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Abstract— We study the classical problem of noisy constrained constraint isC'(S) £ C(S,0). This quantity has been ex-
capacity in the case of the binary symmetric channel (BSC), tensively studied, and several interpretations and mettiod
namely, the capacity of a BSC whose input is a sequence fromiq ayplicit derivation are known (see, e.g., [16] and esies

a constrained set. As stated in [4] V.. while calculation of the - - .
noise-free capacity of constrained sequences is well knowthe bibliography therein). As foC(S, <), the best results in the

computation of the capacity of a constraint in the presence fo literature have been in the form of bounds and numerical
noise. .. has been an unsolved problem in the half-century since simulations based on producing random (and, hopefully; typ
Shannon’s landmark paper ...."” We express the constrained cal) channel output sequences (see, e.g., [24], [21], [H] an
capacity of a binary symmetric channel with (d, k)-constrained  (ofarences therein). These methods allow for fairly peecis

input as a limit of the top Lyapunov exponents of certain matiix . . . . . .
random processes. We compute asymptotic approximations tfie numerical approximations of the capacity for given coristsa

noisy constrained capacity for cases where the noise paratee and channel parameters.

¢ is small. In particular, we show that when k<2d, the error In order to find an expression far(S, ) we first consider
term with respect to the constraint capacity is O(¢), whereas the corresponding mutual information,

it is O(eloge) when k > 2d. In both cases, we compute the

coefficient of the error term. We also extend previous resutt on I(X;Z2)=H(Z)- H(Z|X). 2
the entropy of a hidden Markov process to higher-order finite . o
memory processes. SinceH (Z|X) = H(e), the problem reduces to findidg(2),

the entropy rate of the output process.

For any sequencéz; };>1, we denote by:!, j>i, the sub-

We consider a binary symmetric channel (BSC) witBequencer;,z; 1, ...,;. It is well known (see, e.g., [16])
crossover probability, and a constrained set of inputs. Morghat we can regard théd, k) constraint as the output of a
precisely, letS,, denote the set of binary sequences of length th-order finite memory (Markov) stationary process, unigue
satisfying a giver{d, k)-RLL constraint [16], i.e., no sequencedefined by conditional probabilitieB(z, |z} ). For nontrivial
in S, contains a run of zeros of length shorter th@ror constraints, some of these conditional probabilities nest
longer thank (we assume that the valuésand k, d < k, set to zero in order to enforce the constraint (for example, t
are understood from the context). Furthermore, we dengiebability of a zero after seeink consecutive zeros, or of
S = U,>oSn- We assume that the input to the channe] one after seeing less thanconsecutive zeros). When the
is a stationary procesX = {Xj},>1 supported onS. We remaining free probabilities are assigned so that the pptro
regard the BSC channel as emitting a Bernoulli noise sequert the process is maximized, we say that the process is
E = {Ey}r>1, independent ofX, with P(E; = 1) = ¢. The maxentropicand we denote it by>™**, The noiseless capacity

|. INTRODUCTION

channel output is g X0 B, C(S) is equal to the entropy aP™>* [16].
S ® Zi. i If we restrict our attention to constrained procesieshat
where® denotes addition modul® (exclusive-or). are generated by Markov sources, the output procegsin

. For ease of notation, we identify the BSC channel witjg regarded as aidden Markov proces¢HMP), and the

its parameter:. Let C(¢e) denote cpnvennonal BSC Chan‘problem of computing (X ; Z) reduces to that of computing

nel capacity (over unconstrained binary sequences), yamehe entropy rate of this HMP.

C(e) = 1-H(e), whereH (¢) = —cloge—(1—¢)log(1—€)."  The Shannon entropy (or, simplgntropy of a HMP was

The noisy constrained capacit/ (S, ¢) is defined [4] by studied as early as [2], where the analysis suggests tliesiictr
C(S,e) = sup I(X;Z) = lim 1 sup I(X7',Z1'), (1) complexity of the HMP entropy as a function of the process

Xes n—oo N Xres, parameters. Blackwell [2] showed an expression of the pgtro

where the suprema are over all stationary processes seppoiit terms of a measuré), obtained by solving an integral

on § and S, respectively. Thenoiseless capacityf the equation dependent on the parameters of the process. The mea
we use natural logarithms throughout. Entrppies are qmmﬂ_'ngly SRure IStlhaI‘d t?] extract from the equatlor]: .Int any te_Xp|ICItt_ Wat)./'

measured in nats. The entropy of a random variable or pro&essill be ecently, W? ave seen a resurgence of Interes ] In estgnatin

denotedH (X), and the entropy rate b (X). HMP entropies [6], [7], [12], [17], [18], [25]. In particutaone



recent approach is based on computing the coefficients ofiaterpreted as the Markov chain of istatess, = X/},

asymptotic expansion of the entropy rate around certaimegal ¢ > 0 (we assumeX?,__ , is defined and distributed according
of the Markov and channel parameters. The first result alotm the stationary distribution of the procedsClearly, a
these lines was presented in [12], where the Taylor expanstoansition from a statec A” to a stateye A” can have positive
arounde = 0 is studied for a binary HMP of order one. Inprobability only if w and v satisfy u5=v] "', in which case
particular, the first derivative of the entropy ratecat 0 is we say that(u, v) is an overlappingpair. Thenoise process
expressed very compactly as a Kullback-Liebler divergenée = {E;};>1 is Bernoulli (binary i.i.d.), independent oX,
between two distributions on binary triplets, derived fréme with P(E;=1) = ¢. Finally, the HMP is

marginals of the input procesX. It is also shown in [12]

that the entropy rate of a HMP can be expressed in terms Z={Zi}iz1, Zi=Xi®E;, i>1. ®3)
of th_e top Lyapunov exponent of a rar_wdom proc§s§ P et 7, = (Zs, Zssr . Ziinr)  and E =
matrices (cf. also [9], where the capacity of certain chdmneE_ 5. Al f 0.1 let B¢ B
with memory is also shown to be related to top Lyapunoy * "’ ir—1)- so, for ec{0,1}, le i N

exponents). Further improvements, and new methods for ?gﬁjr;';ffi?r Bg.t\rﬁ\f dne?‘;(r:iggrgpgﬂ%i Efjll% (Sv(lu'r\]':\llzmly’
1 : ’

asymptotic expansion approach were obtained in [17], [25],
and [7]. In [18] the authors express the entropy rate for atyin P(Z" ) — P(Z" E. E. ., — 4
HMP where one of the transition probabilities is equal tozer (21, En) Z (21 Bn; Bn—1 =€) @
as an asymptotic expansion including’dc loge) term. As 1 ~
we shall see in the sequel, this case is related to(theo) - Z P(Zy™ Znir—1, En-1 = ¢, En)
(or the equivalen{0, 1)) RLL constraint. Analyticity of the eeA _ _ _ _
entropy as a function of was studied in [6]. > P(Zuir1, Engral 2y By )P(ZY 1 ES )
In Section Il of this paper we extend the results of [12], e€A

[13] on HMP entropy to higher order Markov processes. We P(E Pu(Z - aE\Z Be \p(Zn—! Ee
show that the entropy of eth-order HMP can be expressed as ; (Bngr—1)Px(Zn®E,W| Zy 1 DE, _)P(Z7 ", E;, ).
the top Lyapunov exponent of a random process of matrices . . " -

. . - - : Observe that in the last line the transition probabilities
of dimensions2” x 2" (cf. Theorem 1), extending the resuItP (-] are with respect to the original Markov cr?ain
for r = 1 in [12], [13]. As an additional result of this work, ’

. . ~n
of interest on its own, we derive the asymptotic expansionWe next denye, from (4) , an expression BY(Zj )_as a
of the HMP entropy rate around — 0 for the case where product of matrices. In what follows, vectors are of dimensi

T i 1 1 T
all transition probabilities are positive (cf. Theorem ). 2, tand S]ag'?gsl are of dlrln?tnsm% Xt2 i V\ll)e Ee?doterow
particular, we derive an expression for the first derivatithe vectors by bold lowercase 'etiers, matrices by bold upserca

entropy rate as the Kullback-Liebler divergence betweem w{t}etters, ?tr_‘d WE Ite_tl = [1"t'"1]; s(;Jperstc_nptt denqte(zjs d

distributions on2r+1-tuples, again generalizing the formul ranspot5| lon. Arn nes md_vectors an ;_nagcesd are mtﬁxte

for =1 [12].The results of Section Il are applied, in Sec-): Xec ors in A~ accoLr Ing to some fixed order, so tha

tion 111, to express the noisy constrained capacity as atlinfi — {a1, 22,2} Let

of top Lyapunov exponents of certain matrix processes.é’he%n = [P(Z}, Bp=a1), P(Z}, En=as) ... P(Z", B,=ay)]

exponents, however, are notoriously difficult to computg][2 o

Hence, as in the case of the entropy of HMPs, it is interestiagd letM(Z,,|Z,,_1) be a2" x 2" matrix defined as follows:

to study asymptotic expansions of the noisy constrained dfi{e,,_1,e,) € A" x A" is an overlapping pair, then

pacity. In Section IlI-B, we study the asymptotics of thegyoi SO _ _ _

constrained capacity, and we show that fdrk) constraints Me, e, (Zn|Zn-1) = Px(Zn®en|Zn-_10en—1)P(Ep=ey).

with & < 2d, we haveC(S,¢) = C(S) + K £ + O(2log ), _ o (5)

whereK is a well characterized constant. On the other hanfill other entries are zero. Clearl\I(Z,|Z,-1) is a random

whenk > 2d, we haveC(S,e) = C(S) + Leloge + O(c), matrix, drawn from a set o2+ possible realizations.

where, again,L is a well-characterized constant. The latter With these definitions, it follows from (4) that

case covers thg0,1) constraint (and also the equivalent B =5

(1, 00) constraint). Our formula for the constahtin this case Pn = Pn-1M(Zn[Zn-1). ©6)

is consistent with the one derived from the results of [12_3]._ Since P(Z}) = pplt = Y ecnr P(Zr, B, = e), after
We re_mark that rece_ntly Han and Marcys [8] reached S'm'lﬁérating (6), we obtain

conclusions and obtained some generalizations.

ec A

P(Z}) = piM(Za|Zy1) - - - M(Z| Zy—1)1. 7
Il. ENTROPY OFHIGHER ORDER HMPS (Z7) = pM(Z21 2) (ZnlZn-1) @

Let X = {Xi}izl be anrth-order stationaryinite memory ?We generally use the term “finite memory process” for the fingrpre-
(Markov) processover a binary alphabetd={0,1}. The t@ation. and "Markov chain” for the second.

. . L ... 3In general, the measures governing probability expresswii be clear
process 1S defined by the set of conditional prObab'ImQr%m the context. In cases when confusion is possible, wé explicitly

P(X; =1|X!=} = a}), a} € A”. The process is equivalentlyindicate the measure, e.g%x .



The joint distributionP(Z7") of the HMP, presented in (7),
has the formp; A, 1%, where A,, is the product of the first

n—1 random matrices of the process

M =M(25|%1),M(Zs| Zs), ..., M(Zp|Zp 1), ... (8)

Applying a subadditive ergodic theorem, and noting that

p1A,1t is a norm of A, it is readily proved that
n~'E[log P(Z})] must converge to a constantknown as
thetop Lyapunov exponemntf the random process1 (cf. [5],
[19], [23]). This leads to the following theorem.

Theorem 1:The entropy rate of the HME of (3) satisfies

H(Z)= lim E

n—oo

[_ log (le(ZﬂZl)' : 'M(Zl@”*l)lt)}

e Pz

1
= lim —E

n—oon,

-7
wherev is the top Lyapunov exponent of the procggsof (8).

Theorem 1 and its derivation generalize the resultsyfer1,

Using analyticity ate = 0 (cf. [6]), we find
2

H(Z}) =H(X]) — e——
(1) ( 1) 68865

R, (s,¢)

+0(g(n)e?)
0,

€
s=1

= - +O(g(n)e?). (13)
s=1

n a a S n
H(Xl)_‘g%&; Py (21)

To compute the linear term in the Taylor expansion (13),
we differentiate with respect te, and evaluate at = 1.
Proceeding in analogy to the derivation in [12], [13], weaibt
the following result.

Theorem 2:If the conditional symbol probabilities in the
finite memory (Markov) proces¥X satisfy P(a,;1]a}) > 0
for all aft'€ A"+, then the entropy rate of for smalle is

H(Z)= = H(X)+ f1i(P)e + O(?), (14)

1
li —-H,(Z"
Jim —Ho(Z7)

where, denoting by; the Boolean complement of;, and

Z'QTJFI:Zl e RpRr41Zr42 .. Z2r41, WE have

fl(P) Z PX(Zl2r+1) log PX(ZI2T+1)

of [12], [13]. It is known that computing top Lyapunov expo- ~ pX(ngl)
nents is hard (maybe infeasible), as shown in [23]. Theegfor 1
we shift our attention to asymptotic approximations. D (Px (27| Px (3771)) . (15)

We consider the entropy ratd (Z) for the HMP Z as a Here,D(-||-) is the Kullback-Liebler divergence, applied here
function of ¢ for small . In order to derive expressions fortg djstributions on42"+! derived from the marginals of [
the entropy rate, we resort to the following formal defini- 1,4 proof of Theorem 2, omitted here due to space limi-

tion (which was also used in entropy computations in [1}Liions  generalizes and follows along the lines of [12B]{1
and [12]): where it was derived for the case= 1.

R, (s,e) = Z P (=71), Remark. A question arises about the asymptotic expansion of

2P EAn the entropyH (Z) when some of the conditional probabilities

) ) . are zero. Clearly, when some transition probabilities am®,z
wheres is & real (or comp!ex) var_lable,_a_md the summation Ben certain sequenceg are not reachable by the Markov
over all binaryn-tuples. It is readily verified that process, which provides the link to constrained sequences.
For example, consider a Markov chain with the following
transition probabilities

I—-p p
P[0 )
where0 < p < 1. This process generates sequences satisfying
the (1,00) constraint (or, under a different interpretation of
rows and columns, the equivalgift 1) constraint). The output
Furthermore, |6 = [pe, ., ]e:.0,c.4- be the transition matrix sequenceZ, however, will generally not satisfy the constraint.
of the underlyingrth order Markov chain, and leir = The probability of the constraint-violating sequences rat t
[TeJecar be the corresponding stationary distribution . Defineutput of the channel is polynomial i which will generally
alsoP(s) = [pg, o, lese;car andm(s) = [r¢lecar. Then contribute a ternO(e log ) to the entropy ratéf (Z) whene
is small. This was already observed for the transition matri
(11) P of (16) in [18], where it is shown that

p(12T_§)5 loge + O(¢)

ase — 0. Recently, Han and Marcus [8] showed that in general
H(Z)= H(P)— fo(P)eloge + O(e)

when at least one of the transition probabilities in the Nark
whereg(n) is the second derivative aR,,(s, ) with respect chain is zero. If all transition probabilities are positithen
to e, computed at some€, provided these derivatives exist (thefo(P) = 0 and the coefficienf; (P) ate is then computed as
dependence on stems from (9)). in Theorem 2.

9)

H(Z)) = Bl log P(Z))] = — — (10)

The entropy of the underlying Markov sequence is (16)

2Rn(s,O)

H(X)= - o

s=1

Ry(s,0) = > _ Py (z}) = m(s)P(s)" 1",

H(Z)=H(P) - (17)

Using a formal Taylor expansion near= 0, we write

+0(g(n)e?), (12)
e=0

0
R.(s,e) = Rn(s,0)+¢ %




[1l. CAPACITY OF THE NOISY CONSTRAINED SYSTEM wheree; = (0,...,0,1,0,...,0) € A™ with a1 at position
We now apply the results on HMPs to the problem of noisy L€t B» € A" denote the set of sequencg at Hamming
constrained capacity. distance one fro_nﬁn, and Cn_ = A"\ (S, U B,). Notice
o that sequences i, are at distance at least two fros),,
A. Capacity in terms of Lyapunov exponents and contribute to the(e2) term in. From (22), recalling the
Recall that/(X;Z) = H(Z) — H(e) and, by Theorem 1, definition (9), we have
when X is a Markov process, we havél(Z) = u(P)

where p(P) is the top Lyapunov exponent of the process Ry(s,e) = () s (23)
{M(Z;|Z;-1)}i>0- The process optimizing the mutual infor- n

mation can be approached by a sequence of Markov repre- (1—e)™ | Px(z1)°+ . ZPX (27 ®es)
sentationsP(") of the constraint, of increasing order [3]. We 2P ES, 1—¢ i=1

conclude the following.

Theorem 3:The noisy constrained capacity(S, ) for a + (1 — g)(n—D)s - Py (2" @ e, +O(e2
(d, k) constraint through a BSC channel of parameteis Z e(1-e) Z x(4 @) ()

. 2P €Bp\Sn i=1
given by
C(S,e) = lim sup M(p(r)) — H(e) (18) We now restrict our attention to the cake< 2d. In this case,
"o P a one-bit flip on &d, k) sequence is guaranteed to violate the
whereP(") denotes the probability law of arth-order Markov constraint, and thus we hawg, N B,, = ¢. Let N;(z{') denote
process generating tHé, k) constraintsS. the number ofd, k) sequences at Hamming distance one from
In the next subsection, we turn our attention to asymptotid ®e;. Then, the term markeg) in (23) vanishes, and after
expansions of’(S, ) neare = 0. some manipulations we obtain
B. Asymptotic behavior Ry(s,e) = Rn(&0)(1_5)%+55(1_€)(n71)sQn(8)4_0(525)7
A nontrivial constraint will necessarily have some zero- (24)

valued conditional probabilities. Therefore, the asgeda Where .
HMP will not be covered by Theorem 2, and generally, as dis- n 1 n

i i n(s) = P(X'®e; ®ej
cussed in the remark following Theorem 2, we expect to have @« (s) 2 ; N, (X7) ; (XT @ e @eyj)

H(Z) = H(P) — fo(P)eloge + fi(P)e +o(¢)  (19) ' (25)
Observing thaiV;(2]") = N; (2] ®e; ®e;) whenever(z], 2 &
e;e;)€S2, it follows from (25) thatQ,,(1)=n. We compute
the entropyH (Z7') by taking the derivative ofR,,(s,¢) at
s = 1, which yields, after setting),,(1)=n and some further
algebraic manipulations,

for somef,(P) and f1(P) whereP is the underlying Markov
process [8]. Notice that expanding aroune- 0 corresponds
to taking the maxentropic proces8 & pmax jp (29) .
Therefore, after subtractind?(¢), recalling that H(e) =
—¢eloge + e — O(g?) for small e, and arguing as in [8], the
expansion forC(S, ) becomes H(Z}) = H(X])—neloge—(QL(1)+H(X]))e+0(c? loge)
_ max max (26)
0(875)—0(8)_(1—f0(P ))510g8+(f1(P )_1)5+((32(8)) whereQ;(l) is the derivative Oan(S) ats = 1. Thus, in
< =
whereC(S) is the capacity of noiseless RLL system. Variouthe casek < 2d, we havefy(P) =1, and the ternO(c loge)

methods exist to derive’(S) [16]. In particular, one can i (20) cancels out in this case.

i _ . Further computations are required to comp@e(1) and
\r,\(l)rclfteoE‘M] C(8) = —logpo, wherepy is the smallest real obtain the coefficient of in (26) . The complete derivation

b 1 _ 21 is presented in the full paper. Here, we provide the necgssar
;ipo - (21) definitions, and state the result.

We will show that for some RLL constraints, we have Except for border effects that do not affect the asymptptics

S : . - Wwe can represent thel, k) sequenceX] as a sequence over
fo(P) = 1in (20), and the noisy constrained capacity is of tht(?1e extendedalphabet (ofphrase}

form C(S,e) = C(S)+O(e) (cf. Theorem 4 below). The first
two terms of the expansion (20) were independently derived B={0%,0""1,...,0F1}.
in [8], using a different methodology.

Next, we compute the leading terms of the expansion (2@)Jnconstrainedsequences oveB correspond to(d, k) se-
leading to Theorems 4 and 5 below. Summing over the numlzgrences, and, conversely (again neglecting border effects
of errors introduced by the channel, we write every(d, k) sequence can be written as a sequence Bveet

Pz(Z7) = Px(XT)(1 — &)™ Pg“x dgnote the measure induced Bnby the maxentropic
distribution P™#*, and define

+ e(1-¢g)"t Px (X ®e;) 4+ O(e? 22
( ) ; X( 1 ) ( ) ( ) pZ:Pénax(Ozl), dSéSk (27)
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