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Abstract— Constrained sequences find applications in com-
munication, magnetic recording, and biology. In this paper, we
restrict our attention to the so-called (d, k) constrained binary
sequences in which any run of zeros must be of length at least
d and at most k, where 0 ≤ d < k. In some applications one
needs to know the number of occurrences of a given patternw
in such sequences, for which we coin the termconstrained pattern
matching. For a given word w or a set of wordsW, we estimate
the (conditional) probability of the number of occurrences of w

in a (d, k) sequence generated by a memoryless source. As a
by-product, we enumerate asymptotically the number of(d, k)
sequences with exactlyr occurrences of a given wordw, and
compute Shannon entropy of (d, k) sequences with a given
number of occurrences of w. Throughout this paper we use
techniques of analytic information theory such as combinatorial
calculus, generating functions, and complex asymptotics.

I. I NTRODUCTION

The main idea of constrained coding is to restrict the set
of messages to a constrained set. In digital communication
systems such as magnetic and optical recording, the main
purpose of constrained encoding is to improve the performance
by matching system characteristics to those of the channel.In
biology, constrained sequences and constrained channels may
be used to model Darwin selection and biodiversity. Indeed,
biomolecular structures, species, and in general biodiversity, as
they exist today, have gone through significant metamorphosis
over eons through mutation and natural selection. One can ar-
gue that biodiversity is a consequence ofinformation transfer,
which occurs over time (e.g. inheritance) and across biological
entities (e.g. symbiosis, predator-prey). To capture sources of
variation and natural selection, one is tempted to introduce
the so-calledDarwin channel which is a combination of
deletion/insertion channels and noisy constrained channels (cf.
[4], [5]).

In this paper, we restrict our goal to study and understand
some aspects of pattern matching in constrained sequences.
Although our methods work for a large class of constrained
systems, we further restrict our analysis to the so-called(d, k)
sequences in which runs of zeros cannot be smaller than
d and bigger thank, where 0 ≤ d < k. Such sequences
have proved to be very useful for digital recording. Also,
spike trains recorded from different neurons in the brain of
an animal seem to satisfy structural constraints that exactly
match the framework of(d, k) binary sequences. For example,
refractoriness requires that a neuron cannot fire two spikesin
too short a time; this precisely translates into the constraint

that the induced binary spike train will need to contain at
least a certain number of zeros (corresponding to no activity)
between each two consecutive ones (corresponding to firing
times).

In these applications, one often requires that some given
words do not occur or occur only a few times in a(d, k)
sequence. Therefore, we study here the following problem:
given a wordw or a set of wordsW how many times it
occurs in a(d, k) sequence. For such a problem we coin the
termconstrained pattern matching as an extension of standard
pattern matching [11], [16], [18]. We study this problem in a
probabilistic framework, that is, we assume that a sequence
is generated by a (biased) memoryless source and derive the
(conditional) distribution of the number of occurrences ofw in
a (d, k) sequence. We need the conditional distribution since
naturally only a small fraction of binary sequences satisfies
the (d, k) constraints.

In the (standard) pattern matching problem, one asks for
pattern occurrences in a binary string also known astext with-
out any additional restrictions on the text. In a probabilistic
framework, one determines the distribution of the number of
pattern occurrences. The first analysis of such pattern matching
goes back at least to Feller, and enormous progress in this area
has been reported since then [2], [7], [11], [14], [18], [19]. For
instance, Guibas and Odlyzko [7] (cf. also [8], [16]) revealed
the fundamental role played by autocorrelation languages
and their associated polynomials in the analysis of pattern
matching. Régnier and Szpankowski [15], [16] establishedthat
the number of occurrences of a given pattern is asymptotically
normal under a diversity of probabilistic models that include
Markov chains. Nicodème, Salvy, and Flajolet [14] showed
generally that the number of places in a random text at which a
‘motif’ (i.e., a general regular expression pattern) terminates is
asymptotically normally distributed. Bender and Kochman [2]
studied a generalized pattern occurrences using (in a nutshell)
the de Bruijn graph representation that allowed the authors
to establish the central limit theorem, but without explicit
mean and variance. Recent surveys on pattern matching can
be found in Lothaire [11] (Chaps. 6 and 7). To the best of our
knowledge, none of these works deal with pattern matching
in constrained sequences such as(d, k) sequences.

In the information theory community,(d, k) sequences were
analyzed since Shannon with some recent contributions [3],
[10], [12], [20]. Pattern matching in constrained sequences
can in principle be analyzed by various versions of the de



Bruijn graph [2], [6] or automaton approach [2], [14]. This
is an elegant and general approach but it sometimes leads to
complicated analyses and is computationally extensive. Inour
constrained pattern matching, for example, one must build a
de Bruijn graph overall strings of length equal to the longest
string in the setW . The (d, k) constraints are built into the
graph asforbidden strings (i.e., runs of zeros of length smaller
thand and larger thank) which result in forbidden edges of
the graph. Based on this method, one represents the number of
pattern occurrences as a product of a matrix representationof
the underlying de Bruijn graph and hence its largest eigenvalue
(cf. [2], [6]). In general, this matrix is of a large dimension
and such a solution is not easily interpretable in terms of the
original patterns.

In this paper, we take the view of combinatorics on words.
We first construct languages representing(d, k) sequences
containing exactlyr occurrences of a given patternw or a
set of patternsW . Using generating functions and complex
asymptotics, we present simple and precise asymptotics forthe
mean, variance, and the central limit theorem for the number
of occurrences. In particular, we estimate the probabilitythat
a randomly generated sequence is a(d, k) sequence. Further-
more, we enumerate(d, k) sequences that contain exactlyr
occurrences ofw and compute Shannon entropy.

II. M AIN RESULTS FOR ASINGLE PATTERN

In this section, we consider onlyrestricted (d, k) sequences
that start with0 and end with1; we later relax this assumption.
Our goal is to derive the probability distribution of the number
of occurrences of a given patternw in a (d, k) sequence
generated by a binary memoryless source. Herew is also a
(d, k) sequence, and pattern overlapping is allowed.

A. Language Representation

Let us define

Ad,k = {0 . . .0
︸ ︷︷ ︸

d

, · · · , 0 . . . 0
︸ ︷︷ ︸

k

}

as a set of runs of zeros of length betweend andk. We also
define the following set (known as theextended alphabet [12])

Bd,k = Ad,k · {1} = {0 . . . 0
︸ ︷︷ ︸

d

1, · · · , 0 . . . 0
︸ ︷︷ ︸

k

1}.

In order to assure that we deal only with restricted(d, k)
sequences, we build sequences and patterns overBd,k. As a
consequence, occurrences of patternw are also overBd,k (e.g.,
w = 01 doesnot occur in a(1, 4) sequence such as0010001,
which contains only two symbols overBd,k, namely001 and
0001). We shall relax this assumption later on.

Let w = w1 . . . wm ∈ {0, 1}m with w1 = 0 and wm = 1,
but overBd,k we havew = β1 . . . βm′ , whereβi ∈ Bd,k and
∑m′

i=1 |βi| = m. Let S denote theautocorrelation set of w
overBd,k, that is,

S = {βm′

l+1 : βl
1 = βm′

m′−l+1}, 1 ≤ l ≤ m′

whereβj
i = βi · · ·βj andβj

i = ǫ if i > j.

As in [9], [16], we define four languages,T (d,k)
r , R(d,k),

M(d,k) andU (d,k) as follows:

(i) T
(d,k)

r as the set of all(d, k) sequences (over the extended
alphabetBd,k) containing exactlyr occurrences ofw;

(ii) R(d,k) as the set of all(d, k) sequences (over the extended
alphabetBd,k) containing only one occurrence ofw,
located at the right end;

(iii) U (d,k) defined as

U (d,k) = {u : w · u ∈ T
(d,k)
1 },

that is, a wordu ∈ U (d,k) if u is a (d, k) sequence and
w · u has exactly one occurrence ofw at the left end of
w · u;

(iv) M(d,k) defined as

M(d,k) = {v : w · v ∈ T
(d,k)
2 andw occurs at

the right end ofw · v},

that is, any word in{w} · M(d,k) has exactly two
occurrences ofw, one at the left and one at the right
end.

To simplify our notation, we drop the upper index(d, k)
unless it is necessary. It is easy to see that [16], [18]

Tr = R ·Mr−1 · U , (1)

T0 · {w} = R · S. (2)

In order to find relationships between the languagesR, M,
andU , we extend the approach from [16] to yield

M∗ = B∗ · {w} + S, (3)

U · B = M + U − {ǫ}, (4)

{w} ·M = B · R − (R− {w}), (5)

whereB∗ is the set of all restricted(d, k) sequences that start
with 0 and end with1, that is,

B∗ = {ǫ} + B + B2 + B3 + · · · .

Similarly, M∗ =
∑∞

i=0 M
i, whereM0 = {ǫ}.

B. Probability Generating Functions

At this point we need to set up the probabilistic framework.
Throughout, we assume that a binary sequence is generated by
a memoryless source withp being the probability of emitting a
‘0’ and q = 1− p. Among others, we compute the probability
that a randomly generated sequence is a(d, k) sequence. We
actually derive the conditional probability distributionof the
number of occurrences ofw in a (d, k) sequence.

We start by defining for a languageL its probability
generating function L(z) as

L(z) =
∑

u∈L

P (u)z|u|,

where P (u) is the probability ofu. In particular, theau-
tocorrelation polynomial S(z) is the probability generating
function for the autocorrelation languageS. In general, we
write [zn]L(z) for the coefficient ofL(z) at zn.



The language relationships (3)–(5) are translated into prob-
ability generating functions:

1

1 − M(z)
=

1

1 − B(z)
· zmP (w) + S(z), (6)

U(z) =
M(z) − 1

B(z) − 1
, (7)

R(z) = zmP (w) · U(z), (8)

whereP (w) is the probability ofw, and

B(z) = pdqzd+1 + pd+1qzd+2 + · · · + pkqzk+1

= zq
(zp)

d
− (zp)

k+1

1 − zp
. (9)

In particular, from (1)–(2) and above, one finds

T0(z) =
S(z)

D(z)
, (10)

Tr(z) =
zmP (w)(D(z) + B(z) − 1)

r−1

D(z)
r+1 , (11)

where D(z) = S(z)(1−B(z)) + zmP (w). (12)

C. Number of Occurrences

Let On be a random variable representing the number of
occurrences ofw in a (regular) binary sequence of lengthn.
Then, the generating functionTr(z) for (d, k) sequences is
defined as follows

Tr(z) =
∑

n≥0

P (On = r,Dn)zn,

where Dn is the event that a randomly generated binary
sequence of lengthn is a (d, k) sequence. Let us also define
the bivariate generating functionT (z, u) as

T (z, u) =
∑

r≥0

Tr(z)ur =
∑

r≥0

∑

n≥0

P (On = r,Dn)znur.

From (1), we find

T (z, u) = R(z)
u

1 − uM(z)
U(z) + T0(z). (13)

Observe thatT (z, u) is not a bivariateprobability generating
function since[zn]T (z, 1) 6= 1. But we can easily make it a
conditional probability generating function. First, define

P (Dn) = [zn]T (z, 1)

as the probability that a randomly generated sequence of length
n is a(d, k) sequence. We also introduce a short-hand notation
On(Dn) for the conditional number of occurrences ofw in a
(d, k) sequence. More formally,

P (On(Dn) = r) = P (On = r | Dn).

Therefore, the probability generating function ofOn(Dn) is

E[uOn(Dn)] =
[zn]T (z, u)

[zn]T (z, 1)
.

Thus, the expected value ofOn(Dn) is

E[On(Dn)] =
[zn]Tu(z, 1)

[zn]T (z, 1)
,

whereTu(z, 1) is the derivative ofT (z, u) at u = 1, and

E[On(Dn)(On(Dn) − 1)] =
[zn]Tuu(z, 1)

[zn]T (z, 1)

is the second factorial moment.

D. Asymptotics

We first obtain asymptotic formulas for the mean and the
variance ofOn(Dn).

Theorem 1: Let ρ := ρ(p) be the smallest real root of
B(z) = 1 whereB(z) is defined in (9), and letλ = 1/ρ. Then,
for largen, the probability of generating a(d, k) sequence is
asymptotically

P (Dn) =
1

B′(ρ)
λn+1 + O(ωn)

for someω < λ. Furthermore, the mean is

E[On(Dn)] =
(n − m + 1)P (w)

B′(ρ)
λ−m+1 + O(1),

and the variance becomes

Var[On(Dn)] = (n− m + 1)P (w)

[

(1 − 2m)P (w)

B′(ρ)
2 λ−2m+2

+
P (w)B′′(ρ)

B′(ρ)3
λ−2m+1 +

2S(ρ) − 1

B′(ρ)
λ−m+1

]

+ O(1).

Proof. From (6)-(13), we find

T (z, 1) =
1

1 − B(z)
, Tu(z, 1) =

zmP (w)

(1 − B(z))2
, and

Tuu(z, 1) =
2zmP (w)M(z)

U(z)(1 − B(z))
3 =

2zmP (w)D(z)

(1 − B(z))
3 −

2zmP (w)

(1 − B(z))
2 .

By Cauchy’s coefficient formula and Cauchy’s residue theorem
[18] we immediately obtain

P (Dn) = [zn]T (z, 1) = [zn]
1

1 − B(z)
=

1

B′(ρ)
λn+1+O(ωn),

where ρ is the smallest real root ofB(z) = 1, λ = 1/ρ,
andω < λ. By elementary analysis we can prove such a root
exists. To find moments, we proceed as follows.

[zn]Tu(z, 1) = [zn]
zmP (w)

(1 − B(z))2

=
P (w)

B′(ρ)
2

(

(n − m + 1)λ +
B′′(ρ)

B′(ρ)

)

λn−m+1 + O(ωn).

Thus

E[On(Dn)] =
[zn]Tu(z, 1)

[zn]T (z, 1)
=

(n − m + 1)P (w)

B′(ρ)
λ−m+1+O(1)

and

Var[On(Dn)] =
[zn]Tuu(z, 1)

[zn]T (z, 1)
+ E[On(Dn)]−E[On(Dn)]2.
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Fig. 1. λ versusp.

After some algebra, we establish the theorem.

Remark 1. In Figure 1 we plotλ = 1/ρ versusp for various
(d, k) sequences. Observe that the probabilityP (Dn) ≍ λn is
asymptotically maximized for somep 6= 0.5 (biased source)
which may be used to design a better run-length coding (cf.
[1]).

Our expressions for the bivariate generating functions allow
us to estimate asymptotically the probability ofr occurrences
of w for various ranges ofr.

Theorem 2: (i) Let τ := τ(p, w) be the smallest real root
of D(z) = 0 (cf. (12)) andρ := ρ(p) be the smallest real root
of B(z) = 1. Then forr = O(1) we have

P (On(Dn) = r) ∼
P (w)B′(ρ)(1 − B(τ))

r−1

D′(τ)
r+1

τr−m

·

(
n − m + r

r

) (ρ

τ

)n+1

for largen andr ≥ 1.
(ii) Let r = E[On(Dn)] + x

√

Var[On(Dn)] for x = O(1).
Then

On(Dn) − E[On(Dn)]
√

Var[On(Dn)]

d
→N(0, 1),

whereN(0, 1) is the standard normal distribution.
Proof. In this conference version, we only prove part (i). By
Cauchy’s coefficient formula and Cauchy’s residue theorem,

P (On = r,Dn) = [zn−m]
P (w)(D(z) + B(z) − 1)

r−1

D(z)
r+1

=

r+1∑

j=1

(−1)
j
aj

(
n − m + j − 1

j − 1

)(
1

τ

)n−m+j

+ O(tn)

where τ < t−1 is the smallest real root ofD(z) = 0, and

ar+1 =
P (w)(B(τ) − 1)

r−1

D′(τ)
r+1 . It is easy to prove that such a

root of D(z) exists. Finally, we find

P (On(Dn) = r) =
P (On = r,Dn)

P (Dn)

∼
P (w)B′(ρ)(1 − B(τ))

r−1

D′(τ)r+1

(
n − m + r

r

)
ρn+1

τn−m+r+1
.

This proves part (i).

Remark 2. When the binary source is unbiased (p = q = 1
2 ),

we can count the number,Nn(r), of (d, k) sequences of length
n that containw exactlyr times, by computing[zn]Tr(2z). In
fact,Nn(r) = 2nP (On = r,Dn) and one finds asymptotics of
Nn(r) from Theorem 2 forr = O(1). In particular, Shannon
entropy is

C(r) = lim
n→∞

log Nn(r)

n
= log

(
2

τ

)

whereτ = τ(1/2, w) is defined in Theorem 2 forp = 1/2.

Remark 3. We considered onlyrestricted (d, k) sequences. A
small modifications can extend this analysis toall (d, k) se-
quences. LetT all

r be the set of all(d, k) sequences containing
exactlyr occurrences ofw. Then

T all
r = {ǫ, 1} · Tr · ({ǫ} + Ad,k)

and one can easily derive generating functions and asymptotic
expressions from the above.

Remark 4. We counted the occurrences of the patternw over
the alphabetBd,k. We can extend this analysis to count the
occurrences over a binary alphabet (e.g.,w = 01 occurs twice
in a (1, 4) sequence0010001). Again, let w = w1 . . . wm ∈
{0, 1}m with w1 = 0 and wm = 1, and w be represented
over Bd,k, that is, w = β1 . . . βm′ where βi ∈ Bd,k. Then
the autocorrelation setS2 over the binary alphabet{0, 1} is
defined as

S2 = {wm
l+1 : wl

1 = wm
m−l+1}, 1 ≤ l ≤ m.

Using the languagesTr, R, M, andU defined above, we find

Tr = R ·Mr−1 · U ,

T0 · Z · {w} = R · S2,

M∗ = B∗ · Z · {w} + S2,

U · B = M + U − {ǫ},

Z · {w} · (M−{ǫ}) = B · R −R,

whereZ = {ǫ, 0, 00, · · · , 0k+1−|β1|} and0k denotes a run of
zeros of lengthk. Applying the same techniques as above we
can derive the generating functions and asymptotic results.

III. M AIN RESULT FOR ASET OF PATTERNS

In this section, we are given a set of patternsW =
{w1, w2, . . . , wK} such thatwi (1 ≤ i ≤ K) is not a substring
of another patternwj (1 ≤ j ≤ K, i 6= j) over alphabetBd,k.
Now we count the number of occurrences ofW in a (d, k)
sequence of lengthn.

We need to extend our definition of languages. In particular,
for any given two stringsu andv, let

Su,v = {v
|v|
k+1 : u

|u|
|u|−k+1 = vk

1}, 1 ≤ k ≤ min{|u|, |v|}.

be thecorrelation set. Now we define a correlation set over
Bd,k for patterns inW . Let wi = βi1 . . . βis

and wj =



βj1 . . . βjm
. ThenSij , the correlation set forwi andwj over

Bd,k, is defined as

Sij = {βjm

jℓ+1
: βis

is−ℓ+1
= βjℓ

j1
}, 1 ≤ ℓ ≤ min{s, m}.

For 1 ≤ i, j ≤ K, we introduce new languages as follows
(again, we drop the upper index(d, k)):
(i) Ri as the set of all(d, k) sequences (over the alphabet

Bd,k) containing only one occurrence ofwi, located at
the right end;

(ii) Ui is defined as{u : wi · u ∈ T1}, that is, a word
u ∈ Ui if u is a (d, k) sequence andwi · u has exactly
one occurrence ofwi at the left end ofwi · u;

(iii) M
[r]
ij defined as, forr ≥ 1,

M
[r]
ij = {v : wi · v ∈ Tr+1 andwj occurs at the

right end ofwi · v},

that is, any word in{wi} ·M
[r]
ij is a (d, k) sequence and

has one occurrence ofwi at the left end, one occurrence
of wj at the right end, andr − 1 occurrences fromW
elsewhere. We writeMij = M

[1]
ij .

We can see thatTr(r ≥ 1) andT0 are represented as follows

Tr =
∑

1≤i,j≤K

Ri · M
[r−1]
ij · Uj , (14)

T0 · {wj} = Rj +
∑

1≤i≤K

Ri · (Sij − {ǫ}) (15)

for 1 ≤ j ≤ K. The languagesMij , Ui, and Rj satisfy
following relationships [15] for1 ≤ i, j ≤ K

∑

k≥1

M
[k]
ij = B∗ · {wj} + Sij − {ǫ}, (16)

Ui · B =
∑

1≤j≤K

Mij + Ui − {ǫ},(17)

B · Rj − (Rj − {wj}) =
∑

1≤i≤K

{wi} ·Mij . (18)

As before, the language relationships (16)–(18) are trans-
lated into generating functions [15]:

(I− M(z))−1 = S(z) +
1

1 − B(z)
−→
1 ·

−→
W

t
(z),

−→
U (z) =

1

1 − B(z)
(I − M(z)) ·

−→
1 ,

−→
R

t
(z) =

1

1 − B(z)

−→
W

t
(z) · (I − M(z)),

whereM(z) andS(z) areK ×K matrices such thatMij(z)
and Sij(z) are the (i, j)-elements inM(z) and S(z), re-
spectively. Furthermore,I is the K × K identity matrix,
and

−→
W (z),

−→
R (z),

−→
U (z), and −→

1 are column vectors of
lengthK such that

−→
W (z) = (z|w1|P (w1), · · · , z

|wK|P (wK))
t
,

−→
R (z) = (R1(z), · · · , RK(z))

t,
−→
U (z) = (U1(z), · · · , UK(z))

t,
and−→1 = (1, · · · , 1)

t.
From (14)–(15) and above, we can find

T0(z) =

−→
R

t
(z) · S(z) ·

−→
1

−→
W

t
(z) ·

−→
1

,

Tr(z) =
−→
W

t
(z) · (D(z) + (B(z) − 1)I)

r−1
·D(z)

−(r+1)
·
−→
1 ,

whereD(z) =
−→
1 ·

−→
W

t
(z) + (1 − B(z))S(z).

In this conference version, we only present asymptotics for
the first two moments.

Theorem 3: For largen

E[On(Dn)] =
K∑

i=1

(n − |wi| + 1)P (wi)

B′(ρ)
λ−|wi|+1 + O(1),

Var[On(Dn)] = nα + O(1),

whereρ := ρ(p) is the smallest real root ofB(z) = 1, λ =
1/ρ, andα is an explicitly computable constant.
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