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Abstract— Constrained sequences find applications in com- that the induced binary spike train will need to contain at
munication, magnetic recording, and biology. In this paper we |east a certain number of zeros (corresponding to no agtivit

restrict our attention to the so-called (d, k) constrained binary panveen each two consecutive ones (corresponding to firing
sequences in which any run of zeros must be of length at least times)

d and at most k, where 0 < d < k. In some applications one o . .
needs to know the number of occurrences of a given pattern In these applications, one often requires that some given
in such sequences, for which we coin the termonstrained pattern  words do not occur or occur only a few times in(é k)

matching. For a given word w or a set of words)V, we estimate sequence. Therefore, we study here the following problem:
_the (conditional) probability of the number of occurrences of w iven a wordw or a set of wordsWW how many times it
in a (d,k) sequence generated by a memoryless source. As ag . .
by-product, we enumerate asymptotically the number of(d, k) occurs in a(,d7k) sequence. For such a prob[em we coin the
sequences with exactlyr occurrences of a given wordw, and termconstrained pattern matching as an extension of standard
compute Shannon entropy of (d, k) sequences with a given pattern matching [11], [16], [18]. We study this problem in a
number of occurrences of w. Throughout this paper we use probabilistic framework, that is, we assume that a sequence
techniques of analytic information theory such as combinatrial g generated by a (biased) memoryless source and derive the
caleulus, generating functions, and complex asymptotics. (conditional) distribution of the number of occurrenceswoh
a (d, k) sequence. We need the conditional distribution since
naturally only a small fraction of binary sequences sassfie

The main idea of constrained coding is to restrict the sttie (d, k) constraints.
of messages to a constrained set. In digital communicationin the (standard) pattern matching problem, one asks for
systems such as magnetic and optical recording, the makittern occurrences in a binary string also knowiestswith-
purpose of constrained encoding is to improve the perfoomarout any additional restrictions on the text. In a probatidis
by matching system characteristics to those of the chatmelframework, one determines the distribution of the number of
biology, constrained sequences and constrained chanm@gls mattern occurrences. The first analysis of such patternhimagc
be used to model Darwin selection and biodiversity. Indeeglpes back at least to Feller, and enormous progress in #us ar
biomolecular structures, species, and in general biosityeas has been reported since then [2], [7], [11], [14], [18], [1Rdr
they exist today, have gone through significant metamoiiphomstance, Guibas and Odlyzko [7] (cf. also [8], [16]) reezhl
over eons through mutation and natural selection. One cantie fundamental role played by autocorrelation languages
gue that biodiversity is a consequencedmbrmation transfer, and their associated polynomials in the analysis of pattern
which occurs over timeg(g. inheritance) and across biologicalmatching. Régnier and Szpankowski [15], [16] establisthed
entities €.g. symbiosis, predator-prey). To capture sources tie number of occurrences of a given pattern is asymptbtical
variation and natural selection, one is tempted to intredunormal under a diversity of probabilistic models that irtgu
the so-calledDarwin channel which is a combination of Markov chains. Nicodeme, Salvy, and Flajolet [14] showed
deletion/insertion channels and noisy constrained cHarfae generally that the number of places in a random text at which a
[41, [5D)- ‘motif’ (i.e., a general regular expression pattern) terates is

In this paper, we restrict our goal to study and understaadymptotically normally distributed. Bender and Kochm2h [
some aspects of pattern matching in constrained sequenstsdied a generalized pattern occurrences using (in ael)tsh
Although our methods work for a large class of constraingtde de Bruijn graph representation that allowed the authors
systems, we further restrict our analysis to the so-cgled) to establish the central limit theorem, but without explici
sequences in which runs of zeros cannot be smaller thawean and variance. Recent surveys on pattern matching can
d and bigger thank, where0 < d < k. Such sequencesbe found in Lothaire [11] (Chaps. 6 and 7). To the best of our
have proved to be very useful for digital recording. Alsoknowledge, none of these works deal with pattern matching
spike trains recorded from different neurons in the brain @i constrained sequences such(dsk) sequences.
an animal seem to satisfy structural constraints that Bxact In the information theory communityd, k) sequences were
match the framework ofd, k) binary sequences. For exampleanalyzed since Shannon with some recent contributions [3],
refractoriness requires that a neuron cannot fire two spikes[10], [12], [20]. Pattern matching in constrained sequance
too short a time; this precisely translates into the coirdtracan in principle be analyzed by various versions of the de
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Bruijn graph [2], [6] or automaton approach [2], [14]. This As in [9], [16], we define four Ianguageg;(d’k), RIF),

is an elegant and general approach but it sometimes leads\®*) and/(¢-*) as follows:

complicated analyses and is computationally extensiveum j) T4F) as the set of alld, k) sequences (over the extended
constrained pattern matching, for example, one must build a alphabetB, ;) containing exactly- occurrences ofv;

de Bruijn graph oveall strings of length equal to the longest(jjy R(%*) as the set of alld, k) sequences (over the extended

string in the sed. The (d, k) constraints are built into the alphabetB,,) containing only one occurrence af,
graph adorbidden strings (i.e., runs of zeros of length smaller located at the right end;

thand and larger thark) which result in forbidden edges of(jii) ¢/(4*) defined as

the graph. Based on this method, one represents the number of k) (k)
pattern occurrences as a product of a matrix representation A fur wouweT™}
the underlying de Bruijn graph and hence its largest eigerva
(cf. [2], [6])- In general, this matrix is of a large dimensio
and such a solution is not easily interpretable in terms ef th

that is, a wordu € U(4¥) if u is a (d, k) sequence and
w - u has exactly one occurrence of at the left end of

w - U,
original patterns. (iv) M@*) defined as
In this paper, we take the view of combinatorics on words.
We first construct languages representifigk) sequences MER = Ly weve TQ(d’k) andw occurs at
containing exactlyr occurrences of a given pattetn or a the right end ofw - v},

set of patterns/V. Using generating functions and complex

asymptotics, we present simple and precise asymptotithéor  that is, any word in{w} - M(“*) has exactly two
mean, variance, and the central limit theorem for the number Occurrences ofv, one at the left and one at the right
of occurrences. In particular, we estimate the probabitigt end.

a randomly generated sequence i§lak) sequence. Further- To simplify our notation, we drop the upper indéx, k)
more, we enumeratéd, k) sequences that contain exactly unless it is necessary. It is easy to see that [16], [18]
occurrences ofv and compute Shannon entropy. I - R-M.u 1)

Il. MAIN RESULTS FOR ASINGLE PATTERN T-{w} = R-S. ()

In this section, we consider onhgstricted (d, k) sequences
that start with0 and end withl; we later relax this assumption.
Our goal is to derive the probability distribution of the nioen

In order to find relationships between the languaBes\,
andi/, we extend the approach from [16] to yield

of occurrences of a given pattemn in a (d, k) sequence M = B {w}+S, (3)
generated by a binary memoryless source. Heris also a U-B = M+U—{e (4)
d, k) sequence, and pattern overlapping is allowed. ’
(5 [w}- M = B-R—(R~{u}), ©)
A L R tati . .
anguage. epresentation whereB* is the set of all restricted(, k) sequences that start
Let us define with 0 and end witht, that is,
Ad7k:{00,,00} B*:{E}—FB-FBQ—FBB—F

d k
Ho * o0 7 0 _
as a set of runs of zeros of length betwekand k. We also Similarly, M* =3 ;2o M, where M = {e}.
define the following set (known as tiegtended alphabet [12]) B. Probability Generating Functions
At this point we need to set up the probabilistic framework.

Bax=Aqr-{1}=40...01,---,0...01}.
— el Throughout, we assume that a binary sequence is generated by
a memoryless source witghbeing the probability of emitting a

‘0’ and ¢ = 1 — p. Among others, we compute the probability
that a randomly generated sequence {g,&) sequence. We
actually derive the conditional probability distributiari the
number of occurrences af in a (d, k) sequence.

We start by defining for a languagé its probability
generating function L(z) as

In order to assure that we deal only with restrictet k)
sequences, we build sequences and patterns Bygr As a
consequence, occurrences of patterare also oveB3y i, (e.9.,
w = 01 doesnot occur in a(1,4) sequence such @&910001,
which contains only two symbols ovéf, , namely001 and
0001). We shall relax this assumption later on.

Letw = wy ... w, € {0,1}™ with w; = 0 andw,, = 1,

but over, ;. we havew = ;... 3,,, whereg; € By and L(z) = Z p(u)zlw,

>, 18il = m. Let S denote theautocorrelation set of w ueL

over By, that is, where P(u) is the probability ofu. In particular, theau-
S — {5171/1 . 5% _ 53?//7”1}, 1<i<m tocorrelation polynomial S(z) is the probability generating

_ _ function for the autocorrelation language In general, we
wheres! = g;---3; and 3] = e if i > j. write [z"]L(z) for the coefficient ofL(z) at z™.



The language relationships (3)—(5) are translated intb-proThus, the expected value 6f,(D,,) is

ability generating functions: [T, (2,1)
1—M(2) }\/[_( l)?(z)l ’ whereT,(z,1) is the derivative ofl'(z,u) atu = 1, and
UG = Be-T " B[0.(D,)(0,(D,) - 1] = 1T 1)
R(z) = 2z™P(w)-U(z), (8) [2"]T (2, 1)

is the second factorial moment.

where P(w) is the probability ofw, and .
D. Asymptotics

_ d __d+1 d+1  _d+2 k__k+1

B(z) = pez . Tp qu TPz We first obtain asymptotic formulas for the mean and the
_ )" = (p) i (g) Variance of0,(Dy).
- A 1—2p ' Theorem 1: Let p := p(p) be the smallest real root of

B(z) = 1 whereB(z) is defined in (9), and lex = 1/p. Then,

In particular, from (1)~(2) and above, one finds for largen, the probability of generating @i, k) sequence is

To(z) = 15;((2))7 (10) asymptotically 1
P(Dn) = A"+ O(W™)
2" P(w)(D(z) + B(z) — 1) 2
T.(z) = D(Z)T-H ) (11) for somew < \. Furthermore, the mean is
— 1)P
where D(z) = S(2)(1 — B(2)) + 2" P(w). (12) E[0,(D,)] = ~ ”Zz:p)) W=t o),
C. Number of Occurrences and the variance becomes

Let O,, be a random variable representing the number of (1= 2m)P(w) | 9o
~ 7 I\Tem

occurrences ofv in a (regular) binary sequence of length  Var(O,(Dy)] = (n —m + 1) P(w)

2
Then, the generating functiof.(z) for (d, k) sequences is B'p)
defined as follows 1 _
P(w)B 3(p) —2m—+1 + 25(?) 1A—m+l + O(l)
Ti(z2) =) P(On =7,Dy)2", B'(p) B(p)
7>0 Proof. From (6)-(13), we find
where D, is the event that a randomly generated binary 7, 1) — 1 Tu(z1) = 2" P(w) . and
sequence of length is a (d, k) sequence. Let us also define 1 - B(z) (1 - B(2))*
the bivariate generating functich(z, «) as 27 P(w)M(2) 2:"P(w)D(z)  22"P(w)
Tuu(z,1) = = - )
T(zu) =Y To(2)u’ =Y P(Oy =7,Dp)2"u" UR)(1-B())"  (1-B()" (1-B()
r20 r20n2>0 By Cauchy'’s coefficient formula and Cauchy’s residue theore
From (1), we find [18] we immediately obtain
U 1 1 41
— - - . P(D,) =[2"|T(z,1) =[z" = AT HO(W™),
T(zu) = RT3V @)+ Tol2) (13) P(Dn) = [T 1) = =55 = 5y (w")

Observe thal'(z, u) is not a bivariateprobability generating Where p is the smallest real root oB(z) = 1, A = 1/p,
function since[z"]T'(z,1) # 1. But we can easily make it aandw < A. By elementary analysis we can prove such a root

conditional probability generating function. First, define exists. To find moments, we proceed as follows.

2™ P(w)
P(D,) =[z"|T(z,1 2T (z,1) =2 ————
. (Dn) = [z"T(2,1) [2"]Tu(z,1) = | ](1_3(2))2
as the probability that a randomly generated sequence gtHen P(w) B"(p)
nis a(d, k) sequence. We also introduce a short-hand notation= — ((n -m+ 1A+ = P ) AL L O@n).
0,,(D,,) for the conditional number of occurrenceswfin a B'(p) (p)
(d, k) sequence. More formally, Thus
"Tu(z,1)  (n—m+1)P(w) , _
P(O(D,) = 1) = P(Oy = 1| Dy). B0, (D,)] = ] _ A0
OnP] = e ) B/7) .
Therefore, the probability generating function@f,(D,.) is g4
onDy _ 2T (z,u) _ " Tw(z,1) _ 2
Elu ] TG Var|[O,,(D,,)] T 1) +E[0,(D,)] — E[O.(D,)]".



This proves part (i). ]

0.8] 08|

Remark 2. When the binary source is unbiased= ¢ = %),

N o we can count the numbeN], (r), of (d, k) sequences of length
A A n that containw exactlyr times, by computingz"|T,.(2z). In

o4 0 fact, N,,(r) = 2" P(O,, = v, D,,) and one finds asymptotics of
N, (r) from Theorem 2 for- = O(1). In particular, Shannon
entropy is

0 02 04 06 08 1 0 02 0.4 0.6 08 1 1 N’ﬂ 2
p p C(r) = lim 08 TnlT) (r) = log (—)
(a) (1,2) sequences (b) (3,6) sequences e " T

0.2] 0.2]

Fig. 1. X versusp. wherer = 7(1/2,w) is defined in Theorem 2 fop = 1/2.

Remark 3. We considered onlyestricted (d, k) sequences. A
small modifications can extend this analysisatb (d, k) se-
quences. LeT,*! be the set of al(d, k) sequences containing
Remark 1. In Figure 1 we plot\ = 1/p versusp for various €exactlyr occurrences ofv. Then

d, k) sequences. Observe that the probab n) X AT IS o

;sg/r%pto?ically maximized for sorrmp;é 0.5 ?E(?Ese)d source) T ={e 1} T ({6} + Aax)

which may be used to design a better run-length coding (efad one can easily derive generating functions and asyimptot
[1D. expressions from the above.

Our expressions for the bivariate generating functiormall Remark 4. We counted the occurrences of the patterover
us to estimate asymptotically the probabilitysobccurrences ihe alphabet3, . We can extend this analysis to count the

of w for various ranges of. occurrences over a binary alphabet (eug= 01 occurs twice
Theorem 2: (i) Let 7 := 7(p,w) be the smallest real rootj, g (1,4) sequence010001). Again, letw = w; ... w, €
of D(z) = 0 (cf. (12)) andp := p(p) be the smallest real root £o, 1} with w; = 0 andw,, = 1, andw be represented

of B(z) = 1. Then forr = O(1) we have over By, that is,w = S ... 08, wheres; € By Then

After some algebra, we establish the theorem. ]

P(On(D,) = 1) P(w)B'(p)(1 — B(T))T_l the_ autocorrelation se$, over the binary alphabef0,1} is
e (7)) Frm defined as
. n—m-+r (B)nJrl 82:{71}1711: wllzwzfurl}, 1§l§m
T T

Using the languages,, R, M, andl/ defined above, we find
for largen andr > 1.

(i) Let r = E[0,(Dy)] + 21/Var|[O,(D,)] for z = O(1). 7, = R-M"-U,
Then Ty Z- = RS,
Var[O,,(D,)] Y = 25

here N'(0, 1) is the standard | distributi U-b = MU-teh
where ,1) is the standard normal distribution. B
Proof. In this conference version, we only prove part (i). By Z{wp- M—{e}) = B-R-R,
Cauchy’s coefficient formula and Cauchy’s residue theoremyhere 2 = {€,0,00,---,0Ft1-1A11 and0* denotes a run of

. P(w)(D(z) + B(z) — l)rfl zeros of lengthk. Applyi_ng the same techniques as above we
P(On, =7,Dy) = [z ] D(Z)T+1 can derive the generating functions and asymptotic results

n—m-4j I1l. MAIN RESULT FOR ASET OF PATTERNS
> +O(t")

& (n—mtji—1\/[1
:Z(_U aﬂ'( j—1 )(; In this section, we are given a set of patterg =
=1 {wy,ws, ..., wg} such thatw; (1 <i < K) is not a substring
wherer < ¢~ is the smallest real root ab(z) = 0, and of another patterm; (1 < j < K,i # j) over alphabeB .
Pw)(B(r)—1)""" Now we count the number of occurrences¥f in a (d, k)
ary1 = Dy . It is easy to prove that such asequence of length.
root of D(z) exists. Finally, we find We need to extend our definition of languages. In particular,

for any given two strings: andwv, let

P(O, =71,Dy)
P(On(Dn) =71) = ——F%=~— v u :
P(Dy,) Sup = {ULJ‘FI : qu}—kH =of}, 1<k <min{lul, |v]}.
_P)B'(p)(1=B(1))" " (n—m+r\_ pt! be thecorrelation set. Now we define a correlation set over
D/(T)T“ T gr—mtr+l’ Bg for patterns inW. Let w;, = (3, ...0;, andw; =



Bjy - --Bj,.. ThenS,;, the correlation set fow; andw; over T, (z) = Wt(z) (D) + (B(z) - D) 1. D(z) V. T,
Ba.k, is defined as —
d ks 1S CET whereD(z) = T - W' (2) + (1 - B(2))S(2).

Sy =167, B ,,, =065}, 1<{<min{s,m}. In this conference version, we only present asymptotics for

For1 < i,j < K, we introduce new languages as followdhe first two moments.
(again, we drop the upper indé¥, k)): Theorem 3: For largen

(i) R, as the set of alld, k) sequences (over the alphabet K (n — |wi| + D)P(w;) |, 1.
Ba.x) containing only one occurrence af;, located at  E[On(Dn)] = > B0p) ATl 4 o(1),
the right end; i=1

(i) U; is defined as{u : w; -u € 7y}, that is, a word Var[O,(D,)] = na+ O(1),

u € U; if wis a(d, k) sequence and; - u has exactly
one occurrence ofy; at the left end ofw; - u;
(i) M) defined as, for > 1,

wherep := p(p) is the smallest real root aB(z) = 1, A =
1/p, anda is an explicitly computable constant.
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