A2, . . . , Am, respectively, and of order at most k, i.e., for
a sequence xt = x1 x2 . . . xt ∈ (Ai)t, t > k, emitted by Pi,
we have Pi(xt|xt−1) = Pi(xt|xt−1

t−k), 1 ≤ i ≤ m.1 Consider
also a distribution Pw over {1, 2, . . . ,m}, and a memoryless
random switch, which, at time t, selects one of the sources
Pi with probability Pw(i), independently of past selections
or source samples, and outputs the next sample from Pi. We
assume that the sources Pi are idle, i.e., they do not emit
symbols and they preserve their state, except when selected by
the switch. We also assume that Pw(i) > 0 and that Pi(a) > 0
for all a ∈ Ai, 1 ≤ i ≤ m. Let A = A1 ∪ A2 ∪ · · · ∪ Am,
and denote by Π the partition {A1, A2, . . . , Am} of A. The
output of the switch is a process P over A, which can be seen
as a random interleaving of the processes P1, P2, . . . , Pm,
governed by the switch Pw. We refer to P as an interleaving of

1We use standard notations xn, xj
i , etc., for sequences. ‘Source’ and

‘process’ are used interchangeably, preferring ’source’ when emphasizing the
generation mechanism, and ’process’ when emphasizing the random sequence.
Markov processes are assumed ergodic, but not necessarily stationary, as we
assume fixed initial states. Marginal probability notations (e.g., Pi(u) for a
string u) represent the steady-state probabilities of their arguments.

Markov processes (IMP), write P = IΠ(P1, P2, . . . , Pm;Pw),
and refer to this expression as an IMP presentation of P . To
distinguish the alphabet A from its subsets Ai, we will refer
to the latter as sub-alphabets.

Given a sample zn from P , the problem of interest is to
reconstruct the alphabet partition Π, and, consequently, the
original sequences from the Markov processes, and the se-
quence of switch selections. Notice that, given P , any partition
Π′ of A induces a representation of P as an interleaving
of processes, governed by a random switch. In general, if
Π′ is the “wrong” partition, the induced sub-processes P ′i
will not be of finite order, the switch process will not be
memoryless, or some of the independence assumptions will
be violated. In some cases, however, different partitions might
induce different valid IMP presentations of P . In such cases,
we require that all the valid solutions be identified. We assume
that the alphabet A is known, but no nontrivial knowledge of
the structure or number m of the sub-alphabets Ai is assumed.
We will consider both the case where the maximal Markov
order k is known, and the case where it is not.

In this extended summary, we focus on a version of the
problem where the switch is memoryless and the source sub-
alphabets are disjoint. The case of a switch with memory can
be solved using tools similar to the ones presented here, and
will be treated in the full version of the paper. A feasible
solution for the case of intersecting sub-alphabets appears
more challenging, and is the subject of further research. Notice
that in this case, identifying the sub-alphabets is not sufficient
to deinterleave the constituent data streams.

The deinterleaving problem for the case k = 1 was studied
in [1], where an approach was proposed that could identify
a valid IMP presentation of P with high probability as
n→∞ (the approach as described cannot identify multiple
valid solutions when they exist). The idea is to run a greedy
sequence of tests, checking equalities and inequalities between
various event probabilities (e.g., P (ab) 6=P (a)P (b), P (abc) =
P (a)P (b)P (c), a, b, c ∈ A), and permanently clustering sym-
bols into sub-alphabets sequentially, according to the test
results. Empirical distributions are used as proxies for the true
ones. Clearly, equalities between probabilities translate only
to “approximate equalities” subject to statistical fluctuations
in the corresponding empirical quantities, and an appropriate
choice of the tolerances used, as functions of the input length
n, is crucial to turn the conceptual scheme into an effective



algorithm. Specific choices for tolerances are not discussed
in [1]. The attractive feature of the approach in [1] is its low
complexity; equipped with a reasonable choice of tolerance
thresholds, a very efficient algorithm for k = 1 can be imple-
mented. More recently, the problem of deinterleaving hidden-
Markov processes was studied, mostly experimentally, in [2].

In this paper, we present deinterleaving schemes that iden-
tify, eventually almost surely, all the valid IMP presentations of
the observed process. The solution is based on finding the par-
tition Π of A that minimizes a penalized maximum likelihood
(penalized ML) cost function of the form C(zn,Π) = nĤ +
βK log n, where Ĥ is the empirical entropy of the observed
sequence under an IMP model induced by Π, K is the total
number of parameters in the model, and β is a nonnegative
constant. Penalized ML estimators of Markov process order
are well known (cf. [3], [4], [5]). Here, we use them to estimate
the original partition Π, and, in the case of unknown k, also the
Markov order of the processes Pi. When k is known, β = 0
(i.e., using a plain ML estimator) suffices in cases where none
of the processes Pi is memoryless; an appropriate β>0 is
necessary to identify all the IMP presentations when there are
memoryless components Pi. In addition, an appropriate value
β>0 is needed in the unknown k case, with the traditional
function of penalizing larger models. In all cases, our estimate
of the correct partition Π is strongly consistent.

The rest of the paper is organized as follows. In Section II
we present the IMP P as a finite state machine (FSM)
process. We also fully characterize the cases where the IMP
presentation of P is not unique, which can occur only when
some of the constituent Markov processes are memoryless.
When k=1, our characterization reduces to that of [1]. In
Section III we study the case of arbitrary but known k, and
in Section IV that of unknown k. Finally, in Section V, we
show results for practical implementations of our scheme and
that of [1] (with optimized tolerances), for the case k=1. The
results show that in addition to its asymptotic properties, the
proposed deinterleaver achieves high accuracy rates in identi-
fying the correct alphabet partition for much shorter sequences
than those required by the scheme of [1]. The latter has the
attractive feature of low computational complexity, while our
ideal scheme calls for finding the optimal partition through
an exhaustive search, which is computationally expensive. As
we show in Section V, by sacrificing the optimality guarantee,
and implementing a randomized gradient descent heuristic that
searches for the same optimal partition, we obtain, in practice,
the same results as with exhaustive search, but with a much
faster and practical scheme.

II. FSM SOURCES AND IMP PRESENTATIONS

An FSM over an alphabet A is defined by a triplet F =
(S, s0, f), where S is a set of states, s0 ∈ S is an initial
state, and f : S×A → S is a next-state function. A (unifilar)
FSM source is defined by associating a conditional probability
distribution PF (·|s) with each state of S. To generate a random
sequence xn, the source draws, for each i, 1 ≤ i ≤ n, a symbol
xi∈A distributed according to PF (·|si−1), and transitions to

the state si = f(si−1, xi). Markov sources of order k over
A are special cases of FSM sources with S = Ak. We next
observe that an IMP can be represented as an FSM source.

Let P = IΠ(P1, P2, . . . , Pm;Pw), and let k denote an
upper bound on the Markov orders ord(Pi) of the processes
Pi. For a∈A, let σΠ(a) denote the index of the sub-alphabet
containing a, i.e., a∈AσΠ(a). Denote by Si = (Ai)k the set
of states of Pi. We define an FSM Fk(Π) = (S, s0, f) with
S = S1×S2× · · ·×Sm, s0 = (s(1)

0 , s
(2)
0 , . . . , s

(m)
0 ) where s(i)

0

denotes an initial state for Pi, and f a next-state function
defined as follows: For a ∈ Ai ⊆ A, let fi denote the next-
state function of Pi. Given a state s = (s(1), s(2), . . . , s(m)) ∈
S, we define f(s, a) = s′ = (s′(1), s′(2), . . . , s′(m)), where
s′(j) = s(j) for j 6= i, and s′(i) = fi(si, a). Similarly, for each
state s ∈ S, we define a conditional probability distribution

PΠ,k(a | s) = Pw(i)Pi(a | s(i)), i = σΠ(a), a ∈ A . (1)

The following proposition is readily verified.
Proposition 1: Fk(Π), with transition probabilities PΠ,k,

generates P .
Let αi = |Ai|, 1 ≤ i ≤ m, and α = |A|. An arbitrary

FSM source over A, with underlying FSM Fk(Π), has, in
general D = (α− 1)

∏m
i=1 α

k
i free statistical parameters. The

conditional probability distributions in (1), however, are highly
constrained, as the parameter PΠ,k(a|s) is constrained to have
the same value for all states s with the same value of s(i),
where i = σΠ(a). Overall, the number of free parameters
remains, of course, that of the original Markov processes and
switch, i.e., d =

∑m
i=1 α

k
i (αi − 1) + (m − 1). We refer

to sources satisfying the constraints implicit in (1) as IMP-
constrained FSMs (in short, IFSMs). Let V denote the set
of parameter vectors corresponding to valid unconstrained
FSMs based on Fk(Π). This set is a convex polytope in
D-dimensional Euclidean space. Since the IMP constraints
are equalities, and the multiplications by the quantities Pw(i)
(which are parameters) can be translated to boundary condi-
tions, the parameter vectors of IFSMs based on Fk(Π) lie,
within V , on a d-dimensional hyperplane. We shall make use
of this geometry in Section III.

Notice that, in general, P is not a finite memory process.
One special case where P does have finite memory is when all
the Pi are memoryless, and, thus, so is P . Clearly, if m > 1
and any of the processes Pi has memory, then P cannot have
finite memory. Thus, either P is memoryless or it has infinite
memory. The memoryless case is special also because unless
|A|=1, a memoryless process P over A admits multiple IMP
presentations. For example, if P is memoryless, the partitions
{{a1}, {a2}, . . . , {am}}, m > 1, with Pw = P , and {{A}},
with Pw(1) = 1, induce valid IMP presentations of P . In
fact, it can readily be verified that any partition of A defines
a valid IMP presentation in this case. With a slight abuse of
terminology, we say that Ai ∈ Π is a memoryless sub-alphabet
if Pi is memoryless, the process setting being understood from
the context. In the remainder of the section, we show that the
IMP presentation of a process is unique up to re-partitioning



of memoryless sub-alphabets.
We say that Π is canonical with respect to P if all its

memoryless sub-alphabets are singletons. By the discussion
above the partition Π in an IMP can always be brought to
canonical form, without changing the process, by splitting
its memoryless sub-alphabets into singletons. We denote the
resulting partition by Π∗ (dependence on P being understood
from the context). We say that a partition Π′ is compatible with
P if there exist processes P ′1, P

′
2, . . . , P

′
m′ and P ′w such that

P = IΠ′(P ′1, P
′
2, . . . , P

′
m′ ;P ′w). We say that two partitions

Π, Π′ are equivalent with respect to P , denoted Π ≡P Π′,
if they are both compatible with P , and Π∗ = Π′∗. For an
alphabet A, a subset A′ ⊆ A, and a sequence ut ∈ At,
we denote by ut[A′] the sub-sequence of ut composed of its
symbols in A′.

Theorem 1: Let P be an IMP, and let Π be a partition of
A compatible with P . A partition Π′ of A is compatible with
P if and only if Π ≡P Π′.

Proof: The ‘if’ part follows from the discussion above.
Assume P = IΠ′(P ′1, P

′
2, . . . , P

′
m′ ;P ′w). To prove the ‘only if’

part, it suffices to show that if symbols that are in the same
sub-alphabet in one partition become separated in the other,
these symbols must be associated with memoryless processes
in both presentations of P . Assume Ai ∈ Π and A′j ∈ Π′ are
such that Ai ∩ A′j 6= φ, and Ai \ A′j 6= φ. We first claim that
for all t > 0, there exists a string ut ∈ (Ai \ A′j)t such that
P (ut) > 0. First, from the definitions of Ai and A′j , there
exists a symbol b ∈ Ai \ A′j , and by our basic assumptions,
P (b) > 0. This proves the claim for t = 1. Assume now that
a string uτ satisfies the claim for some τ > 0. We have∑
x∈Ai∩A′

j

P (x|uτ ) =
∑

x∈Ai∩A′
j

P (x) = P (Ai ∩A′j) < P (Ai) ,

where the first equality follows from the fact that in the
presentation IΠ′ , symbols in A′j are independent of those in
Ai\A′j . Therefore, there must exist a symbol c ∈ Ai\A′j such
that P (c|uτ ) > 0, and, thus, P (uτ c) > 0, which establishes
the auxiliary claim.
Now, let a ∈ Ai ∩ A′j , let s ∈ Aki with Pi(s) > 0, where k
is the order of Pi, and let s′ = s[A′j ]. Clearly, P (s) > 0 and
P (s′) > 0, and we have

Pi(a|s) = P (a|s)/Pw(i) = P (a|s′)/Pw(i), (2)

where the first equality follows from the definition of IΠ

while the second follows from that of IΠ′ . Choose a string uk

satisfying the auxiliary claim. Since, in IΠ′ , s′ is independent
of uk, we have P (s′uk) > 0. Now, by the properties of IΠ, and
the definition of k, we have P (a|s′) = P (a|s′uk) = P (a|uk),
independent of s′. Recalling (2), we conclude that Pi(a|s) is
independent of s. Since A′j can be any sub-alphabet in Π′ that
intersects Ai, the statement is true for all a ∈ Ai and state s
of Pi. Hence, Pi is memoryless as claimed. Clearly, P ′j is
memoryless if A′j is a subset of Ai. If it is not, we reverse
the roles of Π and Π′, and let A′j play the role of Ai in the
proof. Thus, P ′j is memoryless.

III. SOLUTION FOR KNOWN k

For a sequence xt, and an integer k ≥ 0, denote by Ĥk(xt)
the kth order (per-symbol) empirical entropy of xt,

Ĥk(xt) = −1
t

logPML
k (xt),

where PML
k (xt) is the ML (or empirical) probability of

xt under a kth order Markov model with a fixed initial
state. Consider now a sequence zn over A, and a parti-
tion Π = {A1, A2, . . . , Am} of A. We extend the defini-
tion of the function σΠ to sequences, defining σΠ(zn) =
σΠ(z1), σΠ(z2), . . . , σΠ(zm), where we recall that σΠ(zi) is
the integer satisfying zi ∈ AσΠ(zi). The sequence σΠ(zn) ∈
{1, 2, . . . ,m}n can be regarded as a “switch sequence” in-
duced by zn and the partition Π. Let ni =

∣∣zn[Ai]
∣∣, 1 ≤ i ≤

m. For F = Fk(Π), define

ĤF (zn) =
m∑
i=0

ni
n
Ĥk(zn[Ai]) + Ĥ0(σΠ(zn)), (3)

LF (zn) = β

m∑
i=1

(αi − 1)αki log n+ β(m− 1) log n , (4)

where β is a nonnegative constant. ĤF (zn) can be regarded
as the empirical entropy of zn with respect to F as an
IMP-constrained FSM (which is different from its empirical
entropy with respect to F as an unconstrained FSM, where no
equalities between statistics are imposed). LF (zn), in turn, is
a penalty term proportional to the total number of parameters
in the constrained model. We will refer to the first term on the
right-hand side of both (3) and (4) as “process contribution,”
and to the second term as “switch contribution.” We now define
the penalized ML cost function

CF (zn) = nĤF (zn) + LF (zn) . (5)

Our deinterleaving scheme selects its solution F̂k(zn) ac-
cording to the following rule:

F̂k(zn) = arg min
F ′=Fk(Π′)

CF ′(zn) , (6)

where Π′ ranges over all partitions of A.
Theorem 2: Let P = IΠ(P1, P2, . . . , Pm;Pw), let Π∗ de-

note the associated canonical partition, and let zn be a sample
from P . Then, for appropriate choices of β in (4) (e.g., β = 1

2 ),
we have

F̂k(zn) = Fk(Π∗) a.s. as n→∞ .

Proof outline: Consider a partition Π′ such that Π 6≡P
Π′, and let Fk(Π′) be the associated FSM. Let F+ be a
common refinement2 of F = Fk(Π) and F ′ = Fk(Π′).
With appropriate parameter settings, F+ can generate all the
processes that either F or F ′ can generate. In particular,
P̂F (zn) = 2−nĤF (zn) and P̂F ′(zn) = 2−nĤF ′ (zn) are prob-

2A refinement [6] of F = (S, s0, f) is an FSM F+ = (S+, s+
0 , f+)

such that for some fixed function g : S+ → S and any sequence xn, the
respective state sequences {si} and {s+

i } satisfy si = g(s+
i ), 0 ≤ i ≤ n. A

refinement of F can generate all the processes that F generates. It is always
possible to construct a common refinement of two FSMs.



abilities that can be assigned by F+ to zn. Let PML
F+(zn)

denote the ML probability of zn with respect to F+ as
an unconstrained FSM. Then, by the definitions of PML

F+

and D(·||·), the Kullback-Liebler divergence between FSM
processes, we have

nĤF ′(zn) = − logPML
F+(zn) + nD(PML

F+ ||P̂F ′) , (7)

nĤF (zn) = − logPML
F+(zn) + nD(PML

F+ ||P̂F ) . (8)

Let V denote the space of all valid parameter vectors for
FSM sources based on F+. The constraints satisfied by the
IMP sources based on Fk(Π) and Fk(Π′) are inherited by
their representations in V . Thus, as discussed in Section II,
the set of all IFSM sources based on Fk(Π′) lies, within V ,
on a hyperplane V ′⊆V (notice that the additional constraints
resulting from the refinement are also in the form of parameter
equalities). Since, by Theorem 1, no IMP assignment of
parameters for Fk(Π′) can generate P , the representation of
P in3 V is outside of V ′, and, hence, at positive Euclidean
(or L1) distance from it. Thus, by Pinsker’s inequality applied
state by state in F+, for any process P ′ in V ′, we have

D(P ||P ′) ≥ ∆ > 0 , (9)

for some positive constant ∆. Since P̂ ′F ′ is in V ′, and the
parameters of both PML

F+(zn) and P̂F (zn) converge to the true
parameters of P a.s., it follows from (7)–(9) that

ĤF ′(zn)− ĤF (zn) ≥ ∆ , a.s. as n→∞ , (10)

which implies, by (5),

n−1CF ′(zn)− n−1CF (zn) ≥ ∆ , a.s. as n→∞ , (11)

since the contribution of the O(log n) penalty terms to the
costs vanishes asymptotically in this case. It follows that when
comparing Π with a non-equivalent partition, the rule (6) will
select Π∗ eventually almost surely, for any value of β. In
particular, it will do so for β = 0, i.e., a plain ML estimator.
We now discuss the case where partitions that are equivalent to
Π are compared. By Theorem 1, these partitions can differ only
by a re-partitioning of memoryless sub-alphabets. Consider a
partition Π′ ≡P Π, assume A′i ∈ Π′ is memoryless, and let
α′i = |A′i| > 1. Let Π′′ be the partition derived from Π′ by
splitting A′i into singletons, and let F ′′ = Fk(Π′′). Singleton
sub-alphabets contribute zero cost to the “process” terms of (3)
and (4); their contribution to the overall cost is contained in
the “switch” terms. Let uni = zn[A′i]. By carrying out the
computation of cost shifts from “process” terms to “switch”
terms when A′i is split, we obtain

CF ′(zn)− CF ′′(zn) = (12)

niĤk(uni) + βα′i
k(α′i−1) log n

−
(
niĤ0(uni) + β(α′i−1) log n

)
.

The difference in (12) can be seen as the difference in costs

3Here we assume, for simplicity, that the representation of P as a point in
V is unique, which is the case if Pi(s) > 0 for all states s in all constituent
processes Pi. The restriction is easily removed through a slightly lengthier
argument, which will be given in the full paper.

that would result from comparing order k with order 0 with a
suitably penalized ML order estimator for uni (having log n
instead of log ni in (12) does not affect the conclusions). Since
uni is a sample of a memoryless process, it follows from the
consistency of these estimators (cf. [5]) that the difference
must be positive eventually a.s. Thus, lowest cost is attained by
splitting all memoryless sub-alphabets into singletons, and (6)
will return Fk(Π∗) eventually a.s.

By Theorem 2, if P has memoryless components, the
rule (6) will return the symbols in these components as a list
of singletons. From this list, it is possible to reconstruct all
the partitions that are equivalent to Π. Since the empirical
entropy decreases with the order, a plain ML estimator, on the
other hand, would have returned all memoryless sub-alphabets
merged into one, which without further processing would not
be recognized as memoryless (as is the case in [1]).

IV. SOLUTION FOR UNKNOWN k

Penalized ML Markov order estimators are known to be
strongly consistent also when a bound on the order is not
known [7], [5], and even when the order is allowed to grow
with the sample length n, as long as the growth rate is slow
enough [8]. Thus, it would be natural to expect that such
an estimator might be useful also for deinterleaving IMPs in
cases where the maximum order of the constituent processes is
unknown. The application is not straightforward, though, since
in most cases, when the partition being tested is incorrect, the
cost function (5) is evaluated on samples from processes that
do not have finite memory, nor an order that can be bounded
by a slowly growing function of n. In this section, we prove
the strong consistency of a penalized ML estimator for IFSMs
when a finite bound on the order of the Markov processes Pi
exists but is unknown to the deinterleaver. The proof borrows
some elements from [9], where a strongly consistent estimator
for unconstrained FSMs was presented.

We define the estimator

F̂ (zn) = arg min
F ′=Fk′ (Π′)

CF ′(zn) , (13)

where CF ′ is as defined in (5), and the minimization is over
all partitions Π′ and orders k′ ≥ 0. Notice that the number
of parameters of the minimizing FSM will never exceed n (a
memoryless model would attain a lower cost than a model
with n parameters), so k′ can be limited in value to O(log n),
and the search is finite.

Theorem 3: Let P = IΠ(P1, P2, . . . , Pm;Pw), and let
k = mink′{ k′ | ord(Pi) ≤ k′, 1 ≤ i ≤ m}, the minimal
upper bound on the orders of the processes Pi. Let Π∗ be the
canonical partition associated with P . Then, for a sample zn

of P , using β > 2 in (4)–(5), we have
F̂ (zn) = Fk(Π∗) a.s. as n→∞ .

Proof outline: Let F=Fk(Π∗), and let F ′=Fk′(Π′)
be an FSM in the search space of (13). Let PF ′ denote
the probability that F ′ be selected in the minimization. We
bound the probability of selecting the wrong FSM in (13) by
summing PF ′ over all F ′ 6= F . Let Q(F ′) denote the number



of free parameters in F ′, let K = Q(F ), and let Q0>K be
a threshold for Q(F ′), which is independent of n, and will
be specified later. As in [9], we divide the error probability in
two parts, as follows:∑

F ′ 6=F

PF ′ =
∑

Q(F ′)<Q0, F ′ 6=F

PF ′ +
∑

Q(F ′)≥Q0

PF ′ . (14)

The FSMs covered by the first summation involve Markov
processes of bounded order. This case is handled by a straight-
forward modification (to be described in the full paper) of
the arguments in the proof of Theorem 2. Here, we fo-
cus on the second term, which requires different tools. Let
BF ′={zn |CF ′(zn) ≤ CF (zn)}. We have

PF ′ =
∑

zn:F̂ (zn)=F ′

P (zn) ≤
∑

zn∈BF ′

P (zn). (15)

From the definition of empirical entropy, (5), and the definition
of BF ′ , we have, for zn ∈ BF ′ ,
P (zn) ≤ 2−nĤF (zn) ≤ 2−nĤF ′ (zn)−LF ′ (zn)+LF (zn) . (16)

From (16) and (4), setting q = Q(F ′), we get

P (zn) ≤ 2−nĤF ′(zn) · nβ(K−q) , zn ∈ BF ′ .

Thus, by (15), but summing over all of An, we get

PF ′ ≤ nβ(K−q)
∑

zn∈An

2−nĤF ′(zn) . (17)

The IMP-constrained type of zn relative to F ′ = Fk(Π′, k)
is the set of all conditional symbol counts of zn for all the
states of all the constituent Markov models of F ′ (these counts
determine also the switch counts). It is readily verified that
q = Q(F ′) counts suffice to specify the type. Each term
2−nĤF ′ (zn) in (17) depends on zn only through its type, and,
for each type, the terms added are probabilities of sequences
assigned by the same distribution, which add-up to at most
one. Therefore, the summation in (17) is upper-bounded by
the number of types, which, in turn, is upper-bounded by nq+1

for sufficiently large n. Thus, from (17) we obtain

PF ′ ≤ nq+1+β(K−q)

The number of IFSMs with q parameters is very loosely upper-
bounded by qq+1. Recalling that q ≤ n, we obtain∑
Q(F ′)≥Q0

PF ′ ≤
n∑

q=Q0

qq+1nq+1+β(K−q) ≤
n∑

q=Q0

n2q+2+β(K−q)

=
n∑

q=Q0

nq(2−β)+βK+2 ≤ nQ0(2−β)+βK+3 , (18)

where the last inequality follows from β > 2. Choosing Q0 >
K + (2K + 5)/(β − 2), we obtain an error probability that
decays faster than n−2, and is thus summable.

The results of this section extend, using similar tools, to
the case where a different order is estimated for each Markov
source, and also to the case where the interleaved sources are
tree sources (see, e.g., [7]). In these cases, the estimator returns
the estimated partition and the corresponding orders or trees.

V. EXPERIMENTAL RESULTS

We report on experiments that show the practical perfor-
mance of the proposed deinterleaver. The table below shows
deinterleaving success ratio for sequences of various lengths.
For each length, 200 sequences were tested. Each sequence
was generated by an IMP with m=3, sub-alphabet sizes
α1=4, α2=5, α3=6, Markov processes of order 1 with ran-
domly chosen parameters, and uniform switch distribution. We
compare results for an implementation of the scheme of [1],
and two variants of the proposed scheme, labeled (a) and (b).
Variant (a) implements (6) via exhaustive search. Since this is
rather slow, variant (b) uses a randomized gradient descent-
like heuristic, which is much faster, and achieves virtually
the same performance (for shorter sequences, the heuristic
sometimes finds the correct partition even when it is not the
one that minimizes cost; this explains the slightly better per-
formance compared to the exhaustive search). For the scheme
of [1], tolerances were optimized for each sequence length
with knowledge of the correct solution; a main threshold
proportional to

√
log n/n seems to work well across the range

tested. The table shows that the proposed scheme achieves
better than 50% accuracy for sequences as short as n=1000,
and close to 100% accuracy for n≥2500, whereas the scheme
of [1], although fast, requires much longer sequences, having
correctly deinterleaved just one sequence in 200 for n=5000.

n [1] (a) (b)
500 0.000 0.020 0.045

1000 0.000 0.518 0.551
2500 0.000 0.980 0.990
5000 0.005 1.000 1.000

10000 0.030 1.000 1.000
50000 0.462 1.000 1.000

100000 0.774 1.000 1.000
500000 0.970 1.000 1.000
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