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Abstract— We study the Tunstall code using the machinery
from the analysis of algorithms literature. In particular, we
propose an algebraic characterization of the Tunstall code which,
together with tools like the Mellin transform and the Tauberian
theorems, leads to new results on the variance and a central limit
theorem for dictionary phrase lengths. This analysis also provides
a new argument for obtaining asymptotic results about the mean
dictionary phrase length and average redundancy rates.

I. I NTRODUCTION

A variable-to-fixed length encoder partitions the source
string over anm-ary alphabetA into a concatenation of
variable-length phrases. Each phrase except the last one is
constrained to belong to a given dictionaryD of source strings;
the last phrase is a non-null prefix of a dictionary entry.
One common constraint on a dictionary is that it leads to a
uniqueparsing of any string overA (see [13] for examples of
dictionaries without this constraint). For the rest of the paper
we will assume that all dictionaries are uniquely parsable. It
is convenient to represent a uniquely parsable dictionary by a
complete parsing treeT , i.e., a tree in which every internal
node has allm children nodes in the tree. The dictionary
entriesd ∈ D correspond to the leaves of parsing tree. The
encoder represents each parsed string by the fixed length
binary code word corresponding to its dictionary entry. If
the dictionaryD is hasM entries, then the code word for
each phrase hasdlog2 Me bits. The best known variable-
to-fixed length code is now generally attributed to Tunstall
[22]; however, it was independently discovered by Khodak [7],
Verhoeff [23], and possibly others. In this paper, we offer a
new perspective and asymptotic analysis of the Tunstall code.

Tunstall’s algorithm is simple to visualize through evolving
parsing trees in which every edge corresponds to a letter from
the source alphabetA: starting from a tree with a root node
andm leaves which together correspond to all of the symbols
in A). ForJ iterations we select the current leaf corresponding
to a string of highest probability and growm children out it,
one for each symbol inA. After theseJ steps, the parsing tree
hasJ non-root internal nodes andM = (m−1)J +m leaves,
which each correspond to a distinct dictionary entry. The
dictionary entries are prefix-free and can be easily enumerated.

Tunstall’s algorithm has been studied extensively (see, e.g.,

the survey article [1]). Simple bounds for its redundancy
have been independently obtained by Khodak [7] and by
Jelinek and Schneider [6]. Tjalkens and Willems [19] were
the first to look at extensions of this code to sources with
memory. Savari and Gallager [11] proposed a generalization
of Tunstall’s algorithm for Markov sources and used renewal
theory for an asymptotic analysis of average code word length
and redundancy for memoryless and Markov sources. Savari
[12] later published a non-asymptotic analysis of the Tunstall
code for binary, memoryless sources with small entropies.
Universal variable-to-fixed length codes were analyzed in [21],
[10], [9], [8], [20], [24]; however, to the best of our knowledge
the minimax redundancy for variable-to-fixed and variable-to-
variable length codes has not been carefully studied.

Our goal is to establish the limiting distribution of the
phrase length and provide a precise asymptotic analysis of the
average redundancy of the Tunstall code. While the average
redundancy of the Tunstall code for memoryless and Markov
sources has been studied previously by Savari [11], [12],
we provide here a new approach that allows us to precisely
quantify oscillations involved in the redundancy for a certain
class of sources. Our central limit theorem concerning the
phrase length is new and has been derived in an analytic way
that hopefully will serve as a template for the future analysis of
variable-to-fixed length and variable-to-variable length codes.

To facilitate our analysis, we will focus upon another con-
struction of the Tunstall code that was invented by Khodak [7]
(see also [8]). Khodak independently discovered the Tunstall
code using a rather different approach. Letpi be the probability
of the ith source symbol and letpmin = min{p1, . . . , pm}.
Khodak suggested choosing a real numberr ∈ (0, pmin) and
growing a complete parsing tree satisfying

pminr ≤ P (d) < r , d ∈ D. (1)

It can also be shown (see, e.g., [6, Lemma 6] and [11, Lemma
2]) that the resulting parsing tree is exactly the same as
a tree constructed by Tunstall’s algorithm. The asymptotic
relationship betweenr and the resulting number of dictionary
entriesMr was studied in [11] and will be established here in
a different way.



It follows from (1) that if y is a proper prefix of one or
more entries ofD = Dr, i.e., y corresponds to an internal
node ofT = Tr, then

P (y) ≥ r.

As it is easier to directly characterize the internal nodes of the
parsing treeTr rather than its leaves, we shall approach the
analysis ofD = Dr by representing the moment generating
function of the phrase length in terms of the transform of the
path lengths to internal nodes inTr. We will show that the
moment generating function of the dictionary phrase length
in the parsing tree satisfies certain recurrences that could
surprisingly be analyzed through analytic algorithmic methods
such as the Mellin transform and the Tauberian theorems.
This analysis provides a precise asymptotic characterization
of the behavior of the Tunstall code. In passing, we mention
that this work directly extends recent analyses of fixed-to-
variable codes (cf. [4], [5], [17], [18]) through tools of analytic
algorithms and is hence in the domain of analytic information
theory.

II. M AIN RESULTS

Assume a memoryless source over anm-ary alphabetA
generates an output sequence. Letpi > 0 be the probability
of the ith letter of alphabetA, i ∈ {1, . . . , m}, pmin =
min{p1, . . . , pm}, and pmax = max{p1, . . . , pm}. Given a
dictionaryD and corresponding complete parsing treeT , the
encoder partitions the source output sequence into a sequence
of variable-length phrases. Letd ∈ D denote a dictionary
entry,P (d) be its probability, and|d| be its length. Our focus
will be on the random variableD = |d|, the phrase length of a
dictionary string. One of our goals is to investigate the moment
generating function of the phrase lengthD = Dr in Khodak’s
construction of the Tunstall dictionary with parameterr. That
is, we consider

D(r, z) := E[zD] =
∑

d∈Dr

P (d)z|d|.

Towards this end, we next introduce a second transform
describing the probabilities of strings which correspond to
internal nodes in the parsing treeTr. Let

S(r, z) =
∑

y: P (y)≥r

P (y)z|y|. (2)

Our first result considersarbitrary complete parsing trees,
i.e., not necessarily Tunstall trees, and relates the transform
for the probabilities of internal nodes to a function of the leaf
probabilities.

Theorem 1:Let D̃ be a uniquely parsable dictionary and̃Y
be the collection of strings which are proper prefixes of one
or more dictionary entries. Then for all|z| ≤ 1,

∑
d∈D̃

P (d)
z|d| − 1
z − 1

=
∑
y∈Ỹ

P (y)z|y|. (3)

Proof We use induction on the number of internal nodes in
the corresponding dictionary tree. For the basis step, (3) is

clearly true whenD̃ = A since the only element of̃Y is the
null string, which has probability one and length zero.

For the inductive step, suppose that (3) is true for all
dictionaries with parsing trees havingk internal nodes. Let
D̃ be a dictionary with a corresponding proper prefix setỸ
having k + 1 elements. Choosey0 ∈ Ỹ to have maximum
length so that its single letter extensions correspond to the
dictionary entriesd1, d2, . . . , dm ∈ D̃. Observe thatP (y0) =
P (d1) + P (d2) + . . . + P (dm). We next define an auxiliary
dictionary D̃′

with D̃′
= D̃ ∪ {y0} \ {d1, . . . , dm}. ThenD̃′

has a corresponding proper prefix setỸ ′
= Ỹ \ {y0} with k

elements.
Using the inductive hypothesis, we have∑

y∈Ỹ
P (y)z|y| =

∑
y∈Ỹ′

P (y)z|y| + P (y0)z|y0|

=
∑
d∈D̃′

P (d)
z|d| − 1
z − 1

+ P (y0)z|y0|

=
∑

d∈D̃′\{y0}
P (d)

z|d| − 1
z − 1

+P (y0)
(

z|y0| +
z|y0| − 1
z − 1

)

=
∑

d∈D̃′\{y0}
P (d)

z|d| − 1
z − 1

+(P (d1) + . . . + P (dm))
(

z|y0|+1 − 1
z − 1

)

=
∑
d∈D̃

P (d)
z|d| − 1
z − 1

.

This completes the proof of the lemma.

Since E[D] =
∑

d∈D̃ P (d) |d|, Theorem 1 offers a new
proof of the well-known result that

E[D] =
∑
y∈Ỹ

P (y),

and it provides a new result for uniquely parsable dictionaries
that

E[D(D − 1)] = 2
∑
y∈Ỹ

P (y)|y|.

Furthermore, Theorem 1 and equation (2) imply that for the
Tunstall code

D(r, z) = 1 + (z − 1)S(r, z).

Thus we can express the moment generating function for the
phrase length of a Tunstall dictionary entry in terms of the
transform describing the probabilities of proper prefixes of the
dictionary entries. As we will discuss below, this relationship
enables us to exploit a recurrence description for our analysis
of the Tunstall code.

Let v = 1/r, z be a complex number and definẽS(v, z) =
S(v−1, z). We restrict our attention here to a binary alphabet
A with 0 < p1 < p2 < 1.



Let A(v) devote the number of source strings with proba-
bility at leastv−1; i.e.,

A(v) =
∑

y:P (y)≥1/v

1. (4)

The functionsA(v) and S̃(v, z) satisfy the following recur-
rences.

A(v) =
{

0 v < 1,
1 + A(vp1) + A(vp2) v ≥ 1

and

S̃(v, z) =
{

0 v < 1,

1 + zp1S̃(vp1, z) + zp2S̃(vp2, z) v ≥ 1,

since every binary string either is the empty string, a string
starting with the first source lettera1 ∈ A, or a string starting
with the lettera2 ∈ A. This partition directly leads to the
recurrences above. Observe thatA(v) represents the number of
internal nodes in Khodak’s construction with parameterv−1 of
a Tunstall tree, that isMr = A(v)+1 = |Dr| is the dictionary
size. Further,E[Dr] = S̃(v, 1) is the corresponding expected
value of the phrase length (r = 1/v).

These recurrences can be studied through the Mellin trans-
form, see [2], [18]; in particular we find that asv → ∞,

Mr = A(v) + 1 =
v

H
+ o(v), (5)

if ln p2/ lg p1 is irrational and

Mr = A(v) + 1 =
Q1(log v)

H
v + O(v1−η) (6)

for someη > 0 if ln p2/ ln p1 is rational, where

Q1(x) =
L

1 − e−L
e−L〈 x

L 〉 (7)

and L > 0 is the largest real number for whichln(1/p1)
and ln(1/p2) are integer multiples ofL; H = p1 ln(1/p1) +
p2 ln(1/p2) is the entropy rate innatural units and〈y〉 =
y − byc is the fractional part of the real numbery. Observe
that whenlog p2/ log p1 = b/d for some integersb, d such
that gcd(b, d) = 1 we can also writeL = log(1/p2)/b =
log(1/p1)/d.

Similarly,

E[Dr] = S̃(v, 1) =
log v

H
+

H2

2H2
+ o(1) (8)

in the irrational case and

E[Dr] = S̃(v, 1) =
log v

H
+

H2

2H2
+

Q2(log v)
H

+O(v−η) (9)

for someη > 0 in the rational case, where

Q2(x) = L ·
(

1
2
−

〈 x

L

〉)
(10)

andH2 = p1 ln(1/p1)2 + p2 ln(1/p2)2.
Whereas the proof in the rational case is elementary (i.e.,

complex analysis is not used), the irrational case requires the
use of Wiener’s Tauberian theorem (cf. [2]).

In order to obtain distributional results onD we have to
analyzeD̃(v, z) = D(1/v, z) = 1 + (z − 1)S̃(v, z) uniformly
for z in a neighborhood ofz = 1. Although the recurrence
for S̃(v, z) looks similar to that ofA(v) its analysis is
more complex. The main technical problem lies in the slow
convergence rates of certain series. In this conference paper,
we merely sketch our approach.

The Mellin transformF ∗(s) of a functionF (v) is defined
as (cf. [18])

F ∗(s) =
∫ ∞

0

F (v)vs−1dv.

A simple calculation shows

D̃∗(s, z) =
1 − z

s(1 − zp1−s
1 − zp1−s

2 )
− 1

s
, <(s) < s0(z),

wheres0(z) denotes the real solution ofzp1−s + zq1−s = 1.
In order to find the asymptotics of̃D(v, z) as v → ∞ we

compute the inverse transform of̃D∗(s, z)):

D̃(v, z) =
1

2πi
lim

T→∞

∫ σ+iT

σ−iT

D̃∗(s, z)v−s ds,

whereσ < s0(z). For this purpose it is usually necessary to
determine the polar singularities of the meromorphic continu-
ation of D̃∗(s, z) to the range<(s) ≥ s0(z), that is, we have
to analyze the set

Z(z) = {s ∈ C : zp1−s + zq1−s = 1} (11)

of all complex roots ofzp1−s + zq1−s = 1 It can be proved
[18] thatZ(z) = {sk(z) : k ∈ Z} with <(sk(z)) ≥ s0(z) and
(2k − 1)π/ ln p1 ≤ =(sk(z)) ≤ (2k + 1)π/ ln p1.

Hence, by the residue theorem we obtaiñD(v, z) =
limT→∞ FT (v, z) for every σ > s0(z) with σ 6∈ {<(s) :
s ∈ Z(z)} where

FT (v, z)

= −
∑

s′∈Z(z), <(s′)<σ,|=(s′)|>T

Res(D̃∗(s, z) v−s, s = s′)

+
1

2πi

∫ σ+iT

σ−iT

(
1 − z

s(1 − zp1−s
1 − zp1−s

2 )
− 1

s

)
v−s ds

= −
∑

s′∈Z(z), <(s′)<σ,|=(s′)|>T

(1 − z)v−s′

zs′p1−s′
1 ln p1 + zs′p1−s′

2 ln p2

+
1

2πi

∫ σ+iT

σ−iT

(
1 − z

s(1 − zp1−s
1 − zp1−s

2 )
− 1

s

)
v−s ds

provided that the series of residues converges and the limit as
T → ∞ of the last integral exists. The problem is that neither
the series nor the integral above are absolutely convergent
since the integrand is only of order1/s.

After some careful analysis, it is possible to derive the
following results.

Theorem 2:Let Dr denote the phrase length in Khodak’s
construction of the Tunstall code with a dictionary of sizeMr



over a biased memoryless source. Then asMr → ∞
Dr − 1

H ln Mr√(
H2
H3 − 1

H

)
ln Mr

→ N(0, 1)

whereN(0, 1) denotes the standard normal distribution. Fur-
thermore, we haveE[D] = ln Mr

H + O(1) and

Var[Dr] =
(

H2

H3
− 1

H

)
ln Mr + O(1)

for largeMr.

By combining (5) and (8) resp. (6) and (9) we can be even
more precise. In the irrational case (i.e., forlog p2/ log p1 =
b/d) we have

E[Dr] =
ln Mr

H
+

ln H

H
+

H2

2H2
+ o(1)

and in the rational case

E[Dr] =
ln Mr

H
+

ln H

H
+

H2

2H2
+

Q2(ln v) − ln Q1(ln v)
H

+ O(M−η
r ).

Note that (7) and (10) yield

Q2(ln v) − log Q1(ln v) = − ln L + ln(1 − e−L) +
L

2
so that there is actually no oscillation.

As a direct consequence, we can derive a precise asymptotic
formula for the average redundancy of the Tunstall code that
was defined in [11] by

RM =
ln M

E[D]
− H .

The following result is a consequence of the above derivations.

Corollary 1: Let Dr denote the dictionary in Khodak’s
construction of the Tunstall code of sizeMr. If ln p1/ ln p2 is
irrational then

RMr =
H

ln Mr

(
−H2

2H
− ln H

)
+ o

(
1

ln Mr

)
.

In the rational case we have

RMr =
H

ln Mr

(
− H2

2H
− ln H

+ lnL − ln(eL − 1) +
L

2

)
+ O

(
M−η

r

)
,

for someη > 0, whereL > 0 is the largest real number for
which ln(1/p1) and ln(1/p2) are integer multiples ofL.

In passing we observe that the Corollary 1 is a special case
of Theorems 5 and 12 of [11].
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