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Abstract

The notion of information has so far been quantified mostly in statistical terms, giving

rise to Shannon’s information theory and the principles of digital data transmission. Studies

of systems involving complex, intelligent, and autonomous agents, not uncommon in con-

temporary science, call for a new look at the measures of information that place importance

on context, semantics, structures, and rationality. In this essay we propose a framework

for measuring information inspired by the event-driven approach. We then illustrate our

definition with several examples ranging from distributed computer systems to biology and

economics.

1 Introduction

In this essay we muse on the notion of information, hoping to capture some of its essential

aspects and provoke a discussion. We point out the need for a new definition of information that

might be applied in contemporary science and engineering ranging from biology to chemistry,

economics, and physics. We shall proceed inductively, giving examples from which hopefully a

formal framework will arise.

Advances in information technology, the abundance of information systems and services, the

much-trumpeted advent of information society, or even the Information Age (recently embodied

in the communities of Web 2.0), almost obscure the fact that the common buzzword – the i-word

– remains undefined in its generality, though considerable collective effort was harnessed into its

understanding (cf. [6, 8, 20, 21, 31, 36, 38]). Shannon wrote in [32]: “The word “information”

has been given many different meanings . . . it is likely that at least a number of these will prove

sufficiently useful in certain applications and deserve further study and permanent recognition.”

Shannon’s successful theory of information defines statistical information that quantifies to

what extent a recipient of data can reduce statistical uncertainty associated with its source by

observing the output of a source-recipient channel. Shannon also argued in his 1948 paper:

”These semantic aspects of communication are irrelevant to the engineering problem.” The

channel error rate, on the other hand, does matter: for example, with a 50% binary error rate,

the amount of statistical information sent through a binary symmetric channel is zero. But it
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seems that the intuitive understanding of information cannot be formalized without bringing

into the picture the timing of data (consider a train departure notice served a recipient after

the stated departure time), spatial aspect of information (imagine the same notice arriving at a

different location), the objective its recipient wants to achieve (consider the same notice served

a recipient not going anywhere), and the knowledge of the recipient’s internal rules of conduct,

or protocol for short (consider a recipient at the output of a channel with a high bit error rate,

whose protocol dictates that the channel be regarded as perfect, hence received data be used

bona fide).

The context of data cannot be abstracted from, either. Even at a high error rate some

information may be recovered from the context e.g., a math textbook transmitted over such a

channel might still be recognized as such. This point becomes particularly valid in the realm

of biosystems – most biological information depends on where it is retrieved e.g., its location

within a cell, a piece of DNA or protein. This important aspect is not yet well understood or

analyzed in information theory. Biology is above all about context, and so a periodic pattern,

while containing less statistical information than a random sequence, may contain a lot more

biological information. In fact, in a recent paper [11] the authors argue that a random string and

an exactly duplicated string add nothing or almost nothing to a biological information content.

On the other hand, any context-dependent information measure must take into account the

relationship between a given string and other related strings.

So what is information? In this essay, following C. F. von Weiszsäcker, we first argue that that

there is no absolute meaning of information. Then, using an event-driven approach, we propose

a definition that encompasses two of Weiszsäcker’s premises, namely that “Information is only

that which produces information” (relativity) and “Information is only that which is understood”

(rationality) [36]. We then present some examples illustrating new aspects of information within

the framework that we adopt here. We conclude with remarks suggesting some future work and

leading to more questions. As a matter of fact, we hope to put forward some educated questions

as to the issues and tools that lie before researchers interested in information, rather than come

up with definite answers.

A preliminary version of this essay was prepared for the October 2005 workshop Information

Beyond Shannon at Orlando FL. We thank the participants of the workshop for lively and

constructive comments, some of which have found their way into the present version.

2 Event-Driven Approach

An intuitive relationship between data (any sequence of interpretable symbols) and information

is that data may or may not carry information. One may observe that a piece of data carries

information if it helps its recipient achieve some objective. In fact, this observation, stated more

or less explicitly, was the point of departure of early textbooks on information technology [28].

There has been little formal apparatus, however, to quantitatively account for all its facets. To

generalize and add precision we observe that a piece of data carries information if it can impact

a recipient’s objective, under a given protocol and within a given context.

Thus information has a flavor of relativity and rationality: it derives from the recipient’s

knowledge (gathered from the context), capability (implied by its protocol), and the pursued



objective. Underlying the latter are also temporal and spatial aspects, for the usefulness of data

may depend on the timing and location of its generation and reception.

We offer more examples to illustrate the role of protocol. Clearly, a speaker of Chinese (a

more knowledgeable recipient) can make out a lot more of a textbook on VLSI circuit design

written in that language than a non-speaker (a less knowledgeable recipient). However, the

latter can by default regard some strings of symbols that do not look like an ethnic language

as a blueprint of a VLSI circuit; hence, the protocol can make up for the lack of knowledge (if

applied only to the drawings in the textbook) or bring about catastrophic results (if applied to the

Chinese characters of the text body). Furthermore, a duplicate notice of a train departure time

does not contribute to the objective of catching that train and therefore is of no informational

value (the recipient already knows it), unless the recipient’s protocol stipulates that at least

one confirmation of the train departure time be received. Finally, in a secret sharing scheme,

decryption keys separated in time and space seem to carry zero information until they are

brought together into one location at the same time. Indeed, information carried by data is not

only related to its context, but also to a recipient’s protocol, the rule dictating how to handle

received data.

Having said this, we still need a quantitative definition, an analogue of Shannon’s statistical

information, retaining the flavors of relativity and rationality, and with a potential to reflect

temporal and spatial aspects. Can we attempt formal definitions of the amount of information

and maximum amount of information carried by a channel – capacity – without a lengthy

specification of the semantics of data? One possibility is to adopt an event-driven approach

which we sketch below.

An event-driven approach offers a few advantages. First, it is well-established among the

engineering community thanks to the work of C. A. R. Hoare and others in the field of operating

systems and distributed algorithms. Second, it is discrete and timeless in nature, yet allows for

dynamic characterization of systems evolving in continuous time. Finally, it is able to formalize

such intuitions as causality and consistency of local views without specifying the semantics of

the involved events. At the same time, it generalizes the data-information relationship: now

it is events that may or may not carry information; in particular, an event may correspond to

reception of a piece of data, a clock tick etc. The event-driven approach-inspired formalization

goes along the following lines:

• A universe is populated by systems (living organisms, institutions, communities, software

agents, Internet domains etc.) pursuing specified objectives.

• A system’s current state is expressible through a number of system variables (e.g., mem-

ory content, parameter configuration, operational status of constituent subsystems); an

observable change of state marks an event (e.g., clock tick, execution of a specific opera-

tion, reception of a piece of data from another system).

• A partial order on the set of events may be defined as the order in which the events occur

at a given system (with simultaneous events not precluded); the set of events preceding

an event is called the context of the event.

• Events may have attributes e.g., time of occurrence and semantics, as defined by the



system’s protocol i.e., specification of how the system handles the events in order to pursue

its objectives.

We would like to regard information as another (measurable) attribute of an event reflect-

ing our previous discussion. To this end, define an objective functional that maps a system’s

protocol P and a context C (a sequence of events related to the communication between the

source and recipient systems) into any space with ordered points; further we only consider the

one-dimensional Euclidean space i.e., real axis. The idea is that P along with C determine

objective(P,C), the extent to which the recipient system’s objective has been achieved. For

simplicity assume that P remains fixed throughout the system’s lifetime. In particular, mono-

tonicity of objective(P,C) in C is desirable, for it implies that successive events help achieve

the objective. That is, we would like objective(P,C +E) ≥ objective(P,C) for any event E and

context C, where C + E is the new context extended by event E. Before defining a possible

measure of information we discuss more examples to support our approach.

Example 1. [Decimal Representation] Assume that a system’s objective is to learn the num-

ber π and P has the system compute successive decimal digits approximating π from below.

Each computed digit is then regarded as an event and objective(P,C) is a real-valued function

monotonically increasing and asymptotically stabilizing in C. As an illustration, imagine we are

drawing circles of circumferences 3, 3.1, 3.14, 3.141 etc., and measure the respective diameters

i.e., .9549, .9868, .9995, .9998, which asymptote to the ideal 1.

Example 2. [Shannon Information] In Shannon’s information theory [31] objective is defined

as statistical ignorance of the recipient or statistical uncertainty of the recipient. It is measured

by the number of binary decisions to recognize the event E, that is, − log P (E), where P (E)1 is

the probability as computed by the recipient. For various generalizations the reader is referred

to [18, 21]. Observe also that spatial and temporal aspects of information were mostly left out

in Shannon’s theory.

Example 3. [Distributed Information] In an (N,N)-threshold secret sharing scheme [29], N

subkeys of the decryption key roam among geographically dispersed systems. By the protocol

P , the event corresponding to the reception of another subkey from a fellow system does not

give access to the secret unless receptions of all the other subkeys are already in C. Likewise, an

observed pixel of a digital image may increase a viewer’s ability to understand the image depend-

ing on how many neighboring pixels have already been observed (this example illustrates that

the event-driven approach also covers spatial, rather than temporal, contexts – in general, there

is no difficulty evaluating the objective functional as long as events are processed sequentially).

In passing we may wonder what is the difference between distributed and local information; is

one bit here equivalent of one bit there?

Example 4. [Temporal Information] The impulses exchanged along nerves or processed within

neural cells of a living organism critically depend on timing e.g., a stimulus generated by a pain

1We shall write P (E) for the probability of an event E since from the context one easily distinguishes it from

the protocol P .



receptor is useless if it arrives too late to administer a defensive gesture. Spatio-temporal coding

is widely acknowledged to be the most important information processing feature of networks

of neurons [17]. This remarkable coding scheme forces groups of neurons, involved in the same

learning or memory retrieval task, to communicate and process information through timing

and location. The spatial aspect of this form of coding arises due to functional differentiation of

neurons. Usually, neurons involved in processing of related tasks or designed to respond to similar

cues are clustered in the same region of the brain. Examples include the well known receptor

maps in the olfactory bulb, the cochleotopic (frequency) regions in the primary auditory cortex

(where different regions of neurons respond to different frequencies in the stimulus), and the

topographic feature maps in the visual area of mammalian brains (where neurons discriminate

against different orientations of the visual stimulus).

Similarly, clock ticks are relevant when judging the usefulness of successive speech or video

frames sent over a packet network. Since they share network resources with unpredictable data

traffic, the frames arrive at the destination irregularly, as quantified by delay jitter. Premature

and overdue arrivals (events with too few or too many clock ticks in the context) are equally

unwelcome, though are handled in a different way: the former have to be buffered before delivery

and the latter are typically discarded. In general, incurred delay (e.g., in biological and computer

networks) is a nontrivial issue not yet successfully addressed by information theory [14].

Example 5. [Wireless Networks] In a wireless ad hoc network, each mobile terminal (MT)

can physically communicate only within its transmission range. To maintain network-wide

connectivity and so achieve the objective of each MT (i.e., a high throughput of data packets),

P prescribes setup and maintenance of relay paths between remote MTs. These are temporary

in nature due to the terminal mobility. Thus there are both path discovery and path disruption

events; consequently and somewhat counterintuitively, objective(P,C) may not increase in C.

Recent research [12, 13, 15] indicates that for objective(P,C) to increase in C, a quite unorthodox

P is needed that restricts paths to two-hop and trades buffer space for bandwidth, a thought at

the core of the so-called time capacity paradox.

Example 6. [Herding, Web 2.0, DNA] The conclusion of the previous example suggests that

objective(P,C) increases in C provided that P is somehow ”rational.” Unfortunately, studies of

the so called herding effects disprove that intuition too: an individual contemplating an action

behaves rationally by observing and following the majority of other individuals (as shown by

Bayesian analysis). After a short while, however, further observations provide no more insight

into the benefits of the action [4]. Perhaps, then, one can only assert that objective(P,C) is

nondecreasing in C provided that P is rational? There are examples that run counter even

that intuition. Imagine a user session with a Web search engine in which too much data, or

the presence of conflicting data, paralyze the user’s ability to act; from another perspective,

a growing number of users contributing their ideas to a digital Web 2.0 community may at

some point prevent a required broad consensus. Equally daunting is the well-known fact that

the sheer amount of data contained in a biological database (e.g., human genome) may blur

patterns leading to the identification of relevant human traits. In fact, in a massive data set,

such as a biological database or results of an Internet search, the situation is not unlike a radio

channel crossed by interfering signal paths: what is noise for one receiver (query) may well be



useful information for another. The problem of discovering and quantifying the amount of useful

information thus acquires a new meaning.

Example 7. [Cooperative and Noncooperative Settings] Consider now a system where the ob-

jective functionals defined at different subsystems are in conflict (e.g., the problem of Byzantine

generals, DoS or selfish attacks on communication protocols such as IEEE 802.11 [19]). The

simplest example are two data sources contending for a multiple access channel (e.g., ALOHA

system). Various forms of P may then calibrate the sources’ behavior from cooperative (where

objective(P,C) increases in the total number of data transmission events in C i.e., in the overall

channel utilization) to noncooperative (where objective(P,C) increases in the number of own

data transmission events) to malicious (where objective(P,C) decreases in the number of the

other source’s data transmission events).

Example 8. [Rissanen’s Stochastic Complexity and MDL] Included in objective(P,C) may be

the cost of the very recognition and interpretation of C. Imagine a recipient knowing that the

source uses an optimal code for its stream of data, but having to learn on the fly the stochastic

mechanism according to which the source generates data. As time passes, the model reveals itself

to the recipient who can then hypothesize about data sent. In 1978 Rissanen [23, 24, 25, 27]

introduced the Minimum Description Length (MDL) principle, an incarnation of Occam’s Razor

stating that the best hypothesis is the one that gives the shortest description of data. Realizing

that Kolmogorov complexity is uncomputable, MDL selects a code for which the total description

length of code and data is minimal. Rissanen stresses that we should “make no assumptions”

about a true data generating process. In practice, we must restrict the class of process models.

More precisely, let Mk = {Qθ : θ ∈ Θ} be a set of finitely parameterized distributions of

dimension k. One could argue, and some did, that the best (shortest) description of a string

x = (x1, . . . , xn) should be − log Qθ(x), as suggested by the Kraft correspondence for prefix

codes. As pointed out by Rissanen and others, this is not correct since one must also describe the

distribution Qθ itself. But this can be accomplished by a universal data compression algorithm.

Rissanen proposed two possible solutions, namely two-part codes and the normalized maximum

likelihood (NML) code that we briefly describe below.

In the two-part coding, one first describes a distribution Qθ and then describes the string x

using Qθ. Let C be a code that maps Θ to {0, 1}∗. Then the stochastic complexity S(x) is

S(x) = min
θ∈Θ

[length(C(θ)) − log Qθ(x)] ,

and the MDL principle states that one should choose θ∗ that achieves the above minimum.

In the normalized maximum likelihood (NML) code, first the parameter θ̂ is chosen to min-

imize − log Qθ(x) (as in the classical maximum likelihood estimate), and then the “ideal” code-

length − log Q
θ̂
(x) is used as a yardstick against which code performance is measured. This

leads to the so called minimax problem that finds the best code for the worst distribution and

the worst data. It is well known [3, 9, 26] that the regret function defined as

r∗n(M) = min
Q

max
x

[

log
Q

θ̂
(x)

Qθ(x)

]



achieves its optimal value log
∑

x Q
θ̂
(x) for the normalized maximum distribution

QNML(x) =
Q

θ̂
(x)

∑

x Q
θ̂
(x)

.

The optimal code-length is then − log QNML(x). Rissanen in [26] proved, among others, that

the minimax regret for Mk is

r∗n(Mk) =
k

2
ln

n

2π
+ ln

∫

θ

√

|I(θ)|dθ + o(1)

where I(θ) is the Fisher information. Further generalization can be found in [3, 9, 16, 33]. In

passing, one still may ask why to restrict analysis to prefix codes? Is there a fundamental lower

bound for general codes (cf. [1, 34, 37])?

3 Information and Capacity

We are now in a position to set out a framework for defining the amount of information consistent

with the intuition based on our examples and discussion.

Definition 1 The amount of information carried by event E in context C as perceived at a

system with protocol P is

infoP,C(E) = weight[objective(P,C + E), objective(P,C)], (1)

where “weight” measures the change between two (objective) points according to the order defined

on the space of values of the objective functional.

Thus an event only carries nonzero information if it changes objective(P,C), a statement

consistent with the intuitive flavors of relativity and rationality. The dependence on P and C

reflects the obvious observation that one and the same event can produce different information

at different recipients, locations, and times. Also note that in view of Example 6, negative

information is not unthinkable. In fact, this might lead to an interesting distinction: noncon-

foundable systems, contrasted with confoundable ones, are those whose protocol P precludes

negative information regardless of C. One can imagine a smart Web user always able to remove

conflicting data from the context and proceed monotonically towards an objective. Whether

and for what types of data sources and objective functionals such P exist is an open problem.

Finally, it is natural to surmise that both P and C are subject to various constraints implied,

respectively, by the systems’ architecture and the nature of the event sources. In the spirit

of Shannon, one may define the channel capacity between the event source and the recipient

as a maximum-type measure on a collection of amounts of information carried by successive

events, within the regions of feasible P and C (subject to the said constraints). For a given

C = (E1, E2, . . .) and Ei ∈ C, let Ci := (E1, . . . , Ei−1) be the prefix of C consisting of events

preceding Ei.

Definition 2 The capacity of the channel between the event source and recipient is

capacity = max
P feasible

max
C feasible

F ({infoP,Ci
(Ei), i ≥ 1}) . (2)

for some function F (·).



Depending on the specific case, the function F can be conveniently defined as the sum of all

elements of its set argument, the maximum element, etc. If the total amount of information and

the feasible C are infinite, it may be convenient to define F as the limiting average information

per event:

F ({infoP,Ci
(Ei), i ≥ 1}) = lim

n→∞

1

n

n
∑

i=1

infoP,Ci
(Ei) (3)

provided the limit exists. With so structured a definition it is possible to confine interest to the

inner maximum if for some reasons P is regarded as the only feasible.

We now return to some of the previous examples in order to give a quantitative illustration

of Definitions 1 and 2.

Example 1. [continuation] In Example 1, the objective in a given context can be measured as

the deviation of the corresponding diameter from the ideal 1, so that the amount of information

carried by successively computed digits of π is the difference between successive deviations.

Hence, the event ”3” carries (1− 0)− (1− .9549) = .9549, ”1” carries (1− .9549)− (1− .9868) =

.0319, ”4” carries (1−.9995)−(1−.9868) = .0127, the other ”1” carries (1−.9998)−(1−.9995) =

.0003 units of information etc. If F is as in (3), then the capacity of such a channel is zero: an

infinite number of events carry a finite total information.

Example 2. [continuation: Shannon Information and Temporal Capacity] Does the event-

driven approach include Shannon information as a special case? As suggested by the previous

discussion, the objective in Shannon information can be viewed as the negative of statistical

uncertainty. Consider a memoryless channel and a memoryless source transmitting symbols

chosen from a finite set according to some probability distribution. The amount of information

carried by an event E = (x, y), where x and y are respectively the transmitted and received

symbol, can be measured by the difference between the recipient’s degree of certainty as to x

before and after reception of y i.e.,

infoP,C(E) = − log P (x) − [− log P (x|y)].

Note that because of our memoryless setting, there is no explicit dependence on C. If the channel

is noiseless (error-free), then P (x|y) = 1 iff x = y, thus infoP,C(E) = − log P (x). Taking F in

our definition of capacity as in (3), we find for a context C = (E1, . . . , En)

F ({infoP,Ci
(Ei), i ≥ 1}) = lim

n→∞

1

n

n
∑

i=1

infoP,Ci
(Ei) = −

∑

x

P (x) log P (x) = H(X).

Here, X is a random variable describing the source. The right-hand side of the above relationship

we recognize as Shannon’s entropy of the source. In a noisy channel, the limiting average

information per event becomes

lim
n→∞

1

n

n
∑

i=1

infoP,Ci
(Ei) =

∑

(x,y)

P (x, y)[log P (x|y) − log P (x)] = I(X;Y ),

where Y is a random variable describing the output of the channel. This we recognize as

Shannon’s mutual information. It is easy to see now that, with the protocol P fixed and the



Figure 1: Temporal capacity as a function of τ .

maximization only taken over C, the channel capacity in the sense of Definition 2 coincides with

Shannon’s capacity

max
C feasible

1

n

n
∑

i=1

infoP,Ci
(Ei) ∼ max

P (X)
I(X;Y ),

where the right-hand side maximum is taken over all possible distributions of X. This is so

because in our memoryless setting, any feasible context must have been produced by some

P (X).

Recall that Shannon’s celebrated channel coding theorem states that as long as the transmis-

sion rate does not exceed the channel capacity, information can be sent with as small a frequency

of errors as desired provided unlimited time and resources are available to encode and decode

the message. Thus, temporal (or spatial) aspects of information are not considered. However,

they can easily be addressed in this setting, and the relevance of optimizing the protocol can be

demonstrated.

Consider a memoryless binary symmetric channel with ”temporal errors”: the longer a binary

symbol takes to reach the recipient, the lower the probability of a successful transmission. Each

transmitted symbol is received in error with probability Φ(ε, t), where ε is the ”instant error”

rate and t is the incurred channel delay. A plausible function Φ should increase from 0 to 1

for ε ∈ (0, 1), and increase from ε to 1 as t varies between 0 and ∞. Assume further that

the recipient’s protocol P enables determination of t when a symbol is received, and if t ≥ τ

prescribes erasure of the received symbol. Thus X ∈ {0, 1} and Y ∈ {0, 1, erasure}. Let the

source be memoryless with P (X = 1) = p and the channel delay be represented by a random

variable D with a known probability distribution function F (t) = P (D < t). We only need to

slightly modify the amount of information carried by an event E = (x, y), namely

infoP,C(x, y) =

{

log P (x|y, D < τ) − log P (x) if y = 0, 1

0 if y = erasure.

Then the limiting average information per event again coincides with the mutual information



I(X;Y ). To calculate the latter let us introduce the conditional probability

φ := P (Y = 1|X = 0,D < τ) = P (Y = 0|X = 1,D < τ) =

∫ τ
0 Φ(ε, t)dF (t)

F (τ)
,

which plays the role of the ”temporal error” rate. Standard calculation yields

I(X;Y ) = [Hb((1 − φ) · (1 − p) + φ · p) − Hb(φ)] · F (τ), (4)

where Hb(u) = −u log u − (1 − u) log(1 − u) is the binary entropy function for u ∈ [0, 1]. By

a similar argument as above, the maximization of (4) over p corresponds to maximization over

feasible C in (2). The maximum is attained at p = 1/2 and yields

[1 − Hb(φ)]F (τ),

the maximum mutual information for a given τ , that is, Shannon channel capacity. In Figure 1

we plot this quantity against τ assuming F (t) = 1− e−t and Φ(ε, t) = 1− (1− ε)t+1 for ε = 0.3.

(Note that the average channel delay is the time unit.) We see that in the case of a stringent

delay bound the capacity of the channel is adversely affected by frequent erasures; when the delay

bound becomes ineffective, frequent temporal errors dominate infrequent erasures to produce

a somewhat counterintuitive drop in mutual information. We now recall that τ represents the

recipient’s protocol P ; hence if we maximize over τ , which corresponds to the outer maximum

in (2), we get a clear estimate of the channel capacity.

Example 3. [continuation] Let N subkeys move at random and independently of one another

among A×A stations regularly spaced within a square area. For simplicity let the movements of

. . . . . . . . . . . . x . . . . . . .

. . . . . . . . . x x x x x x x . . . .

. . . . . . . x x x x x x x x x x . . .

. . . . . . x x x x x x x x x x x . . .

. . . . . . x x x x x x x x x x x . . .

. . . . . x x x x ⋆ x ⋆ x x x x x x . .

. . . . . x x x x x x x x x x x x . . .

. . . . . x x x x x x x x x x x x . . .

. . . . x x x x x x x x ⋆ x x x x . . .

. . . . . x x x x x x x x x x x x . . .

. . . . . x x x x x x x x x x x x . . .

. . . . . . x x x x x x x x x . . . . .

. . . . . . . . x x x x x . . . . . . .

. . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . .

Figure 2: Access to the secret (N = 3, A = 20, d = 8).

the subkeys be synchronized to unit time slots. In each slot a station can improve its objective

by having temporary access to the secret, which happens if it is within Euclidean distance d

from each of the subkeys. This is illustrated in Fig. 2, where the current subkey locations are

marked ”*” and stations with access to the secret are marked ”x.”



Assume that the larger N , the more valuable the secret, which results in each ”x” station

improving its objective proportionally to N . If all the stations act as one system, then an event

E defines N new locations of the subkeys. Here, N is a parameter of the set of feasible C, d is

a parameter of P , and

infoP,C(E) = N × {# of stations having access to secret}.

Note that since the movement of the subkeys is memoryless, there is no explicit dependence

on C. The limiting average information per event per station, which thus equals N times the

probability of access per event, is plotted in Figure 3 (obtained by a Monte Carlo simulation).

The maximum of each curve corresponds to the channel capacity as expressed by the inner

maximum in (2) i.e., with respect to C, given P .

Figure 3: Normalized average information per event for secret sharing (A = 20).

Example 7. [continuation: Noncooperative Settings; Value of Information] We should point

out that calculating the capacity in the above framework seems to be particularly difficult in a

distributed system featuring multiple autonomous agents. For example, in economics one often

considers the value of information [21] which measures (perhaps in dollars) the difference between

the payoffs of an informed action and an uninformed action. Consider a simple entry deterrence

game [10]. Suppose an Internet service provider (ISP) has a major business client (Incumbent)

who can use either Standard or Premium service. Another business (Entrant) is considering

entry i.e., becoming the ISP’s client with only Standard service available. Both Incumbent and

Entrant choose their strategies (Standard/Premium and enter/not enter) simultaneously and

without prior coordination. Thus a one-shot noncooperative game arises with payoffs given in

Table 1. Here, K is the surcharge Incumbent pays for Premium service (0 ≤ K ≤ 3). While the

other payoff components are rather arbitrary, the relationships between them are important:



Table 1: Entry deterrence payoffs (arbitrary units): Incumbent’s (left) and Entrant’s (right)

enter not enter

Premium 3 − K, −1 5 − K, 0

Standard 2, 1 3, 0

• Entrant’s payoff is neutral if she does not enter, otherwise it is negative if Incumbent

chooses Premium (Entrant pays entrance fee, but receives a less-than-fair share of ISP’s

resources), and is positive if Incumbent chooses Standard (Entrant receives a fair share of

ISP’s resources),

• Incumbent is better off if Entrant does not enter (there is no competition for ISP’s re-

sources), and given Entrant’s choice, Incumbent’s well-being depends on K e.g., K > 2

(K < 1) makes Standard (Premium) a dominating strategy.

It is easy to see that for K > 2 the only Nash equilibrium (NE) is (Standard, enter), while

for K < 1 the only NE is (Premium, not enter). For 1 ≤ K ≤ 2 there exists a unique NE in

mixed strategies:
(

1

2
∗ Premium +

1

2
∗ Standard, (1 − (K − 1)) ∗ enter + (K − 1) ∗ not enter

)

,

where p ∗ s + q ∗ s′ denotes a mixed strategy ”play s with probability p and s′ with probability

q.”

A more realistic model assumes that (a) Entrant has only an estimate K ′ of K, (b) Incumbent

knows both K and K ′, moreover, is in a position to communicate K to Entrant if she thinks it

worthwhile. The question is whether and when Incumbent will indeed communicate K and how

much information passes between Incumbent and Entrant. Let EEnt
0 and EInc

0 denote the events

of acquiring the knowledge of K ′ by Entrant, and of K and K ′ by Incumbent. The objective is

the expected payoff and the protocols of both players prescribe NE strategies. For Entrant, the

NE strategy is:

s(EEnt
0 ) =











not enter, K ′ < 1

[1 − (K ′ − 1)] ∗ enter + (K ′ − 1) ∗ not enter 1 ≤ K ′ ≤ 2

enter K ′ > 2.

Incumbent, who knows the above strategy, chooses hers so as to maximize the expected payoff.

The result is obvious except when 1 ≤ K ≤ 2 and 1 ≤ K ′ ≤ 2. Incumbent’s expected payoff

conditioned on choosing Premium is then

[1 − (K ′ − 1)] · (3 − K) + (K ′ − 1) · (5 − K)

and conditioned on choosing Standard is

[1 − (K ′ − 1)] · 2 + (K ′ − 1) · 3.

Incumbent chooses Premium if the former payoff is greater than the latter, i.e., if K < K ′, and

Standard if K > K ′. (If K = K ′, Incumbent plays 1/2 * Premium + 1/2 * Standard.) Hence,



Table 2: Expected payoffs at NE: Incumbent’s (left) and Entrant’s (right)

K′ < 1 1 ≤ K′
≤ 2 K′ > 2

K > 2 3, 0 [1 − (K′
− 1)] · 2 + (K − 1) · 3, [1 − (K′

− 1)] · 1 2, 1

1 ≤ K ≤ 2 5 − K, 0 as above (if K > K′) 2, 1

[1 − (K′
− 1)] · 2 + (K′

− 1) · 3, 0 (if K = K′)

as below (if K < K′)

K < 1 5 − K, 0 [1 − (K′
− 1)] · (3 − K) + (K′

− 1) · (5 − K), [1 − (K′
− 1)] · (−1) 3 − K, -1

s(EInc
0 ) =



























































































Premium K < 1 or (1 ≤ K ≤ 2 and K ′ < 1)

[Entrant does not enter]

or (1 ≤ K ≤ 2 and 1 ≤ K ′ ≤ 2 and K < K ′)

[Entrant plays mixed strategy],

1/2 * Premium + 1/2 * Standard 1 ≤ K ≤ 2 and 1 ≤ K ′ ≤ 2 and K = K ′,

Standard K > 2 or (1 ≤ K ≤ 2 and K ′ > 2)

[Entrant enters]

or (1 ≤ K ≤ 2 and 1 ≤ K ′ ≤ 2 and K > K ′)

[Entrant plays mixed strategy].

For the payoffs in Table 1, the possible Incumbent’s and Entrant’s expected payoffs at NE are

given in Table 2, which both players can compute using game theory basics, but only Incumbent

knows which row gives actual payoffs.

Imagine now that just before the game, Incumbent has a chance to communicate K and

thus correct Entrant’s wrong estimate K ′ (denote the corresponding event EEnt
1 ). This she will

not consider worthwhile if K > 2 and K ′ ≤ 2 for it would encourage Entrant’s entry, thereby

decreasing Incumbent’s expected payoff (from 3, or a value between 2 and 3, to 2). Similarly

for 1 ≤ K ≤ 2 and K ′ < 1. If 1 ≤ K ≤ 2 and K ′ > 2, the communication of K would lead to

the mixed strategy NE; this will increase Incumbent’s payoff (from 2 to a value between 2 and

3), but at the same time decrease Entrant’s payoff (from 1 to 0). If Entrant is noncooperative,

she will ignore EEnt
1 regarding it as incredible (presumably part of Incumbent’s entry deterrence

strategy). Knowing that, Incumbent will simply communicate nothing. In all the above cases,

the channel between Incumbent and Entrant is as good as closed (unable to carry information).

Only when K < 1 and K ′ ≥ 1 will the communication of K become worthwhile from

Incumbent’s viewpoint and credible to Entrant, for Entrant’s expected payoff then would rise

(from −1, or a value between −1 and 0, to 0). According to (1), the amount of information

received by Entrant in this case is:



info(E0, E1) = payoff(EEnt
0 , EEnt

1 ) − payoff(EEnt
0 )

=

{

0 − (−1) = 1, K ′ > 2

0 − (−1) · [1 − (K ′ − 1)] = 1 − (K ′ − 1), 1 ≤ K ′ ≤ 2.

If the game is played repeatedly, e.g., on a session basis, and each time K and K ′ are drawn

independently from a uniform probability density function on [0, 3], then their joint probability

density is 1/9. The average amount of information received by Entrant (i.e., the average increase

in Entrant’s objective) per game is:

avg info =

∫ 1

0

[
∫ 2

1
[1 − (K ′ − 1)]dK ′ +

∫ 3

2
1dK ′

]

dK

9
=

3

2 · 9

What if neither Incumbent nor Entrant were noncooperative and so K were communicated and

EEnt
1 were accepted regardless of the expected payoffs? Then

9 · avg info =

∫ 1

0

[
∫ 2

1
[1 − (K ′ − 1]dK ′ +

∫ 3

2
1dK ′

]

dk +

∫ 2

1

[
∫ 1

0
0dK ′ +

∫ 3

2
(−1)dK ′

]

dK

+

∫ 3

2

]
∫ 1

0
1dK ′ +

∫ 2

1
(K ′ − 1)dK ′

]

dK = 2,

thus avg info= 2/9. In summary, the 25% difference between the latter two figures reflects the

reduction of channel capacity merely due to noncooperative nature of the involved protocols

4 Final Remarks

Our definition (1) is somewhat similar in spirit to that of the value of information discussed in

Luenberger [21]. In the presence of a single source of uncertainty about the state of the world

among the many possible states, Luenberger considers a decision-maker maximizing the average

payoff and calculates the net benefit of receiving an imperfect signal about the true state of the

world. Clearly, the net benefit is zero if the signal does not reduce the uncertainty. In such a

Bayesian setting, negative values of information are impossible. Although we propose a broader

framework, with context and protocol explicitly accounted for, we still need a generalization of

imperfect signals (or imperfect events in our wording); ours is a faultless communication system,

where events do not get corrupted or misinterpreted. While partly justified by contemporary

high-quality transmission and processing infrastructure, this is a serious restriction.

A no less fundamental issue is related to the very notion of information. The foregoing

discussion focused upon communicable information, which is why events played so central a role:

a system remaining in one and the same state cannot change its perception of the achieved

objective. However, another strong intuition of information holds it to be embedded in the

structure of an object and thus independent of any rational activity – this we may refer to

as structural information. F. Brooks articulates in [5] : “Shannon and Weaver performed an

inestimable service by giving us a definition of information and a metric for information as

communicated from place to place. We have no theory however that gives us a metric for
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Figure 4: Access to the secret with two different subkey locations (N = 3, A = 20, d = 8)

the information embodied in structure . . . this is the most fundamental gap in the theoretical

underpinning of information and computer science. . . . A young information theory scholar

willing to spend years on a deeply fundamental problem need look no further.” Along with

spatial and temporal aspects of information, this is, in our opinion, the most urgent challenge

facing our community.

Yet another understanding arises from a conjecture of an organizing principle, a hidden

mechanism behind a given object, and the amount of structural information may be related to

the remaining uncertainty as to the nature or parameters of the hidden mechanism. In this

way a sequence with clear patterns of symbols may be attributed more structural information

than a piece of gibberish after all. This is particularly true about biological information as

discussed above and in [11]. To illustrate our point, consider again our secret sharing scheme,

as in Example 3, and suppose we only know the current ”x” stations. Two sets of such stations,

corresponding to two different subkey locations, are depicted in Fig. 4. They may be regarded

as two states of our system, or two objects of some informational value, the hidden mechanism

being the movement of the subkeys. Where can the subkeys be? They can be no further than d

from any ”x” station, which leaves a number of possible subkey locations marked ”?” in Fig. 5.

(Particular N -tuples of locations can then be eliminated at the cost of more computation.) We

might conclude that the left state (object) contains more structural information than the right

one.

In summary, we propose to fundamentally enhance six decades of work in information theory

by incorporating the following elements that were, to large extent, not adequately addressed in

the past and therefore threaten to raise severe impediments to diverse applications:

Structure: We still lack measures and meters to appraise the amount of organization and infor-

mation embodied in artifacts and natural objects.

Delay: In typical interacting systems, timeliness of signals is essential to function. Often timely

delivery of partial information carries higher value than delayed delivery of complete information.

For example, in a signaling cascade associated with a specific cell function, delay or loss of signals
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Figure 5: Possible subkey locations

can be lethal.

Space: In interacting systems, spatial localization often limits information exchange – with

obvious disadvantages as well as benefits. These benefits typically result from reduction in

interference (common examples range from wireless systems to immune response).

Information and control: In addition to delay-bandwidth tradeoffs discussed above, systems often

allow modifications to underlying design patterns (e.g., network topology, power distribution and

routing in networks). Simply stated, information is exchanged in space and time for decision

making, thus timeliness of information delivery along with reliability and complexity constitute

basic objectives.

Semantics. In many scientific contexts, one is interested in signals, without knowing precisely

what these signals represent (e.g., DNA sequences, spike trains between neurons, whale songs),

but little more than that can be assumed a priori. Is there a general way to account for the

actual “meaning” of signals in a given context?

Dynamic information. In a complex network, information is not just communicated but also

processed and even generated along the way. How can such considerations of dynamic sources

be incorporated into an information-theoretic model?

Learnable information. One may argue (and some have) that in all scientific endeavors, the only

task is to extract information from data. How much information can actually be extracted from

a given data repository? In Shannon theory, one starts from a (possibly unknown) model for

the data-generating mechanism and calculates its entropy, but in practice the starting point is

only the data. Is there a general theory that provides natural model classes for the data at

hand? What is the cost of learning the model, and how does it compare to the cost of actually

describing the data?



Limited Resources: In many scenarios, information is limited by available resources (e.g., com-

puting devices, living cell). How much information can be extracted and processed with limited

resources?

Quantum Information: Microscopic systems do not seem to obey Shannon’s postulates of infor-

mation. In the quantum world and on the level of living cells, traditional information often fails

to accurately describe reality [6].

Value of Information: The impact of rational and noncooperative behavior upon information as

well as the value of information, should be studied in more generality.
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