ABSTRACT

Motivation: Standardized annotations of biomolecules in interaction networks (e.g., Gene Ontology) provide comprehensive understanding of the function of individual molecules. Extending such annotations to pathways is a critical component of functional characterization of cellular signaling at the systems level.

Results: We propose a framework for projecting gene regulatory networks onto the space of functional attributes using multigraph models, with the objective of deriving statistically significant pathway annotations. We first demonstrate that annotations of pairwise interactions do not generalize to indirect relationships between processes. Motivated by this result, we formalize the problem of identifying statistically over-represented pathways of functional attributes. We establish the hardness of this problem by demonstrating the non-monotonicity of common statistical significance measures. We propose a statistical model that emphasizes the modularity of a pathway, evaluating its significance based on the coupling of its building blocks. We complement the statistical model by an efficient algorithm for computing significant pathways in large regulatory networks. We develop a comprehensive software infrastructure, Narada, with an intuitive query interface. Comprehensive results from our methods on the E. coli transcription network demonstrate that our approach is effective in identifying known, as well as novel biological pathway annotations.

Availability: Narada is implemented in Java and is available at http://www.cs.purdue.edu/homes/jpandey/narada/.

Contact: Jayesh Pandey, jpandey@cs.purdue.edu.

INTRODUCTION

Gene regulatory networks represent powerful formalisms for modeling cell signaling through regulation of cellular processes. These networks are inferred from gene expression, as well as other sources of data, using various statistical and computational methods (Friedman et al., 2000; Husmeier, 2003). These methods typically solve inverse problems associated with time-series data to infer activation/inhibition mechanisms. Methods (and data) for examining the biological implications of inferred networks are areas of active research. Standardized functional annotation libraries (e.g., Gene Ontology) are commonly used for this purpose (Gamalielsson et al., 2006).

Recent studies on networks of specific organisms show that interactions between genes that take part in certain biological processes are significantly overrepresented (Lee et al., 2002; Tong et al., 2004). Generalizing such observations to pathways of arbitrary length may allow identification of standardized pathways, enabling creation of reference databases of direct and indirect interactions between various processes. Knowledge of such pathways is useful, not only in general understanding of the relationship between cellular processes at the systems level, but also in projecting existing knowledge of cellular organization of model organisms to other species. Increasing availability of species-specific interaction data, coupled with attempts aimed at creating standardized dictionaries of functional annotation for biomolecules, provide the knowledge base that can be effectively used for this purpose. What is lacking is a comprehensive set of tools that combine these two sources of data to identify significantly over-represented patterns of interaction through reliable statistical modeling with a formal computational basis.

In this paper, we introduce the notion of functional network characterization, derived from a gene regulatory network and associated functional annotations of genes. We use the Gene Ontology (GO) (Ashburner et al., 2000) for annotations, however, our methods themselves generalize to other networks and annotations. Functional network characterization is based on the abstract notion of regulatory interactions between pairs of functional attributes (as opposed to genes). In this context, we demonstrate that methods for identifying significant pairwise annotations do not generalize to pathway annotations. We introduce the problem of identifying statistically over-represented pathways of functional attributes, targeted at the identification of chains of regulatory interactions between functional attributes. We study the hardness of this problem, focusing on the monotonicity of commonly used statistical significance measures. We show that the problem is hard along two dimensions: (i) the pathway space of the functional attribute network, and (ii) the space of functional resolution specified by GO hierarchy. Emphasizing the modularity of a pathway to assess its significance, we propose a statistical model that focuses on the coupling of the building blocks of a pathway. We use this statistical model to derive efficient algorithms for solving the pathway annotation problem. Our methods are implemented in a web-based tool, Narada which provides an intuitive user and data interface. Comprehensive evaluation of Narada on an E. coli transcription network from RegulonDB (Salgado et al., 2006) shows that our method identifies several known, as well as novel pathways, at near-interactive query rates.

BACKGROUND AND MOTIVATION

Results from previous studies. Lee et al. (2002) study the S. cerevisiae transcription regulation network with a view to understanding relationships between functional categories. They observe that transcriptional regulators within a functional category commonly bind
to genes encoding regulators within the same category (e.g., cell cycle, metabolism, environmental response). They also report that many transcriptional regulators within a functional category bind to transcriptional regulators that play key roles in the control of other cellular processes. For example, cell cycle activators are observed to bind to genes that are responsible for regulation of metabolism, environmental response, development, and protein biosynthesis. Tong et al. (2004) identify putative genetic interactions in yeast via synthetic genetic array (SGA) analysis and investigate the functional relevance of their results in the context of GO annotations. They construct a network of GO terms by inserting an edge between any pair of terms that are bridged by a significant number of interacting gene pairs. Here, two GO terms are said to be bridged by an interaction if one of the interacting genes is associated with one of the terms, and the other gene with the second term, but neither is associated with both terms. They show that the resulting network is clustered according to underlying biological processes, while some biological processes buffer one another. For example, microtubule-based functions buffer both actin-based and DNA synthesis or repair functions, suggesting coordination of these functions through interaction of various genes.

Approach. Establishing functional relationships from gene interactions is essential to understanding functional organization of a cell. Current investigations are limited to case-specific studies that generally focus on validation or evaluation of results through simple statistical analyses — yet they provide significant insights (Lee et al., 2002; Tong et al., 2004; Gamalielsson et al., 2006). Computational tools that are based on sophisticated abstractions and customized statistical models are likely to yield novel insights. We develop such a framework, addressing several issues including theoretical abstraction and definition of the problem, statistical modeling, analysis of computational complexity, and development of algorithms and software tools.

The basic approach for integrating existing knowledge of gene networks and functional annotations is to project the network in the gene space onto the functional attribute space through mapping of genes to attributes as specified by the annotation. A simple method for achieving this annotates each gene with its function and identifies overrepresented interacting annotations. This simple method yields interesting insights, as illustrated by Tong et al. (2004) in the context of synthetic genetic arrays. This model, however, does not generalize beyond pairwise interactions since each interaction between a pair of functional attributes is within a specific context (a different pair of genes) in the network. For this reason, a pathway of functional attributes composed from pairwise interactions may not itself be significant, or even exist (Figure 1).

Motivating example. Consider the scenario illustrated in Figure 1. Two regulatory pathways are shown in the figure — each node is identified by its corresponding gene (gi) and tagged by the functional attribute (Tj) associated with the gene. In Figure 1(a), genes g1, g2, and g3 indirectly regulate genes g5, g6, and g7 through gene g4. On the other hand, in Figure 1(b), the network is isolated and there is no indirect regulation. Now assume the network of functional attributes derived from the simple method described above, separately for each gene network. For both networks, since all genes associated with functional attribute T1 regulate a gene with T2, one may conclude that T1 regulating T2 is significant. A similar conclusion follows for the regulatory effect of T2 on T3. Hence, if only pairwise interactions are considered, we derive the same network of functional attributes from both genetic networks (Figure 1(c)). This network clearly suggests that functional attribute T1 indirectly regulates T3 through T2. This is indeed a correct observation for the network in Figure 1(a). However, this is not true for the network in Figure 1(b).

We develop a formal framework for projecting a gene network on a network of functional attributes, using multigraph models that accurately capture the context in which an interaction occurs. Through this framework, we generalize pairwise interactions between functional attributes to the identification of regulatory pathways of functional attributes.

METHODS

We now describe the biological, statistical, and computational formalisms that underly our methods.

Formal Model for Functional Attribute Networks

A gene regulatory network is modeled by a labeled directed graph G(VG, EG, MG). In this network, nodes gi ∈ VG represent genes. Directed edge gj,gj ∈ EG, where gj,gj ∈ VG, represents a regulatory interaction between genes gj and gj, MG : EG → {+, −, ±} specifies a labeling of edges that represents the mode of regulation: activation (+), repression (−), or dual regulation (±). A sample gene regulatory network is shown in Figure 2. In our discussion, for the sake of simplicity, we omit the mode of regulation and treat all interactions as activator interactions, whenever appropriate.

Each gene in the network is associated with a set of functional attributes. These attributes describe a functional annotation of the gene, i.e., they map an individual biological entity to known functional classes.

DEFINITION 1. Functional Annotation. Given a set of genes VG and a set of functional attributes Vr, let 2VG and 2Vr denote the power set of VG and Vr, respectively. Then, functional annotation A(VG, Vr) = {F, G} defines mapping F : VG → 2Vr and G :
that one parent, i.e. \(T \) attributes in GO, known as GO terms, are organized hierarchically. The hierarchy is abstracted using a directed acyclic graph (DAG). In this stereoid biosynthetic process' is a 'regulation of stereoid metabolic genes associated with molecular functions.

In Figure 2, each gene \(g_i \) is tagged with the functional attributes in \(F(g_i) \). For each \(T_j \), \(G(T_j) \) is composed of the genes tagged by \(T_j \). We use Gene Ontology (GO) (Ashburner et al., 2000) as a reference library for annotating genes. For each gene, GO specifies the molecular functions associated with it, biological processes it takes part in, and cellular components it may be part of. The functional attributes in GO, known as GO terms, are organized hierarchically through is a and part of relationships. For example, 'regulation of stereoid biosynthetic process' is a 'regulation of stereoid metabolic process' and is part of 'stereoid biosynthetic process'. This hierarchy is abstracted using a directed acyclic graph (DAG). In this representation, if \(T_i \) is a part of \(T_j \), then \(G(T_i) \subseteq G(T_j) \), i.e., the genes associated with \(T_i \) form a subset of genes associated with \(T_j \). In this case, \(T_j \) is said to be a parent of \(T_i \). A term may have more than one parent, i.e., \(G(T_i) \subseteq G(T_j) \) and \(G(T_i) \subseteq G(T_k) \) does not imply \(G(T_j) \cap G(T_k) = G(T_j) \cup G(T_k) \). Furthermore, there is a unique \(T_0 \in V_F \) with no parent, called root, such that \(G(T_0) = V_G \).

In the rest of this section, we use a network of functional attributes with no constraints (e.g., GO hierarchy) on function \(G \). We discuss the issue specifically relating to the GO hierarchy when addressing the implementation of NARADA.

We model networks of functional attributes using multigraphs. A multigraph is a generalized graph, where multiple edges are allowed between a single pair of nodes.

Definition 2. Functional Attribute Network. Given gene regulatory network \(G(V_G, E_G) \), a set of functional attributes \(V_F \), and functional annotation \(A(V_G, V_F) = (F, G) \), the corresponding functional attribute network \(F(V_F, E_F) \) is a multigraph defined as follows. The set of functional attributes \(V_F \) is also the set of nodes in \(F \). Each node \(T \in V_F \) contains a set of ports corresponding to the set of genes associated with \(T \), i.e., \(G(T) \). Each multidegree \(T \in V_F \) is a set of ordered port pairs (edges) \(g_k, g_{k+1} \), such that \(g_k \in G(T), g_{k+1} \in G(T) \), and \(g_k g_{k+1} \in E_G \).

The functional attribute network corresponding to the gene regulatory network in Figure 2 is shown in Figure 3. This multigraph model captures the context of each interaction accurately through the concept of ports. As illustrated in Figure 1, if a simple graph model is used, paths that do not exist in the gene network emerge in the functional attribute network. This is not possible in the multigraph model, since a path must leave a node from the port in which it enters to the node.

Definition 3. Path. In functional attribute network \(F(V_F, E_F) \), a path \(\pi = ((T_1, g_1), (T_2, g_2), \ldots, (T_s, g_s)) \) is an ordered set of node-port pairs such that (i) \(T_r \neq T_s \) for \(1 \leq r < s \leq k \) (nodes are not repeated), (ii) \(g_j \in G(T_s) \) for \(1 \leq r < k \), and (iii) \(g_{r+1} \in G(T_{r+1}) \). Note that allowing \(T_1 = T_k \) and \(g_1 = g_k \), we may also include cycles in this definition. According to the above definition, paths are characterized by ports. While analyzing regulatory pathways of functional attributes, however, we are interested in paths that are characterized by nodes in the functional attribute network. Clearly, such pathways may correspond to multiple paths in the functional attribute network. Therefore, we model them using multipaths.

Definition 4. Multipath. In functional attribute network \(F(V_F, E_F) \), a multipath \(\Pi = ((T_1, g_1), (T_2, g_2), \ldots, (T_s, g_s)) \) is an ordered set of nodes such that (i) \(T_r \neq T_s \) for \(1 \leq r < s \leq k \), and (ii) there exist \(g_j \in G(T_r) \) for \(1 \leq r < k \), such that \(\Pi = ((T_1, g_1), (T_2, g_2), \ldots, (T_s, g_s)) \) is a path. The occurrence set \(O(\Pi) \) of \(\Pi \) consists of all distinct paths that satisfy (ii) and each such path is called an occurrence of \(\Pi \). The frequency of \(\Pi \), \(\phi(\Pi) = |O(\Pi)| \), is equal to the number of occurrences of \(\Pi \).

We use the terms pathway and multipath interchangeably, to emphasize the biological meaning of a multipath. Allowing \(T_1 = T_k \), we also extend this definition to multicycles, occurrences of which correspond to cycles in the gene network. In Figure 3, \((T_1, g_1), (T_2, g_2), \ldots, (T_s, g_s) \) is a multipath with frequency four. On the other hand, multipath \((T_1, g_1), (T_2, g_2), \ldots, (T_s, g_s) \) does not exist in this network, i.e., it has frequency zero, although multidegrees \(T_2 \) and \(T_3 \) both exist. Note that the distinction between activator and inhibitor interactions is emphasized in this example for illustrative purposes, while it is omitted in the definition for simplicity. A multipath with high frequency is likely to be biologically interesting, since it corresponds to a regulatory pathway of functional attributes that recurs in various contexts.
contexts in the underlying cellular organization. In order to quantify this biological significance, it is useful to evaluate frequency from a statistical perspective.

Hardness of Significant Pathway Identification

Frequency has long been used as a measure of significance – primarily because of the resulting algorithmic simplicity. This is a direct consequence of its monotonicity properties, namely that a subgraph (or substring/substring) of a frequent graph (or string/set) is itself frequent (Koyutürk et al., 2006b). In identification of significantly overrepresented pathways of functional attributes, frequency alone does not provide a good measure of statistical significance. This is because, the degree distribution of gene regulatory networks and the distribution of the frequency of functional attributes are both highly skewed. Consequently, paths including functional attributes that are associated with high-degree genes (e.g., molecular functions related to transcription) and those associated with many genes (e.g., GO terms that are at coarser levels of GO hierarchy) are likely to dominate. For this reason, a statistical measure that takes into account these distributions is necessary.

Monotonicity of common statistical significance measures. We identify the basic properties of a useful measure of statistical significance.

Proposition 1. Statistical Interpretability. Consider a set \(X \) of binary random variables and the set of corresponding observations \(x \), where \(X = 1 \) for \(X \in X \) corresponds to an observation supporting a hypothesis. Let \(f(x) \) be a real-valued function, used to assess the statistical significance of the collection of observations defined by \(x \). Let \(X \) and \(Y \) be disjoint binary random variable sets, i.e., \(X \cap Y = \emptyset \), and let \(x \) and \(y \) be the respective observation sets. A function \(f \) is statistically interpretable if it satisfies the following conditions:

(i) If \(y = 0 \) \(\forall y \in Y \), then \(f(X = x) < f(X \cup Y = x \cup y) \).
(ii) If \(y = 1 \) \(\forall y \in Y \), then \(f(X = x) > f(X \cup Y = x \cup y) \).

Here, without loss of generality, \(f(X = x) < f(Y = y) \) implies that \((X = x) \) is a more interesting observation than \((Y = y) \). More generally, the binary random variables characterize a pattern, and a larger set of these variables corresponds to a larger (or more general) pattern. This property simply states that additional positive (negative) observations should increase (decrease) our confidence that a pattern is interesting.

Most significance measures used in the analysis of discrete biological data are statistically interpretable. Consider, for example, the identification of significantly enriched GO terms in a set of genes. For a given term, the binary variables \(X \), one for each gene \(X \in X \), indicate whether the gene is associated with the term \(X = 1 \). Adding a new gene \(Y \) to this set will improve the significance of enrichment \(f(x) < f(x \cup y) \) if the new gene is associated with the term \(Y = 1 \). If not \(Y = 0 \), the enrichment of the term in the new set will be less significant \(f(x') > f(x \cup y') \). Indeed, existing methods and statistical measures for this problem demonstrate this property (Hsiao et al., 2005; Grossmann et al., 2006).

Now we show that, in contrast to approximations that do not take into account the size of the sample space (e.g., frequency), statistically interpretable measures of significance do not possess monotonicity.

Theorem 1. Let \(f \) be a monotonically nondecreasing (nonincreasing) function, i.e., for any \(X \subseteq Z \) and \(x \subseteq z \), \(f(X = x) \leq f(Z = z) \) \((f(X = x) \geq f(Z = z)) \). Then \(f \) is not statistically interpretable.

Proof. Without loss of generality, assume \(f \) is nondecreasing. Let \(Y \) be a set of binary random variables, and \(y \) be a set of corresponding observations, such that \(\forall y \in Y, y = 1 \). Since \(f \) is monotonically nondecreasing, we have \(f(X = x) \leq f(X \cup Y = x \cup y) \). This contradicts condition (ii) in Proposition 1.

Monotonicity with respect to GO hierarchy. We now show that this result directly applies to the monotonicity of useful significance measures with respect to the GO hierarchy. Consider an ordered set of GO terms \(\{T_1, T_2, ..., T_k\} \). For any ordered set \(\{g_{j_1}, g_{j_2}, ..., g_{j_k}\} \) such that \(g_{j_r} \in \mathcal{G}(T_i) \) for \(1 \leq r \leq k \), define a binary random variable indicating the existence of the corresponding path in the underlying regulatory network. Clearly, the frequency of multipath \(\{T_1, T_2, ..., T_k\} \) is equal to the sum of the realizations of these random variables. Let \(X \) be the set of these random variables. Now, without loss of generality, consider pathway \(\{T_P, T_{i_2}, ..., T_{i_k}\} \), such that \(T_P \) is a parent of \(T_{i_1} \), i.e., \(\mathcal{G}(T_{i_1}) \subset \mathcal{G}(T_P) \). Then, for each gene \(g_P \in \mathcal{G}(T_P) \setminus \mathcal{G}(T_{i_1}) \), there are multiple additional random variables, each for one of \(\{g_P, g_{i_2}, ..., g_{i_k}\} \). Let \(Y \) be the set of these random variables. In this setting, the definition of statistical interpretability directly applies. If all paths of the set \(\{g_P, g_{i_2}, ..., g_{i_k}\} \) exist in the underlying regulatory network, then the pathway \(\{T_P, T_{i_2}, ..., T_{i_k}\} \) is more significant than \(\{T_{i_1}, T_{i_2}, ..., T_{i_k}\} \). If none of them exist, then the pathway containing the child is more significant. Applying Theorem 1, we conclude that a statistically interpretable function, that quantifies the significance of the frequency of a multipath in the functional attribute network, cannot be monotonic with respect to GO hierarchy.

The example in Figure 4 illustrates this point. Here, both \(T_{11} \) and \(T_{12} \) are parents of \(T_1 \). Since all genes that are not in \(T_1 \) but in \(T_{11} \) regulate \(T_3 \), the regulatory effect of \(T_{11} \) on \(T_3 \) is more significant than that of \(T_1 \). Since none of the genes absent in \(T_1 \) but present in \(T_{12} \) regulate \(T_3 \), the regulatory effect of \(T_{12} \) on \(T_3 \) is less significant than that of \(T_1 \). Thus, any statistically interpretable measure \(f \) should satisfy \(f(T_{11} \rightarrow T_3) < f(T_1 \rightarrow T_3) < f(T_{12} \rightarrow T_3) \), which violates monotonicity. Note also that frequency, which is monotonic non-decreasing with respect to height (proximity to root) in GO hierarchy, is not statistically interpretable as \(\phi(T_1 \rightarrow T_3) = \phi(T_{12} \rightarrow T_3) \).

This result can be interpreted as follows. GO hierarchy defines a combinatorial space of resolution for pathways of functional attributes. In other words, a pathway may be generalized or specialized.
by replacing a node (GO term) in the pathway with one of its ancestors or descendants in the GO DAG. Since this can be done for each node in the pathway, the size of this space is exponential in pathway length. However, as demonstrated above, the significance of a pathway fluctuates in this space. Consequently, all significant pathways cannot be efficiently identified using traditional inductive techniques, by starting from the highest (lowest) resolution in GO hierarchy and pruning out coarser (finer) terms in chunks.

Alternate approaches to this problem are necessary, not only in the context of significant pathway identification, but also other combinatorial problems in systems biology that involve hierarchical annotations. One possible approach is to develop a measure of statistical significance that admits a tight bound on the significance of a pathway in terms of the frequencies of pathways that are at a higher (lower) GO resolution. The discussion above clearly demonstrates that it is not straightforward to do so. Indeed, the statistical model we introduce in the next section does not easily lead to such tight bounds, since it emphasizes the *modularity* of a pathway to assess its significance. Consequently, in our implementation of NARADA, we use the most specific GO terms as the default resolution. Development of measures and methods that effectively prune out parts of the GO space remains an open problem.

Monotonicity with respect to pathway length. We apply Theorem 1 to the multipath space of a functional attribute network, *i.e.*, to the relationship between a multipath and its subpaths. As before, a multipath is represented by a set of binary random variables, each corresponding to one of its potential occurrences. Without loss of generality, consider multipaths $\Pi_k = \{T_{i_1}, T_{i_2}, \ldots, T_{i_k}\}$ and $\Pi_{k-1} = \{T_{i_1}, T_{i_2}, \ldots, T_{i_{k-1}}\}$. The random variables that represent Π_k do not form a superset of those that represent Π_{k-1}. Rather, they are *extensions* of them, as defined below:

Definition 5. Extension. Given a set X, an extension Z of X, denoted $Z \supseteq X$, is defined as follows. Each $X \in X$, is attached to a subset $Z_X \subseteq Z$. Each $Z \in Z$ is attached to exactly one $X \in X$, *i.e.*, for any $X_1, X_2 \in X$, $Z_{X_1} \cap Z_{X_2} = \emptyset$.

Each potential occurrence of Π_k is a *superpath* of exactly one potential occurrence of Π_{k-1} and there may be multiple such occurrences of Π_k that correspond to a particular occurrence of Π_{k-1}. Therefore, the set of random variables that represent Π_k form an extension of the set of random variables that represent Π_{k-1}.

Proposition 2. Statistical Interpretability w.r.t. Extension. Consider X, x, and $f(X = x)$ as defined in Proposition 1. Let $Z \supseteq X$ and let $z \supseteq x$ be the respective observation set. A function f is statistically interpretable with respect to extension if it satisfies the following conditions:

(i) If for all $x \in X$ such that $x = 1$, $z = 0 \lor z \in z_x$, then $f(X = x) < f(Z = z)$,

(ii) If for all $x \in X$ such that $x = 1$, $z = 1 \lor z \in z_x$, then $f(X = x) > f(Z = z)$.

Each $x = 1$ corresponds to an occurrence of the corresponding pathway. Consequently, statistical interpretability with respect to extension of a pathway requires the following. If for all occurrences of Π_{k-1}, all corresponding potential occurrences of Π_k exist in the network, then Π_k is statistically more interesting than Π_{k-1}. If none of them occurs, then Π_{k-1} is more interesting.

Corollary 1. Let f be a monotonically nondecreasing (nonincreasing) function with respect to extension, *i.e.*, for any $Z \supseteq X$ and $z \supseteq x$, $f(X = x) \leq f(Z = z)$ ($f(X = x) \geq f(Z = z)$). Then f is not statistically interpretable with respect to extension.

The example shown in Figure 1 illustrates this result. In both of the scenarios shown in Figure 1(a) and (b), $\phi(T_1 \rightarrow T_3) = \phi(T_3 \rightarrow T_3) = 3$. In (a), $\phi(T_1 \rightarrow T_2 \rightarrow T_3) = 9$, *i.e.*, condition (i) in Definition 2 (all potential occurrences of $T_1 \rightarrow T_2 \rightarrow T_3$, given the occurrences of $T_1 \rightarrow T_2$, exist in the network), hence the pathway $T_1 \rightarrow T_2 \rightarrow T_3$ is more interesting than both $T_1 \rightarrow T_2$ and $T_2 \rightarrow T_3$. In (b), on the other hand, $\phi(T_1 \rightarrow T_2 \rightarrow T_3) = 0$ (condition (ii) holds), so both $T_1 \rightarrow T_2$ and $T_2 \rightarrow T_3$ are more interesting than $T_1 \rightarrow T_2 \rightarrow T_3$. This discussion motivates the statistical model we present in the next section.

Statistical Model for Pathways of Functional Attributes

We present a novel statistical model for assessing the significance of the frequency of a multipath in a functional attribute network. In this approach, the “interestlessness” of a pathway is associated with its *modularity*, *i.e.*, the significance of the coupling of its building blocks. In statistical terms, this is achieved by conditioning the distribution of the frequency (modeled as a random variable) of a pathway on the frequency of its subpaths (modeled as fixed parameters).

Motivating example. We illustrate the notion of the significance of coupling between regulatory interactions using the regulatory network and its corresponding functional attribute network shown in Figures 2 and 3, respectively. In this example, $\phi(T_1 \rightarrow T_2) = \phi(T_2 \rightarrow T_3) = \phi(T_2 \rightarrow T_1) = 2$, *i.e.*, regulatory interactions $T_1 \rightarrow T_2$, $T_2 \rightarrow T_3$, and $T_2 \rightarrow T_1$ occur twice. Furthermore, regulatory pathway (multipath in the functional attribute network) $T_1 \rightarrow T_2 \rightarrow T_3$ occurs four times, *i.e.*, $\phi(T_1 \rightarrow T_2 \rightarrow T_3) = 4$. Observe that, given the frequencies of $T_1 \rightarrow T_2$ and $T_2 \rightarrow T_3$, this is the maximum value $\phi(T_1 \rightarrow T_2 \rightarrow T_3)$ can take. In other words, any gene with annotation T_2, which is up-regulated by a T_1 gene, always down-regulates a T_3 gene. This observation suggests that, T_1 plays an indirect, but important role in the regulation of T_3. On the contrary, $\phi(T_1 \rightarrow T_2 \rightarrow T_3) = 2$, since gene g_1 with annotation T_2 up-regulates a T_1-gene (g_2), but it is not regulated by a T_1-gene. These observations suggest that the coupling between regulatory interactions $T_1 \rightarrow T_2$ and $T_2 \rightarrow T_3$ is stronger than the coupling between $T_1 \rightarrow T_2$ and $T_2 \rightarrow T_4$. In other words, the pathway $T_1 \rightarrow T_2 \rightarrow T_3$ is more likely to be modular, compared to $T_1 \rightarrow T_2 \rightarrow T_4$.

We develop a statistical model that evaluates the modularity of regulatory pathways based on the coupling between their building blocks. For each pathway, our model assumes that the frequency of the building blocks of a pathway are known, *i.e.*, constitute the background distribution. We quantify the statistical significance of a pathway with the conditional probability of its frequency based on this background.

Baseline model. To quantify the significance of a pathway of shortest length (i.e., a single regulatory interaction), we rely on a reference model that generates a functional attribute network. This model takes into account (i) the degree distribution of the underlying
The observed functional attribute network, i.e., and than it is allowed in the observed network (A possible solution to the restriction on the number of edges between two nodes, although relaxed, still exists. If $\beta_{i}\delta_{j} > \phi_{i}\phi_{j}$, then the multiedge assigned to T_{i} and T_{j} is allowed to contain more edges in the reference model than it is allowed in the observed network (A possible solution to this problem is to ignore node degrees and place $\phi_{i}\phi_{j}$ potential edges between each pair of functional attributes T_{i} and T_{j}. The size of the pool is given by:

$$m = \sum_{T_{i}, T_{j} \in V_{P}} \beta_{i}\delta_{j}. \quad (3)$$

A total of n edges are drawn from this pool, independently and without replacement, where n is equal to the number of edges in the observed functional attribute network, i.e.,

$$n = \sum_{j} \beta_{i} = \sum_{j} \delta_{j}. \quad (4)$$

Let $B_{i} = B(T_{i})$ and $D_{i} = D(T_{i})$ denote the random variables that correspond to the in and out degrees of T_{i} in the generated network. Then, we have

$$E[B_{i}] = \sum_{j} \beta_{i}\delta_{j} \frac{n}{m} = \beta_{i} \sum_{j} \delta_{j} \frac{1}{\sum_{k,j} \beta_{k}\delta_{j}} = \beta_{i} \quad (5)$$

and similarly $E[D_{i}] = \delta_{i}$. In other words, the expected values of multiedges in the generated network mirror the specifications.

This model follows the independent edge generation paradigm commonly used in modeling networks with arbitrary degree distribution (Chung et al., 2003; Itzkovitz et al., 2003). Note that this model is better suited to multigraphs than simple graphs, because the restriction of single edge between any pair of nodes violates independence in simple graphs (King, 2004). This model also has limitations in the sense that it does not capture the dependency imposed by assignment of genes to functional attributes. In other words, if there is an edge between two genes in the underlying network, then there should be an edge between any pair of corresponding nodes in the functional attribute network, which is not true in the network generated according to our model. Consequently, the restriction on the number of edges between two nodes, although relaxed, still exists. If $\beta_{i}\delta_{j} > \phi_{i}\phi_{j}$, then the multiedge assigned to T_{i} and T_{j} is allowed to contain more edges in the reference model than it is allowed in the observed network (A possible solution to this problem is to ignore node degrees and place $\phi_{i}\phi_{j}$ potential edges).
Our model for the distribution of \(\Phi_{1,k} \), given \(\phi_{1,j} \) and \(\phi_{j,k} \), is illustrated in Figure 5. Assume that a pool contains all possible occurrences of multipaths \(\{T_{1i}, T_{2i}, ..., T_{ki}\} \) and \(\{T_{1j}, T_{2j}, ..., T_{kj}\} \). Clearly, there are \(m_{1,j} = \prod_{i=1}^{j} \phi_{1i} \) and \(m_{j,k} = \prod_{i=j}^{k} \phi_{ik} \) potential occurrences of each multipath. This is shown in Figure 5(a). Now consider a pair of paths, one corresponding to a potential occurrence of \(\Pi_{1,j} \), the other to \(\Pi_{1,k} \). Such a pair corresponds to a path, i.e., an occurrence of \(\Pi_{1,k} \), only if the second path originates in the port in which the first one terminates. This is illustrated in Figure 5(b) and (c). Since there are \(\phi_{1,j} \) and \(\phi_{j,k} \) occurrences of \(\Pi_{1,j} \) and \(\Pi_{1,k} \), respectively, the problem is formulated as follows: we draw \(\phi_{1,j} \) paths from \(m_{1,j} \) potential occurrences of \(\Pi_{1,j} \) and \(\phi_{j,k} \) paths from \(m_{j,k} \) potential occurrences of \(\Pi_{1,k} \), forming \(\phi_{1,j}\phi_{j,k} \) pairs. What is the probability that in at least \(\phi_{1,k} \) of these pairs, the port on \(T_j \) will be common?

We approximate this probability using our result on the behavior of dense subgraphs (Koytûrk et al., 2006a) and Chvátal’s bound on hypergeometric tail (Chvátal, 1979). In order to apply these results, we resolve dependencies assuming that the selected path pairs are independent from each other. Then, letting \(q_j = 1/\phi_j \) be the probability that a given path pair will go through the same gene and \(t_{1,j,k} = \phi_{1,k}/\phi_{j,k} \phi_{1,k} \) be the fraction of observed paths among all existing pairs, we obtain the following bound:

\[
\Pr_{1,j,k} \leq \exp(\phi_{1,j}\phi_{j,k}H_{q_j}(t_{1,j,k})),
\]

where \(H_q(t) = t \log \frac{1}{t} + (1-t) \log \frac{1}{1-t} \) denotes weighted entropy. This estimate is Bonferroni-corrected for multiple testing, i.e., it is adjusted by a factor of \(\frac{1}{\prod_{j=1}^{k} \left(\phi_{1,j}\phi_{j,k} \right)} \).

ARADA: A Software for Identification of Significant Regulatory Pathways

Based on the above statistical model, we develop algorithms and a comprehensive software tool, ARADA, for projecting gene regulatory networks on the functional attribute domain. ARADA is implemented in Java and can be run as a web applet or an application. It is publicly available at http://www.cs.purdue.edu/homes/jpandey/narada/.

The input to ARADA consists of three files: (i) a gene regulatory network, in which the source gene, target gene, and the mode of interaction are specified for each regulatory interaction, (ii) specification of the functional attributes and their relations (e.g., Gene Ontologyobo file), and (iii) annotation file that specifies the mapping between genes and functional attributes. ARADA currently handles three types of queries:

- **Q1:** Given a functional attribute \(T \), find all significant pathways that are regulated by (originate from) genes that are associated with \(T \).
- **Q2:** Given a functional attribute \(T \), find all significant pathways that regulate (terminate at) genes that are associated with \(T \).
- **Q3:** Given a sequence of functional attributes \(T_{1i}, T_{2i}, ..., T_{ki} \), find all occurrences of the corresponding pathway in the gene network and determine its significance.

A pathway is identified as being significant if its \(p \)-value is less than the critical \(\alpha \)-level, a user defined parameter.

ARADA delivers near interactive query response using a novel, biologically motivated pruning technique. We call a pathway strongly significant if all of its subpaths are significant. In biological terms, a strongly significant pathway is likely to correspond to a significantly modular process, in which not only the building blocks of the pathway, but also the building blocks of the building blocks are tightly coupled. In the context of queries implemented in ARADA, these subpaths are limited to those that originate from (terminate at) the query term. The option for searching strongly significant paths is available in ARADA. If the user selects this option, then a pathway is extended only if it is significant.

The main motivation in identification of significant regulatory pathways is understanding the crosstalk between different processes, functions, and cellular components. Therefore, functions and processes that are known to play a key role in gene regulation (e.g., transcription regulator activity or DNA binding) may overload the identified pathways and overwhelm other interesting patterns. However, genes that are responsible for these functions are likely to bridge regulatory interactions between different processes (Lee et al., 2002), so they cannot be ignored. For this reason, such GO terms are short-circuited, i.e., if process \(T_i \) regulates \(T_j \), which is a key process in transcription, and \(T_j \) regulates another process \(T_k \), then the pathway \(T_i \to T_j \to T_k \) is replaced with regulatory interaction \(T_i \to T_k \).

RESULTS AND DISCUSSION

We test ARADA comprehensively on the E. coli transcriptional network obtained from RegulonDB (Salgado et al., 2006). The release 5.6. of this dataset contains 1364 genes with 3159 regulatory interactions. 193 of these interactions specify dual regulation. We separate these dual regulatory interactions as up and down regulations. We use Gene Ontology (Ashburner et al., 2000) as a library of functional attributes. The annotation of E. coli genes is obtained from UniProt GO Proteome (Camon et al., 2004).

Using the mapping provided by GO, the gene network is mapped to functional attribute networks of the three name spaces in GO. Mapping to the biological process space provides maximum coverage in number of genes annotated, 881 genes mapped to one or more of 318 process terms. Due to space limitations, we discuss results obtained by this mapping only. Results relating to molecular functions and cellular components, as well as comprehensive results on pathways of biological processes, are available at the ARADA website.

Using the algorithms described in the previous section we collect all significant paths, using an \(\alpha \)-value of 0.01 and varying path lengths from 2 to 5, by running queries \(Q_1 \) and \(Q_2 \) on all 318 terms. The number of pathways obtained using combinations of the algorithmic options described in the previous section are shown in Table 1. On a Pentium M (1.6GHz) laptop with 1.21GB RAM the brute-force approach took on average 0.5 seconds per query for path length 2, to 12 seconds per query for paths of length 5. For strongly
significant paths, it took less than 2 seconds per query for paths of length 5, while for shortcutting terms it was 8 seconds per query for paths of length 4. Strongly significant pathways, i.e., those obtained by extending only significant pathways, compose a significant portion of the highly significant pathways. This observations suggests that significantly modular pathways are also likely to be composed of significantly modular building blocks.

Discussion. One of the prominent feature of the detected significant pathways is that a large number of them begin with terms relating to transcriptional and translational regulation while ending in other cellular processes (Figures 6(a)(b)). This can be explained by the fact that the network consists of a set of transcription factor genes and set of genes regulated by them. Therefore, most of the regulatory pathways of length 3 or more have to begin at or flow through this set of genes annotated with processes relating to transcription, translation, and regulation thereof. Pathways involving other process terms occur with lower frequency, but most of them are highly significant. Short-circuiting terms related to transcription and translation provides pathways relating to several interesting processes, as shown in Figure 6(c). Samples of pathways obtained are shown in Table 2.

In Figure 6(a), significant pathways that regulate cell motility are shown. This is part of a response to a query of type \(Q_2 \). The \(flhD \) operon that encodes \(flhC \) and \(flhD \) has been shown to act as positive regulator of flagellar regulons(\(flh, fig \)) (Liu and Matsumura, 1994). The flagellar master operon \(flhDC \), in turn, is tightly regulated at the transcriptional level (Ko and Park, 2000; Lehnen et al., 2002; Francez-Charlot et al., 2003). The output of NARADA captures this indirect regulation of flagellar expression perfectly.

Parts of the significant pathways that regulate phosphorylation via genes involved in transcription and DNA recombination are shown in Figure 6(b). The \(fis \) transcriptional regulator is responsible for regulation of \(nuoA-N \) operon (Wackwitz et al., 1999), while the \(fhlA \) transcriptional activator regulates the \(hyc \) locus (Hopper et al., 1994; Skibinski et al., 2002). Indeed, it is observed that the integration host factor (ihfA,ihfB) affects the regulation of these phosphorylation related genes (\(nuoA-N, hyc \)) directly and indirectly (Hopper et al., 1994; Nasser et al., 2002).

In Figure 6(c), indirect regulation of cytochrome complex assembly by molybdate ion transport is shown. The \(modE \) gene is a molybdate sensor/regulator, known to regulate, among others, transcription of genes involved in respiratory nitrate reductase (\(narXL \)) and molybdate uptake, and molybdopterin synthesis (Tao et al., 2005). The genes \(ccmABCDEFGH \) and \(trfE \) are members of pathways involved in cytochrome c maturation (Thony-Meyer et al., 1995). The detected pathway suggests that molybdate uptake may be biologically linked to the assembly of c-type cytochromes. In fact, it is shown that \(modE \) is a secondary activator of \(narL \), which in turn regulates the \(ccmABCDEFGH \) operon (Overton et al., 2006).

CONCLUDING REMARKS

In this paper, we introduce the notion of statistically significant regulatory pathways of functional attributes. We provide a formal framework for projecting regulatory networks from gene space to functional attribute space. We illustrate that approaches that are limited to pairwise interactions do not generalize to arbitrary pathways. We demonstrate the hardness of the resulting general problem in terms of non-monotonicity of interpretable statistical
measures. We propose a statistical model for functional attribute networks that emphasizes the modularity of pathways by conditioning on its building blocks. We present a comprehensive software tool, NARADA, which is based on the proposed models and methods. Finally, we present results obtained by testing NARADA on the E. coli transcription network.

REFERENCES

