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Abstract— We study the classical problem of noisy constrained
capacity in the case of the binary symmetric channel (BSC),
namely, the capacity of a BSC whose input is a sequence from
a constrained set. As stated in [4] “. . . while calculation of the
noise-free capacity of constrained sequences is well known, the
computation of the capacity of a constraint in the presence of
noise . . . has been an unsolved problem in the half-century since
Shannon’s landmark paper . . ..” We express the constrained
capacity of a binary symmetric channel with (d, k)-constrained
input as a limit of the top Lyapunov exponents of certain matrix
random processes. We compute asymptotic approximations ofthe
noisy constrained capacity for cases where the noise parameter
ε is small. In particular, we show that when k≤2d, the error
term with respect to the constraint capacity is O(ε), whereas
it is O(ε log ε) when k > 2d. In both cases, we compute the
coefficient of the error term. We also extend previous results on
the entropy of a hidden Markov process to higher-order finite
memory processes.

I. I NTRODUCTION

We consider a binary symmetric channel (BSC) with
crossover probabilityε, and a constrained set of inputs. More
precisely, letSn denote the set of binary sequences of lengthn
satisfying a given(d, k)-RLL constraint [16], i.e., no sequence
in Sn contains a run of zeros of length shorter thand or
longer thank (we assume that the valuesd and k, d ≤ k,
are understood from the context). Furthermore, we denote
S =

⋃
n>0 Sn. We assume that the input to the channel

is a stationary processX = {Xk}k≥1 supported onS. We
regard the BSC channel as emitting a Bernoulli noise sequence
E = {Ek}k≥1, independent ofX , with P (Ei = 1) = ε. The
channel output is

Zi = Xi ⊕ Ei.

where⊕ denotes addition modulo2 (exclusive-or).
For ease of notation, we identify the BSC channel with

its parameterε. Let C(ε) denote conventional BSC chan-
nel capacity (over unconstrained binary sequences), namely,
C(ε) = 1−H(ε), whereH(ε) = −ε log ε−(1−ε) log(1−ε).1

The noisy constrained capacityC(S, ε) is defined [4] by

C(S, ε) = sup
X∈S

I(X ; Z) = lim
n→∞

1

n
sup

Xn
1 ∈Sn

I(Xn
1 , Zn

1 ) , (1)

where the suprema are over all stationary processes supported
on S and Sn, respectively. Thenoiseless capacityof the

1We use natural logarithms throughout. Entropies are correspondingly
measured in nats. The entropy of a random variable or processX will be
denotedH(X), and the entropy rate byH(X).

constraint isC(S) ∆= C(S, 0). This quantity has been ex-
tensively studied, and several interpretations and methods for
its explicit derivation are known (see, e.g., [16] and extensive
bibliography therein). As forC(S, ε), the best results in the
literature have been in the form of bounds and numerical
simulations based on producing random (and, hopefully, typi-
cal) channel output sequences (see, e.g., [24], [21], [1] and
references therein). These methods allow for fairly precise
numerical approximations of the capacity for given constraints
and channel parameters.

In order to find an expression forC(S, ε) we first consider
the corresponding mutual information,

I(X ; Z) = H(Z) − H(Z|X). (2)

SinceH(Z|X) = H(ε), the problem reduces to findingH(Z),
the entropy rate of the output process.

For any sequence{xi}i≥1, we denote byxj
i , j≥i, the sub-

sequencexi, xi+1, . . . , xj . It is well known (see, e.g., [16])
that we can regard the(d, k) constraint as the output of a
kth-order finite memory (Markov) stationary process, uniquely
defined by conditional probabilitiesP (xt|xt−1

t−k). For nontrivial
constraints, some of these conditional probabilities mustbe
set to zero in order to enforce the constraint (for example, the
probability of a zero after seeingk consecutive zeros, or of
a one after seeing less thand consecutive zeros). When the
remaining free probabilities are assigned so that the entropy
of the process is maximized, we say that the process is
maxentropic, and we denote it byPmax. The noiseless capacity
C(S) is equal to the entropy ofPmax [16].

If we restrict our attention to constrained processesX that
are generated by Markov sources, the output processZ can
be regarded as ahidden Markov process(HMP), and the
problem of computingI(X ; Z) reduces to that of computing
the entropy rate of this HMP.

The Shannon entropy (or, simply,entropy) of a HMP was
studied as early as [2], where the analysis suggests the intrinsic
complexity of the HMP entropy as a function of the process
parameters. Blackwell [2] showed an expression of the entropy
in terms of a measureQ, obtained by solving an integral
equation dependent on the parameters of the process. The mea-
sure is hard to extract from the equation in any explicit way.
Recently, we have seen a resurgence of interest in estimating
HMP entropies [6], [7], [12], [17], [18], [25]. In particular, one



recent approach is based on computing the coefficients of an
asymptotic expansion of the entropy rate around certain values
of the Markov and channel parameters. The first result along
these lines was presented in [12], where the Taylor expansion
aroundε = 0 is studied for a binary HMP of order one. In
particular, the first derivative of the entropy rate atε = 0 is
expressed very compactly as a Kullback-Liebler divergence
between two distributions on binary triplets, derived fromthe
marginals of the input processX . It is also shown in [12]
that the entropy rate of a HMP can be expressed in terms
of the top Lyapunov exponent of a random process of2×2
matrices (cf. also [9], where the capacity of certain channels
with memory is also shown to be related to top Lyapunov
exponents). Further improvements, and new methods for the
asymptotic expansion approach were obtained in [17], [25],
and [7]. In [18] the authors express the entropy rate for a binary
HMP where one of the transition probabilities is equal to zero
as an asymptotic expansion including aO(ε log ε) term. As
we shall see in the sequel, this case is related to the(1,∞)
(or the equivalent(0, 1)) RLL constraint. Analyticity of the
entropy as a function ofε was studied in [6].

In Section II of this paper we extend the results of [12],
[13] on HMP entropy to higher order Markov processes. We
show that the entropy of arth-order HMP can be expressed as
the top Lyapunov exponent of a random process of matrices
of dimensions2r × 2r (cf. Theorem 1), extending the result
for r = 1 in [12], [13]. As an additional result of this work,
of interest on its own, we derive the asymptotic expansion
of the HMP entropy rate aroundε = 0 for the case where
all transition probabilities are positive (cf. Theorem 2).In
particular, we derive an expression for the first derivativeof the
entropy rate as the Kullback-Liebler divergence between two
distributions on2r+1-tuples, again generalizing the formula
for r=1 [12].The results of Section II are applied, in Sec-
tion III, to express the noisy constrained capacity as a limit
of top Lyapunov exponents of certain matrix processes. These
exponents, however, are notoriously difficult to compute [23].
Hence, as in the case of the entropy of HMPs, it is interesting
to study asymptotic expansions of the noisy constrained ca-
pacity. In Section III-B, we study the asymptotics of the noisy
constrained capacity, and we show that for(d, k) constraints
with k ≤ 2d, we haveC(S, ε) = C(S) + K ε + O(ε2 log ε),
whereK is a well characterized constant. On the other hand,
when k > 2d, we haveC(S, ε) = C(S) + L ε log ε + O(ε),
where, again,L is a well-characterized constant. The latter
case covers the(0, 1) constraint (and also the equivalent
(1,∞) constraint). Our formula for the constantL in this case
is consistent with the one derived from the results of [18].

We remark that recently Han and Marcus [8] reached similar
conclusions and obtained some generalizations.

II. ENTROPY OFHIGHER ORDER HMPS

Let X = {Xi}i≥1 be anrth-order stationaryfinite memory
(Markov) processover a binary alphabetA={0, 1}. The
process is defined by the set of conditional probabilities
P (Xt = 1|Xt−1

t−r = ar
1), ar

1 ∈ Ar. The process is equivalently

interpreted as the Markov chain of itsstatesst = Xt−1
t−r ,

t > 0 (we assumeX0
−r+1 is defined and distributed according

to the stationary distribution of the process).2 Clearly, a
transition from a stateu∈Ar to a statev∈Ar can have positive
probability only if u and v satisfy ur

2=vr−1
1 , in which case

we say that(u, v) is an overlappingpair. Thenoise process
E = {Ei}i≥1 is Bernoulli (binary i.i.d.), independent ofX ,
with P (Ei=1) = ε. Finally, the HMP is

Z={Zi}i≥1, Zi = Xi⊕Ei, i ≥ 1 . (3)

Let Z̃i = (Zi, Zi+1, . . . , Zi+r−1) and Ẽi =
(Ei, . . . , Ei+r−1). Also, for e∈{0, 1}, let Ẽe

i =
(e, E2, . . . , Ei+r−1). We next compute3 P (Z̃n

1 ) (equivalently,
P (Zn+r−1

1 )). From the definitions ofX andE, we have

P (Z̃n
1 , Ẽn) =

∑

e∈A

P (Z̃n
1 , Ẽn, En−1 = e) (4)

=
∑

e∈A

P (Z̃n−1
1 , Zn+r−1, En−1 = e, Ẽn)

=
∑

e∈A

P (Zn+r−1, En+r−1|Z̃n−1
1 , Ẽe

n−1)P (Z̃n−1
1 , Ẽe

n−1)

=
∑

e∈A

P (En+r−1)PX(Z̃n⊕Ẽn|Z̃n−1⊕Ẽe
n−1)P (Z̃n−1

1 , Ẽe
n−1).

Observe that in the last line the transition probabilities
PX(·|·) are with respect to the original Markov chain.

We next derive, from (4) , an expression forP (Z̃n
1 ) as a

product of matrices. In what follows, vectors are of dimension
2r, and matrices are of dimensions2r × 2r. We denoterow
vectors by bold lowercase letters, matrices by bold uppercase
letters, and we let1 = [1, . . . , 1]; superscriptt denotes
transposition. Entries in vectors and matrices are indexed
by vectors in Ar, according to some fixed order, so that
Ar = {a1,a2, . . . ,a2r}. Let

pn = [P (Z̃n
1 , Ẽn=a1), P (Z̃n

1 , Ẽn=a2) . . . P (Z̃n
1 , Ẽn=a2r )]

and letM(Z̃n|Z̃n−1) be a2r × 2r matrix defined as follows:
if (en−1, en) ∈ Ar ×Ar is an overlapping pair, then

Men−1,en
(Z̃n|Z̃n−1) = PX(Z̃n⊕en|Z̃n−1⊕en−1)P (Ẽn=en).

(5)
All other entries are zero. Clearly,M(Z̃n|Z̃n−1) is a random
matrix, drawn from a set of2r+1 possible realizations.

With these definitions, it follows from (4) that

pn = pn−1M(Z̃n|Z̃n−1). (6)

Since P (Z̃n
1 ) = pn1t =

∑
e∈Ar P (Z̃n

1 , Ẽn = e), after
iterating (6), we obtain

P (Z̃n
1 ) = p1M(Z̃2|Z̃1) · · ·M(Z̃n|Z̃n−1)1

t. (7)

2We generally use the term “finite memory process” for the firstinterpre-
tation, and “Markov chain” for the second.

3In general, the measures governing probability expressions will be clear
from the context. In cases when confusion is possible, we will explicitly
indicate the measure, e.g.,PX .



The joint distributionP (Zn
1 ) of the HMP, presented in (7),

has the formp1An1t, whereAn is the product of the first
n−1 random matrices of the process

M = M(Z̃2|Z̃1),M(Z̃3|Z̃2), . . . ,M(Z̃n|Z̃n−1), . . . (8)

Applying a subadditive ergodic theorem, and noting that
p1An1t is a norm of An, it is readily proved that
n−1E[log P (Zn

1 )] must converge to a constantγ known as
the top Lyapunov exponentof the random processM (cf. [5],
[19], [23]). This leads to the following theorem.

Theorem 1:The entropy rate of the HMPZ of (3) satisfies

H(Z) = lim
n→∞

E

[
− 1

n
log P (Zn+r

1 )

]

= lim
n→∞

1

n
E
[
− log

(
p1M(Z̃2|Z̃1)· · ·M(Z̃n|Z̃n−1)1

t
)]

=−γ,

whereγ is the top Lyapunov exponent of the processM of (8).

Theorem 1 and its derivation generalize the results, forr = 1,
of [12], [13]. It is known that computing top Lyapunov expo-
nents is hard (maybe infeasible), as shown in [23]. Therefore,
we shift our attention to asymptotic approximations.

We consider the entropy rateH(Z) for the HMP Z as a
function of ε for small ε. In order to derive expressions for
the entropy rate, we resort to the following formal defini-
tion (which was also used in entropy computations in [11]
and [12]):

Rn(s, ε) =
∑

zn
1 ∈An

P s
Z(zn

1 ), (9)

wheres is a real (or complex) variable, and the summation is
over all binaryn-tuples. It is readily verified that

H(Zn
1 ) = E [− logP (Zn

1 )] = − ∂

∂s
Rn(s, ε)

∣∣∣∣
s=1

. (10)

The entropy of the underlying Markov sequence is

H(Xn
1 )= − ∂

∂s
Rn(s, 0)

∣∣∣∣
s=1

.

Furthermore, letP = [pei,ej
]ei,ej∈Ar be the transition matrix

of the underlyingrth order Markov chain, and letπ =
[πe]e∈Ar be the corresponding stationary distribution . Define
alsoP(s) = [ps

ei,ej
]ei,ej∈Ar andπ(s) = [πs

e
]e∈Ar . Then

Rn(s, 0) =
∑

zn

P s
X(zn

1 ) = π(s)P(s)n−11t . (11)

Using a formal Taylor expansion nearε = 0, we write

Rn(s, ε) = Rn(s, 0) + ε
∂

∂ε
Rn(s, ε)

∣∣∣∣
ε=0

+ O(g(n)ε2), (12)

whereg(n) is the second derivative ofRn(s, ε) with respect
to ε, computed at someε′, provided these derivatives exist (the
dependence onn stems from (9)).

Using analyticity atε = 0 (cf. [6]), we find

H(Zn
1 ) = H(Xn

1 ) − ε
∂2

∂s∂ε
Rn(s, ε)

∣∣∣∣
ε=0,
s=1

+ O(g(n)ε2)

= H(Xn
1 ) − ε

∂

∂s

∂

∂ε

∑

zn
1

P s
Z(zn

1 )

∣∣∣∣
ε=0,
s=1

+ O(g(n)ε2). (13)

To compute the linear term in the Taylor expansion (13),
we differentiate with respect tos, and evaluate ats = 1.
Proceeding in analogy to the derivation in [12], [13], we obtain
the following result.

Theorem 2:If the conditional symbol probabilities in the
finite memory (Markov) processX satisfy P (ar+1|ar

1) > 0
for all ar+1

1 ∈Ar+1, then the entropy rate ofZ for small ε is

H(Z) = lim
n→∞

1

n
Hn(Zn) = H(X) + f1(P )ε + O(ε2), (14)

where, denoting bȳzi the Boolean complement ofzi, and
ž2r+1=z1 . . . zrz̄r+1zr+2 . . . z2r+1, we have

f1(P ) =
∑

z
2r+1
1

PX(z2r+1
1 ) log

PX(z2r+1
1 )

PX(ž2r+1
1 )

= D
(
PX(z2r+1

1 )||PX(ž2r+1
1 )

)
. (15)

Here,D(·||·) is the Kullback-Liebler divergence, applied here
to distributions onA2r+1 derived from the marginals ofX .

The proof of Theorem 2, omitted here due to space limi-
tations, generalizes and follows along the lines of [12], [13],
where it was derived for the caser = 1.
Remark. A question arises about the asymptotic expansion of
the entropyH(Z) when some of the conditional probabilities
are zero. Clearly, when some transition probabilities are zero,
then certain sequencesxn

1 are not reachable by the Markov
process, which provides the link to constrained sequences.
For example, consider a Markov chain with the following
transition probabilities

P =

[
1 − p p

1 0

]
(16)

where0 ≤ p ≤ 1. This process generates sequences satisfying
the (1,∞) constraint (or, under a different interpretation of
rows and columns, the equivalent(0, 1) constraint). The output
sequenceZ, however, will generally not satisfy the constraint.
The probability of the constraint-violating sequences at the
output of the channel is polynomial inε, which will generally
contribute a termO(ε log ε) to the entropy rateH(Z) whenε
is small. This was already observed for the transition matrix
P of (16) in [18], where it is shown that

H(Z) = H(P ) − p(2 − p)

1 + p
ε log ε + O(ε) (17)

asε → 0. Recently, Han and Marcus [8] showed that in general

H(Z) = H(P ) − f0(P )ε log ε + O(ε)

when at least one of the transition probabilities in the Markov
chain is zero. If all transition probabilities are positive, then
f0(P ) = 0 and the coefficientf1(P ) at ε is then computed as
in Theorem 2.



III. C APACITY OF THE NOISY CONSTRAINED SYSTEM

We now apply the results on HMPs to the problem of noisy
constrained capacity.

A. Capacity in terms of Lyapunov exponents

Recall thatI(X ; Z) = H(Z) − H(ε) and, by Theorem 1,
when X is a Markov process, we haveH(Z) = µ(P )
where µ(P ) is the top Lyapunov exponent of the process
{M(Z̃i|Z̃i−1)}i>0. The process optimizing the mutual infor-
mation can be approached by a sequence of Markov repre-
sentationsP (r) of the constraint, of increasing order [3]. We
conclude the following.

Theorem 3:The noisy constrained capacityC(S, ε) for a
(d, k) constraint through a BSC channel of parameterε is
given by

C(S, ε) = lim
r→∞

sup
P (r)

µ(P (r)) − H(ε) (18)

whereP (r) denotes the probability law of anrth-order Markov
process generating the(d, k) constraintS.

In the next subsection, we turn our attention to asymptotic
expansions ofC(S, ε) nearε = 0.

B. Asymptotic behavior

A nontrivial constraint will necessarily have some zero-
valued conditional probabilities. Therefore, the associated
HMP will not be covered by Theorem 2, and generally, as dis-
cussed in the remark following Theorem 2, we expect to have

H(Z) = H(P ) − f0(P )ε log ε + f1(P )ε + o(ε) (19)

for somef0(P ) andf1(P ) whereP is the underlying Markov
process [8]. Notice that expanding aroundε = 0 corresponds
to taking the maxentropic processP ∆= Pmax in (19) .
Therefore, after subtractingH(ε), recalling that H(ε) =
−ε log ε + ε − O(ε2) for small ε, and arguing as in [8], the
expansion forC(S, ε) becomes

C(S, ε)=C(S)−(1−f0(P
max))ε log ε+(f1(P

max)−1)ε+o(ε)
(20)

whereC(S) is the capacity of noiseless RLL system. Various
methods exist to deriveC(S) [16]. In particular, one can
write [14] C(S) = − log ρ0, whereρ0 is the smallest real
root of k∑

ℓ=d

ρℓ+1
0 = 1. (21)

We will show that for some RLL constraints, we have
f0(P ) = 1 in (20), and the noisy constrained capacity is of the
form C(S, ε) = C(S)+O(ε) (cf. Theorem 4 below). The first
two terms of the expansion (20) were independently derived
in [8], using a different methodology.

Next, we compute the leading terms of the expansion (20),
leading to Theorems 4 and 5 below. Summing over the number
of errors introduced by the channel, we write

PZ(Zn
1 ) = PX(Xn

1 )(1 − ε)n

+ ε(1 − ε)n−1
n∑

i=1

PX(Xn
1 ⊕ ei) + O(ε2) (22)

whereej = (0, . . . , 0, 1, 0, . . . , 0) ∈ An with a 1 at position
j. Let Bn ⊆ An denote the set of sequencezn

1 at Hamming
distance one fromSn, and Cn = An \ (Sn ∪ Bn). Notice
that sequences inCn are at distance at least two fromSn,
and contribute to theO(ε2) term in. From (22), recalling the
definition (9), we have

Rn(s, ε) = (23)

∑

zn
1 ∈Sn

(1−ε)ns


 PX(zn

1 )s +

(∗)︷ ︸︸ ︷
ε

1−ε

n∑

i=1

PX(zn
1⊕ei)




s

+
∑

zn
1 ∈Bn\Sn

εs(1 − ε)(n−1)s

(
n∑

i=1

PX(zn
1 ⊕ ei)

)s

+ O(ε2) .

We now restrict our attention to the casek ≤ 2d. In this case,
a one-bit flip on a(d, k) sequence is guaranteed to violate the
constraint, and thus we haveSn∩Bn = φ. Let Ni(z

n
1 ) denote

the number of(d, k) sequences at Hamming distance one from
zn
1 ⊕ei. Then, the term marked(∗) in (23) vanishes, and after

some manipulations we obtain

Rn(s, ε) = Rn(s, 0)(1−ε)ns+εs(1−ε)(n−1)sQn(s)+O(ε2s),
(24)

where

Qn(s) =
∑

zn
1 ∈Sn

n∑

i=1

1

Ni(Xn
1 )




n∑

j=1

P (Xn
1 ⊕ ei ⊕ ej)




s

(25)
Observing thatNi(z

n
1 ) = Nj(z

n
1 ⊕ei⊕ej) whenever(zn

1 , zn
1 ⊕

ei⊕ej)∈S2
n, it follows from (25) thatQn(1)=n. We compute

the entropyH(Zn
1 ) by taking the derivative ofRn(s, ε) at

s = 1, which yields, after settingQn(1)=n and some further
algebraic manipulations,

H(Zn
1 ) = H(Xn

1 )−nε log ε−(Q′
n(1)+H(Xn

1 ))ε+O(ε2 log ε)
(26)

whereQ′
n(1) is the derivative ofQn(s) at s = 1. Thus, in

the casek ≤ 2d, we havef0(P ) = 1, and the termO(ε log ε)
in (20) cancels out in this case.

Further computations are required to computeQ′
n(1) and

obtain the coefficient ofε in (26) . The complete derivation
is presented in the full paper. Here, we provide the necessary
definitions, and state the result.

Except for border effects that do not affect the asymptotics,
we can represent the(d, k) sequenceXn

1 as a sequence over
the extendedalphabet (ofphrases)

B = { 0d1, 0d+11, . . . , 0k1 }.

Unconstrainedsequences overB correspond to(d, k) se-
quences, and, conversely (again neglecting border effects),
every(d, k) sequence can be written as a sequence overB. Let
Pmax

β denote the measure induced onB by the maxentropic
distributionPmax, and define

pℓ = Pmax
β (0ℓ1), d ≤ ℓ ≤ k . (27)



Note thatpℓ = ρℓ+1
0 , with ρ0 as in (21). The expected length

of a super-symbol inB is

λ =

k∑

ℓ=d

(ℓ + 1)pℓ . (28)

For integersℓ1, ℓ2, d ≤ ℓ1, ℓ2 ≤ k, letIℓ1,ℓ2 denote the interval

Iℓ1,ℓ2 =

{ℓ:−min+{ℓ1−d, k − ℓ2−1} ≤ ℓ ≤ min+{ℓ2−d, k−ℓ1−1}} ,

wheremin+{a, b} = max{min{a, b}, 0}. Also, let I∗
ℓ1,ℓ2

=
Iℓ1,ℓ2 \ {0}. Now, define

τ(s) =
∑

ℓ1,ℓ2

(ℓ1 − d + ℓ2 − d + 1 − |Iℓ1,ℓ2 |)ps
ℓ1

ps
ℓ2

+
∑

ℓ1,ℓ2

∑

θ∈I∗

ℓ1,ℓ2

1

2
(pℓ1pℓ2 + pℓ1+θpℓ2−θ)

s

+
∑

ℓ1,ℓ2

1

|Iℓ1,ℓ2 |

(
∑

θ∈Iℓ1,ℓ2

pℓ1+θpℓ2−θ

)s

,

and

α(s) =

k∑

ℓ=d

(2d − ℓ) ps
ℓ .

The following theorem summarizes our findings for the case
k ≤ 2d.

Theorem 4:Consider the constrained systemS with k ≤
2d. Then,

C(S, ε) = C(S) − (2 − τ ′(1) + α′(1)

λ
)ε + O(ε2 log ε) .

Here, the derivatives ofα andτ are with respect tos, evaluated
at s=1.

In the complementary casek > 2d, the term marked(∗)
in (23) does not vanish, and thus theO(ε log ε) term in (20)
is generally nonzero. For this case, using techniques similar to
the ones leading to Theorem 4, we obtain the following result.

Theorem 5:Consider the constrained systemS with k ≥
2d, let pℓ be as defined in (27) , define

γ =
∑

ℓ>2d

(ℓ − 2d)pℓ , δ =
∑

ℓ1+ℓ2+1≤k

pℓ1pℓ2 ,

andλ as in (28) . Then,

C(S, ε) = C(S) − (1 − f0(P
max)) ε log ε−1 + O(ε) , (29)

wheref0(P
max) = 1 − γ + δ

λ
.

Example. We consider the(1,∞) constraint with transition
matrix P as in (16) . Computing the quantities called for in
Theorem 5 ford = 1 andk = ∞, we obtainpℓ = (1−p)ℓ−1p,
λ = 1+p

p
, γ = (1−p)2

p
, andδ = 1. Thus,

f0(P ) = 1 − γ + δ

λ
=

p(p − 2)

p − 1
,

consistent with the calculation of the same quantity in [18].
The noisy constrained capacity is obtained whenP = Pmax,
i.e.,p = 1/ϕ2, whereϕ = (1+

√
5)/2, the golden ratio. Then,

f0(P
max) = 1/

√
5, and the coefficient ofε log(1/ε) in (29)

is (1/
√

5)−1 ≈ −0.553 .
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