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Abstract—We study logistic regression with binary features in
which the number (or degree) of occurring features determines
the label probability. This model fits one of social networks, where
the number of friends determines the likelihood of outcomes
instead of the identity of the friends, or more generally, a graph
model, where the degree of a node can determine its behavior. It
includes the case in which weights can be viewed as i.i.d. (e.g., in
Bayesian modeling). For such a model, we introduce the maximal
minimax regret that we analyze using a unique combination of
analytic combinatorics and information theory. More importantly,
the resulting regret is a general lower bound for the pointwise
regret of a general logistic regression over all algorithms (learning
distributions). We show that the introduced worst case (max-
imum over feature sequences) maximal minimax regret grows
asymptotically as (d/2) log(T/d) + (d/2) log(π/2) + O(d/

√
T )

for dimensionality d = o(
√
T ), which is a lower bound for a

regret of a general logistic regression. We extend our results to
loss functions other than logistic loss and non-binary labels.

I. INTRODUCTION

Logistic regression has recently received much attention in
machine learning (see [22]) due to its importance in many
practical systems and applications from category classification
to risk assessment. It consists of a set of features, whose
parameters represent their effect on some outcome. In a
supervised online setup, a model is trained to learn these
parameters from examples whose outcomes are already labeled.
The training algorithm consumes data in rounds, where at
each round t ∈ {1, 2, . . . , T}, it is allowed to predict the label
based only on the labels it observed in the past t− 1 rounds.
The prediction algorithm incurs for each round some loss and
updates its belief of the model parameters. The (pointwise)
regret of an online algorithm is defined as the (excess) loss
it incurs over some value of a constant comparator (weight
vector) that is used for prediction of the complete sequence.

Here we introduce and analyze the maximal minimax regret
that for a given feature sequence maximizes the pointwise regret
over label sequences and minimizes over learned distributions.
Such a minimax regret was analyzed in information theory
in the context of universal compression as discussed in [26],
[5] while (pointwise) regret for logistic regression has been
studied in [9], [12], [16], [18], [15], [24].

In this paper, instead of learning an individual parameter
per feature, we study the problem where the outcome or label
observed for an example is a function of the number (degree) of
nonzero binary features present in the example (see assumption
(16) in Section III). This setup can characterize social networks,
in which the likelihood of some outcome depends on the

number of friends a person has instead of on who those friends
are. More generally, this setup can be representative of graphs,
where an outcome in some node depends on the degree of
the node, and not on which nodes are its neighbors (e.g., see
graph structural compression in [2] and [17]). Given that the
class of parameters for which we precisely compute the regret
for this problem is a subset of the class of parameters in the
standard logistic regression setup, this regret is a “universal”
lower bound for a general pointwise regret.

We first focus on binary labels and consider the case
of binary features xt (i.e., the examples or feature values
vector at any round t is a sparse vector in {0, 1}d, where
d is the dimension – the number of features). For such a
set up, we introduce the maximal minimax regret that we
analyze using a unique combination of analytic combinatorics
and information theory. In Theorem 1 we rigorously show
that the introduced minimax regret of the degree problem
serves as a general lower bound for a general pointwise
regret over any algorithm/ learning distribution. With this
in mind, we turn our attention to precise analysis of the
introduced minimax regret. In Theorem 2 we show that the
average maximal minimax regret grows asymptotically like
d
2 log T + 1

2 log(α1 · · ·αd) + d
2 log(π/2) +O(d/

√
T ) where T

denotes the number of rounds, and αi is the fraction of feature
vector xt with exactly j active features for t = 1, . . . , T .
We also show that the worst case (maximum over all feature
sequences) maximal minimax behaves asymptotically like
d
2 log T

d + d
2 log(π/2) +O(d/

√
T ) for large T . In Theorem 4,

we extend the result to non-binary labels of size m such that
m3/2d = o(

√
T ). Furthermore, in Corollary 1 we summarize

our findings regarding the lower bound on the standard regret.
In Theorem 3, we briefly discuss Bayesian setting and present
results for the pointwise and average regrets.

Studying this problem, we adapt techniques from the
universal compression literature (see [26], [29], [30], [31])
and analytic combinatorics (see [7], [28]) that apply complex
asymptotics to solve discrete problems. We first review various
notions of regret and redundancy from information theory that
we adopt to the performance evaluation of logistic regression.
Here, we assume that d = 1 and alphabet is of size m. The
pointwise redundancy RT (P ; yT ) and the average redundancy
R̄T (P ) for a given source P and source (label) sequence
yT = (y1, . . . , yT ) of length T over alphabet A of size m are



defined as

RT (P ; yT ) = L(yT ) + logP (yT ),

R̄T (P ) = E[L(Y T )]−HT (P ),

where HT (P ) is the entropy for a block of length T , E denotes
the expectation, and L(yT ) is the code length of some code
L(·) (both redundancy quantities are implicitly functions of the
code). In online learning – and indeed in information theory –
one ignores the integer nature of the length and replace it by
L(yT ) = − logQ(yT ) for some unknown distribution Q that
approximates P . The definitions above imply a probabilistic
setting, in which there is some source that generated the
data. A non-probabilistic setting considers individual sequences
(see, e.g., [26]), where we define the maximal or worst case
redundancy as

R∗T (Q,P ) = max
yT

[− logQ(yT ) + logP (yT )].

In practice, one can only hope to have some knowledge
about a family of sources S that generates real data. Following
Davisson [4], we define the average minimax redundancy
R̄T (S) and the worst case (maximal) minimax redundancy
R∗T (S) for family S as follows

R̄T (S) = min
Q

sup
P∈S

∑
yT

P (yT ) log[P (yT )/Q(yT )],

R∗T (S) = min
Q

sup
P∈S

max
yT

{
log
[
P (yT )/Q(yT )

]}
.

In words, we search for the best code or distribution Q for the
worst source P on average and for the worst label sequence
yT for individual sequences.

There are other measures of optimality for coding, gambling,
learning, and prediction that are used in universal modeling,
learning, and coding. We refer here to minimax regrets defined
as follows (cf. [5], [30], [31]):

r̄T (S) = min
Q

sup
P∈S

EP [− logQ(yT ) + log sup
P∈S

P (yT )],

r∗T (S) = min
Q

max
yT

[− logQ(yT ) + log sup
P∈S

P (yT )],

and to the maxmin regret

rT (S) = sup
P∈S

min
Q

E[− logQ(yT ) + log sup
P∈S

P (yT )].

We call r̄T (S) the average minimax regret, r∗T (S) the worst
case (maximal) minimax regret and rT (S) the maxmin regret.
Clearly, R̄T (S) ≤ r̄T (S), and, r∗T (S) = R∗T (S).

In [5] it is also shown that if the maximum likelihood
distribution belongs to the convex hull of S, then R∗T (S) −
R̄T (S) = O(cT (S)) where

cT (S) =
∑
yT

P (yT ) log

sup
P∈S

P (yT )

P (yT )
.

Furthermore, it is known [5], [19], [21], [23], [27], [30], [31]
that for a large class of sources (up to Markovian but not for
non-Markovian [8], [5]) the redundancy grows as m−1

2 log T

when the alphabet size m is fixed and m−1
2 log(T/m) for

m = o(T ) (see [19], [23], [29]). In fact in [29] full asymptotic
expansions were derived for all ranges of m.

Finally, we review the ML literature with respect to pointwise
regret. To the best of our knowledge, in the ML literature, [16]
was first to demonstrate results that suggest that pointwise
regret for logistic regression grows like O(d log T/d) for fixed
dimension d and m = 2. This was further generalized in [9]
to all m. The authors of [16] used Bayesian model averaging.
The O(log T ) pointwise and individual sequence regret can
be achieved for the single dimensional problem with gradient
methods based approaches, as was demonstrated in [18]. The
authors of [18] then posed the problem of what happens for
larger dimensions. Subsequently, [9] demonstrated how to
achieve regret bounds of O(d log(T/d)) with Bayesian model
averaging. These results were strengthened in [24], which also
provided matching lower bounds (see also [13]). We should
point out that our results on minimax regret, which we show
below, are not restricted to Bayesian modeling.

II. PROBLEM FORMULATION AND NOTATION

We denote by xt = (x1,t, . . . , xd,t) a d-dimensional binary
feature vector. Throughout we assume that a feature is binary,
that is, xi,t ∈ {0, 1} for t = 1, . . . , T . Notice that xT is a T×d
matrix with xt = (x1,t, . . . , xd,t) as a row. The label binary
vector is denoted as yT = (y1, . . . , yT ) with yt ∈ {−1, 1}.
Finally, wt = (w1,t, . . . , wd,t) is a d-dimensional vector of
feature weights. In this paper, we do not address the method
used to learn the weights (e.g., gradient method or Bayesian
mixing). Instead, we assume that the weights are exchangeable
(see assumption (D) in the next section) leading to our model in
which the number of features determines the label probability.
Notice that a practical learning algorithm will be agnostic
to the vector w, and instead will learn “features”, which are
a function of the degree of xt, i.e., the number of nonzero
components in xt.

The logistic loss of an algorithm that plays wt at round t is

L(yT |xT ,wT ) :=

T∑
t=1

log [1 + exp(−yt〈xt,wt〉)] (1)

where 〈xt,wt〉 =
∑d
i=1 xi,twi,t. It is convenient to write

`(yt|xt,wt) := log [1 + exp(−yt〈xt,wt〉)]. Both `(yt|xt,wt)
and L(yT |xT ,wT ) depend on xt and wt only through the
product 〈xt,wt〉.

The probability of a label is given by

P (yt|xt,wt) =
1

1 + exp(−yt〈xt,wt〉)
(2)

and then `(yt|xt,wt) = − logP (yt|xt,wt). However, in many
applications (e.g., when approximating the logistic function by a
Gaussian distribution) it is desirable to consider a larger class of
loss function (e.g., see [25]). Since the logistic function depends
only on the product yt〈xt,wt〉 we set wt = 〈xt,wt〉 and define
a function F (w) that satisfies the following properties

F (−w) = 1− F (w), F (0) = .5, F (−∞) = 0, F (∞) = 1.
(3)



For example, F could be the logistic function as defined in
(2) or the Gaussian Cumulative Distribution Function (CDF)
F (ytwt) = Φ(

√
π/8ytwt) as in [1]. Then, we can re-write (2)

as

P (yt|xt,wt) = F (yt〈xt,wt〉), (4)
`(yt|xt,wt) = − logF (yt〈xt,wt〉). (5)

Finally, we observe that the goal of a learning algorithm is
to find the best approximation Q(yt|xt) of the unknown dis-
tribution P (yt|xt,wt). Therefore, we shall write `Q(yt|xt) =
− logQ(yt|xt). Here, Q represents an algorithm that predicts
yt.

The pointwise regret is defined for individual sequences
(yt,xt) as in [11], [9], [24]

r(yT , Q|xT ) :=

T∑
t=1

`Q(yt|xt)−min
w

T∑
t=1

`(yt|xt,w)

Thus

r(yT , Q|xT ) = log
supw P (yT |xT ,w)

Q(yT |xT )
(6)

= log
supw F (yT 〈xT ,w〉)

Q(yT |xT )
. (7)

The pointwise regret r(yT , Q|xT ) is a function of yT and xT ,
so it depends on individual sequences. Furthermore, it depends
on the algorithm, represented by Q(yT |xT ). A better measure
of online logistic regression performance should decouple the
regret from the fluctuations of yT (but may still depend on the
feature vector xT ) and the learning algorithm Q. Following
information-theoretic view as in [4], [5], [31], we define the
maximal minimax regret (conditioned on xT ) as

r∗T (xT ) := inf
Q

max
yT

[r(yT , Q|xT )]. (8)

Notice that this definition is over all possible learning algo-
rithms represented by Q and therefore it constitutes a lower
bound for a general regret over all algorithms.

Following [26], [5] we first find a more succinct representa-
tion of the maximal minimax regret. Namely,

r∗T (xT ) = min
Q

sup
w

max
yT

(− logQ(yT |xT ) + logP (yT |xT ,w))

= min
Q

max
yT

[logP ∗(yT |xT )/Q(yT |xt)]

+ log
∑
yT

sup
w
P (yT |xT ,w)

= log
∑
yT

sup
w
P (yT |xT ,w) =: log dT (xT ) (9)

if we chose Q(yT |xT ) = P ∗(yT |xT ) where

P ∗(yT |xT ) :=
supw P (yT |xT ,w)∑
vT supw P (vT |xT ,w)

(10)

is the maximum-likelihood distribution. The above sum is often
called the Shtarkov sum; see [26], [5], [10]. Observe that for
not optimal Q (i.e., Q 6= P ∗) there will be extra O(1) term in

the maximal minimax regret. We also write supP P (yT |xT ,w)
for supw P (yT |xT ,w).

In the next section in Theorem 2 (see Theorem 4 for non-
binary features) we precisely evaluate the above Shtarkov sum
under additional assumption (D) (see (16) below) in which we
postulate that the label probability is a function of the number
(degree) of active features. But first in Theorem 1 below we
show that such a regret with assumption (D) constitutes a lower
bound for a general regret and arbitrary feature values.

Notice that r∗T (xT ) is still a function of the feature vector xT .
To bypass this dependency, we define the worst case maximal
minimax r∗T as

r∗T = max
xT

log
∑
yT

sup
w
P (yT |xT ,w)

 , (11)

that is,
r∗T = max

xT
inf
Q

max
yT

[r(yT |xT )].

This worst case minimax regret is the closest to the minimax
formulation of [20].

We may also take a probabilistic view point and assume that
the feature vector is a realization of a random sequence XT .
This leads to the average maximal minimax regret defined as

r̄∗T = EXT [r∗T (XT )] = EXT [log dT (XT )]. (12)

In Theorem 2 below we summarize our findings regarding the
average maximal minimax regret for any learning algorithm Q
and the sequence zT = (yT ,xT ).

Finally, in the Bayesian modeling, the learning distribution
is a mixture over w with a prior ρ(w) defined as

Q(yT |xT ) :=

∫
w

ρ(w)P (yT |xT ,w)dw.

In this case, the pointwise regret becomes

r(yT , ρ|xT ) = log
supw P (yT |xT ,w)

Q(yT |xT )
. (13)

As in the worst case scenario, we can bypass dependency of
xT by taking the maximum over xT or average over feature
distribution. In Theorem 3 below we present some precise
results for this Bayesian regret.

III. MAIN RESULTS

Throughout this section, we assume that features are binary,
that is either xi,t = 1 (active) or xi,t = 0, unless stated
otherwise. We consider two scenarios: in the deterministic
case we assume that xT is given, while in the stochastic
case we assume that xT is stochastically generated by some
distribution. In both cases, we define Tj as the number of
rounds t for which

∑d
i=1 xi,t = j, that is, the number of

feature vectors with exactly j active features. More formally,
Tj = |{t :

∑d
i=1 xi,t = j}|. Furthermore, by αj > 0 we

denote the fraction of xt (t = 1, . . . , T ) that has exactly j active
features. Hence in the deterministic scenario αj = Tj/T > 0
(i.e., Tj > 0) and T = T1 + · · ·+ Td.



In the the stochastic scenario we have

αj := P

(
d∑
i=1

xi,t = j

)
(14)

as the probability that exactly j features are equal to 1. In
particular, if we assume that xt = (x1,t, . . . , xd,t) is distributed
as the binomial(d, p) where P (xi,t = 1) = p, then for all
i ∈ [d] and all t.

αj := P

(
d∑
i=1

xi,t = j

)
=

(
d

j

)
pj(1− p)d−j . (15)

Furthermore, in the stochastic scenario, (T1, . . . , Td) are ran-
dom variables distributed as the multinomial (T, α1, . . . , αd),
that is,

P (T1, . . . Td) =

(
T

T1, . . . , Td

)
αT1
1 · · ·α

Td

d

where T = T1 + · · ·+ Td.
We now introduce the main assumption about wT that

converts the problem from d-dimensional into one that depends
only on the degree distribution (i.e., number of active features
of xT ). We will assume that wt = (w1,t, . . . , wd,t) generated
according to a prior distribution are exchangeable. This defines
our model in which the number (or degree) of occurring features
determines the label probability. More precisely,
(D) For every k tuple (j1, . . . , jk) ∈ {1, . . . , d} and all 1 ≤

t < s ≤ T we have

w(k) := w1,t + · · ·+ wk,t
d
=wj1,s + · · ·+ wjk,s (16)

where d
= means equal “in distribution". In other words,

the sum of k weights (those weights that have the corre-
sponding features xi,t = 1) for any time t has the same
distributions that we denote as w(k) := w1,t + · · ·+wk,t.

Observe that assumption (D) holds if all weights are
identically and independently distributed (i.i.d.). Indeed, if say
a weight distribution is W , then w1,t+ · · ·+wk,t

d
=W ? · · ·?W

for all t where ? denotes convolution.
Assumption (D) reformulates the problem w.r.t. the degree

distribution of the feature vector. Define 1(xt) :=
∑d
i=1 xi,t as

the number of 1’s in xt. Then, all probabilities P (yt|1(xt) = k)
for a given k are equal, and we denote them as

θk(yt) := P (yt|1(xt) = k) = F (ytw
(k)).

We can view the above as a change of measure from w to θ.
Finally let θk := θ(yt = 1) = F (w(k)). Then

P (yT |xT ,θ) =

d∏
j=1

θ
kj
j (1− θj)Tj−kj (17)

where T1 + · · · + Td = T and kj is the number of yt = 1
among Tj with j active features.

Next, to estimate the maximal minimax regret, we need to
compute

sup
θ
P (yT |xT ,θ) = sup

P
P (yT |xT ,θ)

which actually becomes

sup
θ
P (yT |xT ,θ) =

d∏
j=1

(
kj
Tj

)kj (Tj − kj
Tj

)Tj−kj
. (18)

This leads to the following Shtarkov sum

dT (xT ) =

T1∑
k1=0

(
T1
k1

)(
k1
T1

)k1 (T1 − k1
T1

)T1−k1
· · · (19)

· · ·
Td∑
kd=0

(
kd
Td

)kd (Td − kd
Td

)Td−kd
.

This is a sophisticated sum to evaluate but we use analytic
combinatorics to asymptotically evaluate it (see [28], [29]).

A. Lower Bound

The model just introduced with assumption (D) has another
interesting and useful property. It turns out that it constitutes
a lower bound for the standard minimax regret r∗T (x̃T ) with
general feature vector x̃T . We compare it to the minimax regret
r∗T (xT ) defined above under the assumption (D) with binary
features xT ∈ {0, 1}T .

Theorem 1. The minimax regret r∗(xT ) with binary features
under assumption (D) constitutes a lower bound for a general
maximal minimax regret with features values in x̃T , that is

r∗T (x̃T ) ≥ r∗T (xT ). (20)

The regret r∗T (xT ) is precisely estimated in Theorems 2 and 4.

Proof. In a general case, the probability P (yT |x̃T ,w)) is a
complicated product of probabilities that depend not only on
how many active features there are but also on what these
features are. Let us group all probabilities in which there
is exactly one active feature under θ1,t(yt|x̃t), two active
features under θ2,t(yt|x̃t), and so on until all active features
under θd,t(yt|x̃t). Now, to lower bound supP P (yT |x̃T ,w) we
choose particular values for θj,t(yt|x̃t) for each j. Namely, we
set

θj,t(yt|x̃t) =
kj
Tj

where, as before, kj is the number of yt = 1 among Tj that
have j active features. But then the (log of) Shtarkov sum, and
hence the maximal minimax regret becomes exactly r∗T (x̃T )
under our model (D). This completes the proof.

B. Precise Regret for Binary Labels

We now go back to the regret with binary features satisfying
assumption (D). Using analytic combinatorics [28] and bino-
mial sum asymptotics [14], [6], we can prove the following
result regarding the asymptotic expansion of the average and
worst case minimax regret under assumption (D).



Theorem 2. Under assumption (D) for any function F satis-
fying (3), the average maximal minimax regret for d = o(

√
T )

is given by

r̄∗T =
d

2
log(T ) +

1

2
log(α1 · · ·αd) +

d

2
log(π/2) +O(d/

√
T )

(21)
and its worst case minimax regret (maximum over xT or in
this case (T1, . . . , Td)) is

r∗T =
d

2
log

(
T

d

)
+
d

2
log(π/2) +O(d/

√
T ) (22)

for large T .

Let us now present results for the Bayesian pointwise regret
as defined in (13) which becomes

r(yT , ρ|xT ) = log
supθ1,...θd

∏d
j=1 θ

kj
j (1− θj)Tj−kj∫

θ
ρ(θ)

∏d
j=1 θ

kj
j (1− θj)Tj−kj

. (23)

By (18) we can re-write it as (with Ti > 0)

r(yT , ρ|xT ) = log

∏d
j=1

(
kj
Tj

)kj (Tj−kj
Tj

)Tj−kj

∫
θ
ρ(θ)

∏d
j=1 θ

kj
j (1− θj)Tj−kj

. (24)

Using Stirling’s approximation, Dirichlet distribution, bino-
mial sum asymptotics [3], [6], [14] and analytic combinatorics
[28] we prove the following results.

Theorem 3. For the Bayesian setting with Jeffrey’s prior
presented under assumption (D) for any function F satisfying
(3), the pointwise regret in the deterministic setting becomes

r(yT |xT ) =
1

2
log(T1 · · ·Td) +

d

2
log(π/2) +O(1/T ) (25)

for large Tj and kj . The average pointwise regret is

Ex[r(yT |xT ] =
d

2
log T +

1

2
log(α1 · · ·αd) (26)

+
d

2
log(π/2) +O(d/T )

for large T with αi > 0.

C. Regret for Non-binary Labels

We briefly discuss how to extend our results to non-binary
labels, say, label alphabet Y of size m. Following [9] we
need to extend the weight vector to the weight matrix W =
[w1, . . . ,wm−1] such that wi = (w1,i, . . . , wd,i). Then the
multinomial logistic function known also as softmax function
is defined as

P (yt = `|xt,Wt) =
e〈xt,wt,`〉∑m
k=1 e

〈xt,wt,k〉
(27)

for ` = 0, 1, . . . ,m− 1. Also, as before we define

θk,`(yt) := P (yt = `|1(xt) = k,W)

leading to

P (yT |xT ,θ) =

d∏
j=1

m∏
`=1

θ
kj,`
j,` (28)

where kj,` is the number labels equal to ` among Tj .
Following the footsteps of our analysis for the binary labels

we arrive at the following generalization of Theorem 2.

Theorem 4. Under assumption (D) for any function F satis-
fying (3) the average maximal minimax regret for m = O(1)
and d = o(

√
T ) becomes

r̄∗T =
d(m− 1)

2
log(T/2) +

(m− 1)d

2
log(α1 · · ·αd)+

+
d

2
log(π/Γ2(m/2)) +O(d/

√
T ) (29)

(with Γ(x) being the Euler gamma function) while for dm3/2 =
o(
√
T ) we find

r̄∗T =
d(m− 1)

2
log(T/m) +

(m− 1)d

2
log(α1 · · ·αd)+

+
md

2
log e+O(dm3/2/

√
T ). (30)

Furthermore, the worst case maximal minimax for dm3/2 =
o(
√
T ) is

r∗T =
d(m− 1)

2
log(T/(dm)) +

md

2
log e+O(dm3/2/

√
T )

(31)
for large T .

Finally, we go back to the lower bound discussed in
Theorem 1. We compare the pointwise regret rT (yT , Q|x̃T );
with general feature x̃T , to that in Theorem 4; the worst
case minimax regret r∗T (maximized over xT ∈ {0, 1}T ). We
conclude the following general lower bound.

Corollary 1. Consider a general pointwise regret
rT (yT , Q|x̃T ) for any algorithm/ distribution Q and general
feature values. The following holds for dm3/2 = o(

√
T )

max
(x̃T ,yT )

rT (yT , Q|x̃T ) ≥d(m− 1)

2
log(T/(dm)) (32)

+
md

2
log e+O(dm3/2/

√
T )

for large T .

IV. CONCLUSION

We described a logistic regression problem in which the label
probability is determined by the degree of existence of features
in an example, instead of by the actual features. Online regret
for this problem, while interesting by itself for applications such
as graph models, and specifically for social networks, can also
be used to bridge well established results from the universal
compression literature to the study of regret in machine learning.
We demonstrated that for this novel problem we can precisely
compute various variants of the regret, showing logarithmic
regret, which linearly increases with the dimensionality. The
precise regret for this problem by itself serves as a general
lower bound for the regret of standard logistic regression.
This connection opens up a large range of possibilities to
apply established theory in the study of universal compression
redundancy to studying regret for online learning problems.
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