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Abstract—We take an information-theoretic approach to iden-
tify nonlinear feature redundancies in unsupervised learning.
We define a subset of features as sufficiently-informative when
the joint entropy of all the input features equals to that of
the chosen subset. We argue that the rest of the features are
redundant as all the accessible information about the data can
be captured from sufficiently-informative features. Next, instead
of directly estimating the entropy, we propose a Fourier-based
characterization. For that, we develop a novel Fourier expansion
on the Boolean cube incorporating correlated random variables.
This generalization of the standard Fourier analysis is beyond
product probability spaces. Based on our Fourier framework, we
propose an algorithm for unsupervised feature selection. Via a
theoretical analysis, we show that our proposed algorithms find
provably asymptotically optimal feature subsets. Also, numerical
experiments demonstrate that our methods outperform state-of-
the-art feature selection algorithms on various datasets. Lastly,
we show that the computational complexity of our algorithms
can be as low as O(nd) with n being the number of samples and
d the number of features.

I. INTRODUCTION

A central challenge in learning with feature selection is
to jointly identify nonlinear redundancies within the features
and the dependencies in the feature-label relation. Many
well-known feature selection approaches (supervised or un-
supervised) are based on measures that capture only linear
relations or focus on the features individually [1]–[3]. Kernel-
based methods are exception; however, are prohibitive in large
datasets as the computational complexity of computing a
kernel grows super linearly with the number of the samples
[4]. Alternatively, information-theoretic metrics are powerful
candidates in quantifying nonlinear dependencies among the
random variables. However, estimating such quantities usually
requires high sample complexity.

In this work, we take an alternative approach and adapt
discrete Fourier analysis with information theoretic measures.
Hence, capturing nonlinear relations with low sample com-
plexity, while avoiding kernel computations. The discrete
Fourier expansion (on the Boolean cube) provides an essential
tool to characterize different levels of “nonlinearities” in a
function. In this expansion, any real-valued function on
the Boolean cube can be written as a linear combination
of monomials (parities) [5], [6]. Highly nonlinear functions
have Fourier expansion with large coefficients for high-degree
parities. Thus, the Fourier expansion is potentially a powerful
tool in learning problems. However, there are limitations
making it impractical. First, it is developed for product proba-
bility spaces (mutually independent input variables). Secondly,

this expansion is defined only for deterministic functions.
These assumptions are too strong, as learning problems, often,
involve correlated features with stochastic labeling. In this
work, we make a connection between the two approaches and
aim to address these challenges. A full version of the paper
cab be found in [7].

A. Main Contributions

We propose entropy as a justifiable measure of feature
redundancy and identify the notion of sufficiently informative
for feature subsets. We address the above challenges by
developing a novel Fourier expansion for stochastic mappings
of correlated binary random variables. Using this framework,
we study feature selection, where the objective is to remove
as many features as possible without significantly increasing
classification loss. We demonstrate that the Fourier expansion
provides a powerful tool to characterize nonlinear redundan-
cies in features and nonlinear dependencies in the features-
label relation. We propose a Fourier-based algorithm for unsu-
pervised variant of the problem. We use the Fourier expansion
to provide a theoretical analysis and derive conditions under
which our algorithm finds the optimal feature subset. Further,
through numerical experiments, we show that our algorithm
outperforms several well-known feature selection techniques.
That said, the contributions of this paper are three-fold as
summarized below:

1) Fourier expansion for correlated random variables:
We develop a generalized Fourier expansion for functions
of correlated binary random variables (Proposition 1). For
this purpose, we adopt a Gram-Schmidt-type orthogonalization
and construct a set of orthogonal basis functions. Further,
we adapt our Fourier expansion to the more general space
of stochastic mappings (e.g., mappings from one probability
space to another). To the best of our knowledge, this is the
first generalization of the Fourier expansion for correlated
binary random variables. Although this Fourier expansion is
defined on the Boolean cube, our algorithms are applicable
to non-binary features too. We view the Binary Fourier as a
framework that captures a special class of nonlinearities —
those characterized via the parities. Alternatively, we could
generalize our Fourier expansion to discrete features and,
based on it, design feature selection algorithms. However, such
a generalization requires character theory, which is beyond
the scope of this paper. We note that there are other forms
of orthogonal decomposition including the Hoeffding-Sobel
decomposition [8]–[10] and its generalization [10]. However,



such decompositions are basis-free. Our Fourier expansion is
defined by constructing a set of orthonormal basis functions
which makes it suitable for feature selection.

2) Sufficiently Informative: In the unsupervised setting,
we take an information-theoretic perspective, and group the
features into redundant and sufficiently informative. All the
accessible information about the data can be captured from the
later group. More precisely, we define a subset of features as
sufficiently-informative when the joint entropy of all the input
features equals to that of the chosen subset. The former group
is statistically a function of the later, hence can be removed
without affecting the learning’s performance. This approach
extends the notion of Markov blanket for “redundant” features
to the unsupervised setting [11]–[13]. We then develop a
characterization of sufficiently informative features based on
our Fourier expansion (Theorem 1). Built upon this, we design
an Unsupervised Fourier Feature Selection (UFFS) algorithm,
which captures the redundant features in our new formulation.
Instead of ranking the features, the UFFS finds redundant
features and declares the rest of the features as sufficiently
informative. Through comprehensive numerical experiments in
Section V, we show that the UFFS significantly outperforms
well-known methods for unsupervised feature selection.

B. Related Works

Our unsupervised feature selection algorithm is multi-
variate (evaluating the dependencies of features jointly) and
identifies non-linear dependencies. Whereas many well-known
existing works are considered univariate or focus on the
linear dependencies among the features [3]. Some common
approaches in unsupervised feature selection are pseudo-label
based, “column subset selection”, and spectral/manifold based.
Methods in the first approach such as [14], [15] attempt to gen-
erate pseudo-labels via certain clustering methods. However,
such methods focus on linear transformations between features
and the pseudo labels and ignore the nonlinear relations.
The second approach, “column subset selection”, assumes
only linear dependencies among the features and solves an
optimization problem that is similar to principal component
analysis (PCA) [16], [17]. Although methods in the third
approach, such as [18], capture nonlinear relations, they ignore
the interaction between the features.

Feature selection methods are usually classified in three
main groups: wrappers, Filter and embedded [1]. In the wrap-
per method, the feature subsets are evaluated directly by an
induction algorithm. In embedded methods, feature selection is
performed during the training process of the given learning al-
gorithm. Such approaches are usually computationally expen-
sive and, hence, prohibitive in large data sets. An alternative
solution is the filter approach in which an intermediate mea-
sure, independent of the induction learning algorithm, is used
to evaluate the feature subsets. Filter methods are preferred as
they are computationally more efficient and relatively robust
against overfitting. The challenge in this area, that remains
open, is to design a computationally efficient measure which
is provably related to the generalization loss. Several measures

has been introduced in the literature. Well-known criteria for
feature selection can be grouped into similarity-based mea-
sures (e.g., Pearson correlation, Fisher Score), information-
theoretic measures [11], [19]–[22], and Kernel-based measures
[23]–[25]. Although correlation criteria are computationally
more efficient, they usually are not able to detect nonlinear
dependencies in features-label relations. Methods based on
kernels can detect the nonlinear dependencies. However, the
computational complexity of computing a kernel grows super
linearly, if not quadratic, with the number of the samples [4].
Mutual Information (MI) criteria, on the other hand, can detect
nonlinear dependencies with lower computational complexity
[21]. In addition, mutual information can be used to bound the
Bayes misclassification rate [26], [27]. However, estimating
multi-variate mutual information is known to be a difficult
task with high sample complexity.
Notations: We write [m] for set {1, 2, · · · ,m}. For any subset
J ⊆ [d] with ordered elements {j1, j2, · · · , jk}, the vectors
(Xj1 , Xj2 , · · · , Xjk), and (xj1 , xj2 , · · · , xjk) are denoted, re-
spectively, by XJ and xJ .

II. FOURIER FOR CORRELATED RANDOM VARIABLES

In this section, we propose a novel Fourier expansion for
functions of correlated binary features. For convenience in
presenting our results, we restrict ourselves to binary features.
One can extend our approach to discrete features via group
characters.

We start with a brief overview of the well-known Fourier
expansion on Boolean cube [5]. Let X = (X1, X2, ..., Xd)
be a vector of mutually independent random variables taking
values from a subset X ⊂ Rd. Let µj and σj be the mean and
standard-deviation of Xj , j ∈ [d]. Suppose that these random
variables are non-trivial, that is σj > 0 for all j ∈ [d]. The
Fourier expansion is defined via a set of basis functions called
parities. The parity for a subset S ⊆ [d] is defined as

φS(x) =∆
∏
i∈S

xi − µi
σi

, for all x ∈ Rd.

Since Xi’s are mutually independent, the parities are or-
thonormal, that is E[φS(X)2] = 1 for any subset S, and
E[φS(X) φT (X)] = 0 when T 6= S (that is ∃x ∈ T

⋃
S such

that x /∈ T
⋂
S). Under the assumption that X = {−1, 1}d, the

parities form an orthonormal basis for the space of bounded
function f : {−1, 1}d 7→ R [5]. That is, any bounded function
f : {−1, 1}d 7→ R can be written as a linear combination
of the form f(x) =

∑
S⊆[d] fS φS(x), for all x ∈ {−1,

1}d, where fS ∈ R are called the Fourier coefficients of f
with respect to PX, the distribution of X. Further, the Fourier
coefficients can be computed as fS = E[f(X)φS(X)], for all
subsets S ⊆ [d].

With this overview, we are ready to construct our Fourier
expansion. Note that, in a general probability space with
correlated features, the standard Fourier expansion is no longer
well-defined. Because, the parities φS are not necessarily
orthogonal. That said, we construct our Fourier expansion by
adopting a Gram-Schmidt-type procedure to make the parities
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orthogonal. Then, we use this basis to develop our Fourier
expansion for function of correlated random variables. The
orthogonalization process is explained in the following.

A. Orthogonalization process:

Fix the following ordering for subsets of [d]:

∅, {1}, {2}, {1, 2}, {3}, {1, 3}, {2, 3}, · · · , {1, 2, ..., d}. (1)

For any pair of functions g1, g2 denote 〈g1, g2〉 =
E[g1(X)g2(X)]. We apply the Gram-Schmidt process on the
parities φSi with the above ordering and 〈g1, g2〉 as the
inner product. With this method, the orthogonalized parity
corresponding to the ith subset is obtained from the following

ψ̃Si = φSi −
i−1∑
j=1

〈ψSj , φSi〉 (2)

with ψSi =
ψ̃Si
‖ψ̃Si‖2

where ‖ψ̃Si‖2 =
√
〈ψ̃Si , ψ̃Si〉. Note that

the first orthogonalized parity is given by ψ∅(x) = 1 for all
x ∈ Rd. By construction, the resulted nontrivial parities ψSi ’s
are orthonormal, that is 〈ψSi , ψSj 〉 = 0 for i 6= j and 〈ψSi ,
ψSi〉 = 1 if ψSi is not trivial.

Depending on the statistics of the features, the number of
non-trivial parities ranges from 1 to 2d. On one extreme, if
the features are mutually independent, then ψSi = φSi . On
the other extreme, if the features are trivial, then ψSi = 0 for
i > 1, and hence there is only one non-trivial parity. Note
also that different orderings for the subsets of [d] result in
different orthogonalized parities. We can show that ordering
(1) is beneficial to remove “redundant” features. Hence, unless
otherwise stated, we use the ordering in (1).

In the next proposition we establish our Fourier expansion
for functions of correlated binary random variables.

Proposition 1 (Correlated Fourier Expansion). Let PX

be any probability distribution on {−1, 1}d and f : {−1,
1}d 7→ R be a bounded function. Let ψS ’s be the orthog-
onalized parities as defined in (2). Then, for all x ∈ {−1,
1}d except a measure-zero subset, f(x) is decomposed as
f(x) =

∑
S⊆[d] fSψS(x), where the summation is taken over

all S ⊆ [d] for which ψS is not trivial. Further, the coefficients
fS are unique and obtained from fS = E[f(X)ψS(X)].

Example 1. Set d = 3 and let X1 and X2 be independent
random variables with Gaussian distribution N(0, 1). Suppose
X3 = X1X2 with probability one. There are eight standard
parities, one for each subsets, as (1, x1, x2, x1x2, x3, x1x3,
x2x3, x1x2x3). By performing the orthogonalization process,
as in (2), there are only four non-trivial orthogonalized
parities as ψ∅ = 1, ψ{1} = x1, ψ{2} = x2, and ψ{1,2} = x1x2.
The rest of the parities are zero, because ‖ψ̃S‖2 = 0 for
any of the subsets {3}, {1, 3}, {2, 3}, {1, 2, 3}. Now, suppose
we change the relation of X3 to X3 = sign[X1X2]. In this
case, after the orthogonalization process, there are eight non-
trivial parities. For instance, it is not difficult to check that
ψ̃{3} = x3− 2

πx1x2. Hence, ‖ψ̃{3}‖2 > 0, implying that ψ{3}
is not redundant.

This example shows that the orthogonalization removes
nonlinear redundancies. However, it captures only a class
of non-linearities for non-binary features. This is because
the orthogonalization process is based on the binary Fourier
expansion. We view our binary Fourier as a framework that
captures a special class of nonlinearities — those character-
ized via orthogonalized parities. Our numerical experiments
presented in Section V confirm that such an approximation is
sufficient to outperform state-of-the-art methods for many data
sets (see Table II). It is also noted that dimension reduction
methods such as PCA do not necessarily capture the nonlinear
redundancies. For instance, the features in the above example
are pairwise uncorrelated and, hence, the covariance matrix is
the identity matrix.

III. INFORMATION SUFFICIENCY

We build upon our orthogonalization process in (2) and
develop our UFFS algorithm (see Algorithm 1) to capture
non-linear redundancies in the features. For this purpose, we
first define a measure to identify the features as “sufficiently
informative” and “redundant”. Intuitively, the former group
contains all the information accessible from the features.
The later consists of the features that are a function of the
“informative” features, and hence, can be removed from the
data set.

Suppose that there are d features denoted by the random
vector X = (X1, X2, ..., Xd) taking values from a subset X ⊂
Rd. We say J ⊆ [d] is a “sufficiently informative” feature
subset, if H(X) = H(XJ ), where H is the Shannon entropy.
This definition is related to the notion of Markov Blanket [20],
as J is a Markov blanket for any feature in J c. Also, J
being sufficiently informative immediately leads to J c being
redundant. Because, the condition H(X) = H(XJ ) implies
that there exists a mapping T , such that XJ

c

= T (XJ ),
with probability one [27]. Hence, all the features not included
in J can be removed. With this elimination, the dimension
is reduced from d to |J |. As there are multiple such J ’s,
the objective is to find the smallest one1. Tolerating small
amounts of imperfections, we formalize the above notion in
the following.

Definition 1 (Sufficiently Informative). For discrete features
and 0 ≤ ε ≤ 1, a feature subset J is said to be ε-
sufficiently informative, if H(X|XJ ) ≤ ε. The feature subset
J is sufficiently informative, if H(X|XJ ) = 0. Such J is
called minimal, if it has the minimum cardinality among all
sufficiently informative feature subsets.

Next, we make a connection between the above definition
and the orthogonalization process in (2). We employ this
process to extract a sufficiently informative feature subset. Fix
the standard ordering as in (1), and generate the orthogonal-
ized parities ψSi . We start by deriving an upper-bound on
H(X|XJ ) in terms of the orthogonalized parities in (2). Note

1The set of all features is a trivial example of a sufficiently informative
feature subset.
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that H(X|XJ ) = H(XJ
c |XJ ), where J c is the complement

of J . Thus, from the chain rule [27], this quantity equals
to
∑
i∈J c H(Xi|XJ , Xi−1). As Xi is a discrete random

variable and φ{i}(x) = (xi − µi)/σj , then

H(Xi|XJ , Xi−1) = H
(
φ{i}(X)|XJ , Xi−1

)
,

Since φ{i} is the standard parity as in Section II, then, from
the orthogonalization process in (2), we can write φ{i} =

ψ̃{i} +
∑
S⊆[i−1] αSψS , where αS = 〈φ{i}, ψS〉. In this

decomposition, the terms in the summation depend only on
Xi−1. This is due to the particular ordering in (1). Therefore,
we get the following upper-bound

H(φ{i}|XJ , Xi−1) = H(ψ̃{i}|XJ , Xi−1) ≤ H(ψ̃{i}), (3)

where the last inequality follows by removing the conditioning
in the entropy. Lastly, adapting this bound for all i ∈ J c, we
get the upper-bound: H(X|XJ ) ≤

∑
i∈J c H(ψ̃{i}). Using

this bound, we can prove [7] the following theorem.

Theorem 1. Let Jε ⊆ [d] be the set of all i’s such that
‖ψ̃{i}‖2 > ε. Then, for sufficiently small ε > 0, H(X|XJε) =
O(ε). Further, if the features take values from {−1, 1}d, then
there exists an ordering of the features so that Jε with ε = 0
is a sufficiently informative subset with minimum cardinality.

Proof. From the discussion before the statement of the theorem
and (3) with J replaced by Jε, we have that

H(Xd|XJε) ≤
∑
i∈J cε

H(ψ̃{i}). (4)

Let

ai = min{|ψ̃{i}(x)| : x ∈ X d, ψ̃{i}(x) 6= 0}, for all i ∈ [d],

and define amin =∆ mini ai. From the assumption in the
statement of the theorem, ‖ψ̃{i}‖22 ≤ ε2, for all i ∈ J cε . Then,
from Markov’s inequality, we obtain that

P{ψ̃{i}(X) 6= 0} = P{|ψ̃{i}(X)|2 ≥ a2
i } ≤

ε2

a2
i

≤ ε2

a2
min

.

Therefore, from grouping axiom for entropy [27], we have that

H(ψ̃{i}) ≤ hb(
ε2

a2
min

) +
ε2

a2
min

log2 |X |, (5)

where hb(·) is the binary entropy function. When ε ≤ amin,
by combining (4) and (5), the following inequality holds:

H(Xd|XJε) ≤ (d− |Jε|)
(
hb(

ε2

a2
min

) +
ε2

a2
min

log2 |X |
)
.

(6)

Note that the binary entropy satisfies the inequality hb(p) ≤
2
√
p(1− p). Hence, for fixed d, amin and X , the right-hand

side of the above inequality is dO(ε) as ε→ 0. This completes
the proof for the first statement of the theorem.

Next, we prove the second statement: “if the features take
values from {−1, 1}d, then Jε with ε = 0 is a sufficiently
informative subset with minimum cardinality.” Note that, from

Definition 1, the subset J0 is sufficiently informative. This
is because for any j /∈ J0 the parity ψ̃{j}(X) = 0 with
probability one. Therefore, from (2), the standard parity φ{j}
is a function of (X1, X2, ..., Xj−1). Implying that Xj is a
function of (X1, X2, ..., Xj−1). Hence, H(Xd|XJ0) = 0.
It remains to prove that J0 is minimal when the features
take values from {−1, 1}d. We proceed by contradiction.
Suppose J0 is not minimal. Then, there exists a sufficiently
informative features subset A such that |A| < |J0|. Consider
the Hilbert space of bounded functions f : {−1, 1}d 7→ R with
inner product defined as 〈f, g〉 = E[f(X)g(X)]. Since A is
sufficiently informative, there exists a mapping Γ such that
Xd = Γ(XA) with probability one. Therefore, any function
f(Xd) can be written as f(Xd) = f(Γ(XA)). This implies
that the dimension of the Hilbert space is at most 2|A|.
However, there are |J0| non-trivial parities ψSi that, from
Proposition 1, form an orthonormal basis for this Hilbert space.
Hence, the dimension of this space cannot be less than 2|J0|.
This is a contradiction and completes the proof.

IV. UNSUPERVISED LEARNING ALGORITHM

As a result of Theorem 1, ‖ψ̃{i}‖2 can be viewed as a
measure of the redundancy of each feature and that the orthog-
onalization procedure can remove them. We use this measure
for unsupervised feature selection, where n independent and
identically distributed (i.i.d.) instances

{
x(i), i ∈ [n]

}
are

available. The idea is to perform the orthogonalization process
as in (2) and find the features j for which ‖ψ̃{j}‖2 is smaller
than a threshold ε. These features are declared as redundant.
As for the algorithm, two issues need to be addressed: 1)
the orthogonalization is an NP hard process, as there are 2d

feature subsets, and 2) estimation of ‖ψ̃{j}‖2 from the training
instances. In what follows, we address these issues.

a) Fixed-depth search:: We propose to address the first
issue using a fixed-depth search method. Given a parameter t ≤
d, the orthogonalization is performed only on feature subsets
of size at most t. For that we use the standard ordering as in
(1), but restricted to subsets of size at most t.

b) Empirical orthogonalization:: We propose a recur-
sive formula to perform the orthogonalization and estimate
‖ψ̃{j}‖2. Let bj,i = 〈φSj , φSi〉, and define aj,i = 〈ψSj ,
φSi〉. Therefore, (2) can be written as that ψ̃Si = φSi −∑
j<i aj,iψSj . Due to the orthonormality of ψSi ’s, we obtain

that ‖ψ̃Si‖22 = bi,i −
∑
j<i a

2
j,i. Further, the coefficients aj,i

can be calculated recursively as

aj,i =
1√

bj,j −
∑
r<j a

2
r,j

(
bj,i −

∑
`<j

a`,ja`,i

)
. (7)

With this formulas, we first compute an empirical estimate
of bj,i’s, denoted by b̂j,i. Then, we compute an estimation of
aj,i’s (denoted by âj,i) by calculating (7) with bj,i and aj,i
replaced by b̂j,i and âj,i, receptively. Lastly, we obtain an em-

pirical estimate of ‖ψ̃Si‖2 by computing
√
b̂i,i −

∑
j<i â

2
j,i.
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c) Clustering the features:: The above two processes
are implemented in Algorithm 1. For large dimensional data
sets, we can group the features into multiple clusters of ap-
proximately equal size (say m features). Then, we perform Al-
gorithm 1 on each cluster, and remove the redundant features
within it. With this approach, the computational complexity of
UFFS algorithm with depth parameter t and cluster size m is
O(n d

mm
2t). The parameters m and t are chosen independently

of (n, d). For instance, we choose t = 3 and m = 40. As a
result, we obtain a complexity linear in the size of the data
set. We present our experimental results next.

Algorithm 1 Orthogonalization Algorithm
Input:n training samples xi ∈ Rd, depth parameter t ≤ d,

and redundancy threshold ε ∈ (0, 1)
Output: Features’ measures norm(j), j = 1, 2, ...d

1: Compute the empirical mean µ̂j and standard deviation
σ̂j of each feature.

2: Generate all subsets Si ⊆ [d] with size at most t and with
the standard ordering as in (1). Compute the matrix B̂
with elements:

b̂j,i ←
1

n

n∑
l=1

[ ∏
u∈Sj

xlu − µ̂u
σ̂u

][ ∏
v∈Si

xlv − µ̂v
σ̂v

]
.

3: Set Â← B̂
4: for row j of Â do
5: update the jth row: Âj,∗ ← Âj,∗ −

∑
`<j â`,jÂ`,∗

6: Compute norm(Sj)←
√

[b̂j,j −
∑
r<j â

2
r,j ]

+

7: if norm(Sj) ≤ ε then
8: Set the jth row of Â zero: Âj,∗ ← 0
9: else

10: Normalize the jth row: Âj,∗ ← Âj,∗
norm(Sj)

11: Declare all j ∈ [d] with norm(j) ≥ ε as non-redundant.

V. NUMERICAL EXPERIMENTS

We now compare the performance our UFFS algorithm
(Algorithm 1) with a number of well-known methods for
unsupervised feature selection. We tested the algorithms on
several real-world data sets as given in Table I. These data
sets are benchmarks and taken from [2] and the UCI repository
[28]. In addition, we generated five synthetic data sets: S1, S2,
S3 are for unsupervised feature selection.

For unsupervised feature selection, we generated three
data sets, denoted by S1, S2, and S3. Each data set has
30 features: 10 informative denoted by (X1, X2, ..., X10),
10 nonlinear redundant (X11, X12, ..., X20), and 10 linearly
redundant (X21, X12, ..., X30). The informative features are
generated according to three distributions, one for each data
set. The distribution for S1 is N(0, I10), for S2 is uniform
distribution over [−1, 1]10, and for S3 is uniform distribution
over {−1, 1}10. Each nonlinear redundant feature is generated
from Xj = 3Xi1Xi2Xi3 , where j = 11, 12, ..., 20, and
i1, i2, i3 are randomly and uniformly selected from {1, 2,
..., 10}. The linearly redundant features are generated from
Xj =

∑5
l=1 aj,lXil , where il’s are selected randomly from

TABLE I
PROPERTIES OF THE TESTED DATA SETS.

Data set S1 S2 S3 E1 E2 USPS Isolet COIL20 Covertype Australian Musk ALL AML
Features 30 30 30 20 20 256 617 1024 46 14 166 7128
Samples 1000 1000 1000 1000 1000 9298 1560 1440 581 690 467 72

TABLE II
COMPARISON OF UNSUPERVISED ALGORITHMS.

S1 S2 S3 USPS Isolet COIL20 Covertype Australian Musk ALL AML

No FS 77.9 75.0 87.0 97.3 92.8 98.8 75.6 84.9 92.2 94.3

UFFS k 11 12 11 93 309 331 34 12 35 39

UFFS 80.3 76.8 86.2 97.0 91.7 98.8 76.9 85.1 85.7 97.1
LS 55.1 61.2 71.0 95.6 88.6 98.9 72.8 85.4 84.5 97.2

MCFC 56.6 59.0 65.8 93.9 90.1 94.0 72.3 84.8 84.2 95.9
UDFS 64.0 60.6 64.3 80.8 90.2 98.0 72.0 84.9 80 86.2
NDFS 64.5 57.5 67.8 97.0 92.4 99.3 74.2 84.8 84.9 97.1

{1, 2, ..., 10} and aj,l ∼ Unif(0, 1). We use the above redun-
dancy model for each data set. For the sake of performance
comparison, we add a labeling to the above data sets. However,
the labels are not revealed to the algorithms. We generate a
fixed but randomly generated labeling function f(X) on R10.
This function is the sign of the following randomly generated
polynomial in R10:

f(x) = sign
[ ∏

1≤j≤3

(
b0,j +

∑
1≤i≤10

bi,jxi
)]
,

where bi,j ∼ Unif(0, 1) and mutually independent.
We compare the performance of UFFS with Laplacian Score

(LS) [18], MCFC [29], UDFS [15] and NDFS [14] on the
real and the synthetic data sets. The labels are not revealed
to the algorithms, but used for measuring the performances.
Features are randomly ordered, so that the initial ordering
would not affect the experiments’ outcomes. Contrary to other
algorithms, UFFS does not rank the feature; instead it outputs
a set of indices as the non-redundant features. We run UFFS
three times: first with t = 1,m = d, second, with t = 2,
m = 50 but on the selected features from the first run,
and third, with t = 3,m = 30 but on the selected features
from the second run. For each experiment, let k denote the
number of the selected features by UFFS at the third run.
For comparing the performance to the ranking algorithms,
we select only the k features with the highest rank. Once
the features are selected by each unsupervised algorithm, we
reveal the samples of the selects features with the labels to
a classifier and compute its prediction accuracy. A support
vector machine (SVM) classifier with radial basis function as
kernel is employed for all the studies. We perform a 5-fold
cross validation using this classifier and on the entire data set.

Table II shows the average of the resulted classification
accuracies for each algorithm. The second row is the resulted
accuracy without any feature selection. The third row is k
which is the number of non-redundant features declared by
the UFFS. Observe that, in synthetic data sets, k is very close
to 10 which is the actual number of non-redundant features.
The resulted accuracy by the UFFS is very close or greater
than the accuracy without feature selection which verifies that
the removed features were redundant.
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