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Abstract: The biological world is highly stochastic and inhomogeneous in its 
behaviour. There are regions in DNA with high concentration of G or C bases; 
stretches of sequences with an abundance of CG dinucleotide (CpG islands); 
coding regions with strong periodicity-of-three pattern, and so forth. 
Transitions between these regions of DNA, known also as change points, carry 
important biological information. Computational methods used to identify these 
homogeneous regions are called segmentations. Viewing a DNA sequence as a 
non-stationary process, we apply recent novel techniques of universal source 
coding to discover stationary (possibly recurrent) segments. In particular, the 
Stein-Ziv lemma is adopted to find an asymptotically optimal discriminant 
function that determines whether two DNA segments are generated by the same 
source assuring exponentially small false positives. Next, we use the Minimum 
Description Length (MDL) principle to select parameters that leads to a  
linear-time segmentation algorithm. We apply our algorithm to human 
chromosome 9 and chromosome 20 to discover coding and noncoding regions, 
starting positions of genes, as well as the beginning of CpG islands. 
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1 Introduction 

This work is built on two premises: On the one hand, a major challenge facing 
computational biology is the post-sequencing analysis of genomic DNA sequences, and 
in general biological sequences. It is known that a typical DNA sequence is not 
homogeneous and that (approximate) repetitions as well as regions with varying 
statistical properties may have biological meanings (e.g., regulatory elements, structural 
features of the DNA, CpG islands, coding vs. noncoding regions (Pevzner, 2000; 
Salzberg et al., 1999)). Computational methods used to identify these homogeneous 
regions are called segmentations. On the other hand, information theory (Cover and 
Thomas, 1991; Szpankowski, 2001), in particular source coding better known as data 
compression, explored patterns, repetitions, motifs, and sequence complexity to design 
optimal and universal compression schemes, for sequences generated by unknown 
sources. In universal data compression schemes the first (and the most important) step is 
the modelling part that finds a fit between data and a statistical model. This step is also 
common to many pattern discovery algorithms. 

For the highly stochastic and inhomogeneous biological world (Salzberg et al., 1999), 
probabilistic methods such as the hidden Markov model, Bayesian approach,  
large deviations, combinatorial tools based on graphs, enumeration methods, and 
combinatorial optimisations are all well recognised techniques of computational  
biology (Baldi and Brunak, 2000; Clote and Backofen, 2000; Pevzner, 2000).  
In this paper, we apply rigorous methods of information theory to DNA segmentation  
and find recurrent sources in a DNA sequence (Bernaola-Galván et al., 2000;  
Li, 2001a, 2001b; Sahinalp et al., 2002). In particular, we use techniques developed for 
non-stationary sequences (Shamir and Merhav, 1999; Shamir and Costello, 2000).  
Furthermore, following recent experimental results (Nevill-Manning and Witten, 1999; 
Tabus et al., 2003), we adopt here the view that biological sequences are optimally 
compressed by nature. We then reverse this process, keeping optimal setting in place, to 
find structural properties of such sequences. This allows us to construct a linear-time 
segmentation algorithm. 
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Figure 1 The structure of a DNA with some additional signals shown 

 

To justify our approach from a biological point of view, we briefly review some basic 
biological facts and present examples of non-stationary nature of biological sequences. 
We refer to Figure 1 (Salzberg et al., 1999). 

• Oligomer frequency can be used to distinguish between coding and noncoding 
regions (i.e., ‘junk DNA’ also known as ‘inter-gene region’). We observe that  
coding regions are rather short (averaging 150 nucleotides in length). It is known  
that coding regions are translated in triples while other regions are not. Therefore, the 
codon frequency of these regions might provide a distinctive statistical signature. 

• Human gene mutations have been observed more frequently at certain dinucleotides 
than others. For example, in the dinucleotide CpG, the C nucleotide is often 
chemically modified by methylation leading to CpG being rarer in the genome than 
would be expected from the independent probabilities of C and G. Actually, for 
biological reasons, the methylation process is suppressed in short stretches of the 
genome, for example, around the promoters or start regions. As a consequence, one 
observes the so-called CpG islands of typically a few hundred to a few thousands 
bases long. 

• Short oligomers can be used to detect a variety of important biological features in a 
sequence. For example, the region just before the splice site at the end of an intron 
typically has high C + T content. This is detectable by statistical methods, but the 
signal is too weak and often many false positives are detected. 

• The ribosome binding site, which occurs just before the start codon initiates protein 
translation, shows a clear preferences for some bases over others at particular 
positions. In addition, there is a strong correlation between adjacent positions in  
the site. 



   

 

   

   
 

   

   

 

   

   6 W. Szpankowski, W-H. Ren and L. Szpankowski    
 

    
 
 

   

   
 

   

   

 

   

       
 

Segmentation, also known as change point analysis or partitioning/fragmentation,  
was studied in various fields ranging from image processing to statistics. Earlier work on 
DNA segmentation are due to Churchill (1989), Crowley et al. (1997) (hidden Markov 
model), and others (e.g., moving window approach, walking Markov model). Techniques 
used range from Bayesian approach (Ramensky et al., 2000; Sahinalp et al., 2002), model 
selection (Li, 2001a, 2001b), and entropy-related techniques (Bernaola-Galván et al., 
1996, 1999, 2000). One particular attractive segmentation is the divide-and-conquer 
approach (Bernaola-Galván, 1996) in which DNA is first segmented into two substrings 
for which the base composition is maximised, and this is carried on the left and right 
substrings. However, all the above techniques are computationally involved, and there are 
no clear criteria for stopping the recursion with an exception of Li (2001b). Our approach 
is based on well established theoretical foundation of data compression. Thus, we avoid 
intensive computation by selecting properly parameters up front. Our algorithm runs in 
O(N) steps where N is the length of the sequence. 

Let us briefly summarise our methods and findings. We partition a DNA sequence 
(e.g., chromosome 9) into fixed length blocks. Guided by universal data compression, we 
follow Shamir and Costello (2000) and Shamir and Merhav (1999) and set the length of 
the block to minimise the average redundancy (MDL principle), which the authors of 
Shamir and Costello (2000) computed to be (log N)1+δ (δ > 0) where N is the length of the 
DNA sequence in base pairs (bps). Then, we invoke the Stein-Ziv lemma (Ziv, 1988) 
(hypothesis testing and universal data compression) and apply asymptotically optimal 
discriminant to determine whether two blocks, say bi–1 and bi+1, are generated by the same 
source. It turns out that the optimal discriminant is related to the so-called  
Jensen-Shannon divergence that was already heuristically used in DNA segmentation 
(Bernaola-Galván et al., 1996, 1999, 2000). If the discriminant function is positive and 
large, then a change point (i.e., change of distributions) is expected to occur in block bi. 
In this case, we additionally subdivide this block into subblocks of length (log log N)1+δ 
(i.e., establish level II partition) to assure the best fit of data from the MDL principle 
point of view. The optimal discriminant function is again applied to these subblocks. 
Once the change points are found, we compute entropy of these segments (between 
change points) to identify recurrent sources (see Figure 2 for an illustration). 

Figure 2 The optimal discriminant function and entropy for a randomly generated sequence 
(solid horizontal lines in part (b) are computed from the known distribution) 
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This paper is organised as follows. In Section 2, we present our theoretical  
foundation and describe the proposed segmentation algorithm. In particular, we follow 
Shamir and Costello (2000) and apply Ziv’s analysis to design an asymptotically  
optimal discriminant that decides whether two blocks are generated by the same source or 
not. In Section 3, we present our experimental results. We study human chromosome 9 
and chromosome 20. We design five different groupings of bases A, C, G, and T  
(e.g., purine vs. pyrimidine, triplets of symbols as in codons) to amplify the discriminant 
function. This led us to find change points between coding and non-coding regions, 
starting positions of genes, as well as the beginning of a CpG island. 

2 Theoretical underpinning 

In this section, we present theoretical underpinning of our approach. Throughout we 
assume that a sequence 1 1 2

N
Nx x x x= …  is generated over a finite alphabet A.  

We sometimes write x Œ AN for 1
Nx . As in Shamir and Costello (2000), we partition 1

Nx  

into blocks b1, b2, …, bK such that i kb b N+ + =" , where |bi| is the length of the ith 
block. As shown later we do not lose on asymptotic optimality by making all blocks 
equal. From now on, we set |bi| = b for all 1 ≤ i ≤ K such that b · K = N. This partition 
constitutes level I of our algorithm. 

The next step is to design an optimal procedure to ascertain that there is a change of 
distribution in, say block i. We adopt here the approach from the decision theory of 
optimal hypothesis testing and universal data compression as discussed in Ziv (1988).  
We first choose an optimisation criterion. 

In general, let x Œ An be a sequence of length n generated either by a source over 
alphabet A with probability distribution P1 or a source with probability distribution P2.  
At this point, we assume P1 and P2 are known, and our goal is to decide upon seeing 
x Œ An, which source generates it so that the probability of ‘false decision’  
(false positives) is exponentially small. More precisely, following Ziv (1988), we are to 
find a discriminant function d(x), x Œ An such that 

P1(d(x) > 0) := P1(x Œ An : d(x) > 0) 

is maximised subject to 

P2(d(x) > 0) := P2(x Œ An : d(x) > 0) ≤ 2–λn 

for some λ> 0. Stein’s lemma described below generalised by Ziv provides a solution to 
this problem. 

Let us define the divergence (rate) D(P1||P2) as 

1
1 2 1

2

( )1( ) lim ( ) log
( )nn

x A

P xD P P P x
n P x→∞

∈

= ∑&  

if it exists. To assure its existence, we assume hereafter that the source is strongly mixing. 
In a strongly mixing source the probability of two events A and B defined on two 
substrings separated by g symbols is bounded as follows:  

(1 – ψ(g))P(A)P(B) ≤ P(AB) ≤ (1 + ψ(g))P(A)P(B) 
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where the mixing coefficient ψ(g) → 0 as g → ∝ (see Szpankowski (2001)). The reader 
may assume that x Œ An is generated by a Markov source. 

Lemma 1 (Stein, 1952; Ziv, 1988): Let P1 and P2 be generated by a strongly mixing 
source, and let the discriminant d(x) be such that 

P2(d(x) > 0)) ≤ 2–λn,   x Œ An (1) 

for some λ>0. Then 

(i) For some ε > 0 

1lim ( ( ) 0) 1 , n

n
P d x x Aε

→∞
> ≥ − ∈  (2) 

if and only if 

D(P1||P2) > λ (3) 

(ii) If equation (3) holds, then equation (2) is true for all ε > 0 provided d(x) is optimal 
and given by 

1

2

1 ( )( ) log
( )

P xd x
n P x

λ=  (4) 

for x Œ An
. 

The Stein-Ziv lemma gives the best discriminant function for the above optimisation 
problem provided both distributions P1 and P2 are known. In reality, the distributions are 
not known but we can estimate them from data. Our goal now is to find a computable 
discriminant function that is still asymptotically optimal under the above criteria. 

Ziv (1988) constructed such an asymptotically optimal discriminant function.  
We follow Shamir and Costello (2000) and modify it slightly for our purposes. First, Ziv 
observed that in order to obtain such a discriminant the training sequence, say y Œ An 
must be such that its length is Θ(|x|) (see Theorem 3 in Ziv (1988)). We simplify our 
presentation by assuming that |x| = |y| = n. Let now x, y Œ An be two sequences of length 
n. Define the empirical entropies H(x) H(x, y) as 

( ) ( )( ) log ,

( ) ( ) ( ) ( )
( , ) log ,

2 2

x x

a A

x y x y

a A

n a n aH x
n n
n a n a n a n a

H x y
n n

∈

∈

= −

+ +
= −

∑

∑
 

where nx(a), ny(a) are the number of times symbol a Œ A occurs in x, y Œ An. Observe that 
H(x, y) is the empirical entropy of the concatenation x · y of length 2n. Ziv (1988) in 
Theorem 4 basically proves that 

1 1 1( , ) ( , ) ( ) ( ) , ,
2 2 2

nd x y H x y H x H y x y A= − − − ∈  (5) 

is asymptotically optimal discriminant (in the sense of Lemma 1) as n → ∞. 
In view of the above we define a new metric, as in Shamir and Costello (2000), 
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1 1( , ) ( , ) ( ) ( ), , .
2 2

nM x y H x y H x H y x y A= − − ∈  (6) 

If M(x, y) is positive and large, then with high probability, x and y come from different 
distributions and the probability of false positive is exponentially small (with the 
exponent proportional to the value of M(x, y)). Observe also that the bigger M(x, y) is, 
further apart the distributions are. 

Let us come back to our original problem. We recall that the sequence 1
Nx  is 

partitioned into blocks bi of equal size b. In order to decide whether there is a change in 
distribution in block bi, we compute the following quantity, as suggested in Shamir and 
Costello (2000) and Clote and Backofen (2000) 

1 1 1 1
1 1( ) ( , ) ( ) ( )
2 2i i i i iM b H b b H b H b− + − += − −  (7) 

for 2 ≤ i ≤ K – 1. As argued above, if M(bi) is large, then one expects a change point 
(change of distribution) to occur in block bi. We also know that this is the best 
discriminant in the sense of Lemma 1. 

Let us illustrate our approach on an example. In Figure 2, we generated randomly a 
binary sequence (length N = 6,000 and b = 200) with distribution P1 = {0.4, 0.6} till 
block b10, then with distribution P2 = {0.1, 0.9} up to block b20, and finally we are again 
back to the original distribution P1. Figure 2 clearly indicates change points at b10 and b20. 
We observe that the values of M(b10) and M(b20) are not the same, as it should be since 
D(P1||P2) ≠ D(P2||P1). Also, in Figure 2 we plot the entropy in each segment (b1, b10), 
(b11, b20), and (b21, b30). Observe that based on the entropy figure, we conclude that we 
return to distribution P1 after block b20 (the so-called recurrent hidden sources or 
recurrent segments). 

Before we address the issue of selecting the optimal block size b, let us modify the 
algorithm as suggested in Shamir and Costello (2000). The point is that the block size b 
may be quite large (we need to have it large in order to take advantage of asymptotic 
optimality), while we would like to pin down the exact location of the distribution 
change. Therefore, we introduce level II partition. Every block of level I with high metric 
M is further partitioned into blocks βj of equal length β = |βj|. For level II, we apply the 

same metric M (βj) in the same manner as in level I adopted to β partition of the selected 
blocks of level I. In the next section (see Figures 3–8), we compute metric M for 
chromosome 9 and chromosome 20. 

We still need to decide how to choose the block sizes b of level I and β of level II. 
This is an important computational problem since selecting all possible block sizes will 
lead to computational explosion as in Bernaola-Galván et al. (1996). We solve this 
problem by appealing to the minimum description length (MDL) principle. That is, we 
choose b and β such that the description of the sequence 1

Nx  is the smallest possible, or 
equivalently 1

Nx  is optimally compressed. Citing Shamir and Costello (Proposition 2 of 
Shamir and Costello (2000)), we conclude that 
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b = (log N)1+δ (8) 

β = (log log N)1+δ (9) 

for some δ > 0. In Figures 5(a) and 6, we compare metric M computed for  
chromosome 20 q12-13.12 (AL021578) for the optimal selection of b and β  
(see Figure 5(a)) and arbitrary selection of b and β (see Figure 6). Clearly, optimal values 
of b and β are able to pick up biologically meaningful change points (in this case a CpG 
island). We also observe that with such selections of the block sizes, the segmentation 
algorithm runs in O(N) time. 

Finally, we comment on the threshold value Mth of the discrimination function  
M(x, y). The idea is to find Mth such that for a given α (e.g., α = 10–4), the false positive 
probability does not exceed α, assuring high probability of success (i.e., inequalities (1) 
and (2) of Lemma 1 hold). From (1), we find λth such that th2 bλ−  = α for the block size b.  
We then set d(x, y) = Mth – 1/2 λth � 0, and by equation (5) we may choose 

1
2

th th
1 log .
2 2

M
b
αλ

−

> =  

For example, for α = 10–4 and b = 300, we find Mth ≥ 0.022. 
In passing, we should point out that metric M(x, y), known also as the  

Jensen-Shannon divergence, was used before for DNA segmentation in  
Bernaola-Galván et al. (1996, 1999, 2000). However, the authors of  
Bernaola-Galván et al. (1996, 1999, 2000) did not use the MDL principle that resulted in 
much higher algorithmic complexity. Furthermore, in our opinion no proper 
mathematical justification was presented in Bernaola-Galván et al. (1996, 1999, 2000). 

Figure 3 Level I (part a) and level II (part b) of the discriminant function M for the human 
chromosome 9q34.2–34.3 from 12,379 bps to 15,578 bps of purine (A and G) and 
pyrimidine (T and C) with block size 45 bps. The coding region starts around block 54 
in level I and around block 7 in level II which corresponds to 2,421 bps – the exact 
position of the beginning of the coding region 
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3 Experimental result 

In this section, we discuss some experimental studies in which the proposed algorithm 
was applied to chromosome 9 and chromosome 20 in order to identify biologically 
meaningful change points such as CpG islands, start point of genes, and non-coding 
regions. 

Chromosome 9 is approximately 145 Megabases in length, and chiasma  
counts suggest a genetic length of 116 cM in males. The Genethon genetic map of 
chromosome 9 contains 189 markers and estimates the distance as 138.5 cM in males and 
194.5 cM in females, although the distance from the most distant markers to the 
telomeres is not known. A comprehensive map in SIGMA produced at the  
chromosome 9 Workshop in 1996 contains 137 genes (excluding ESTs) and 783 DNA 
segments. The most recent RH map (Gene-Map 98) shows 1,248 distinct gene based 
STSs on chromosome 9. One of the earliest recognised autosomal linkage groups, that of 
the ABO blood group locus and the disease Nail-Patella syndrome, is on 9q34, and recent 
years have seen the identification of the NPS gene as well as several others among the 53 
‘disease genes’ recognised on this chromosome (see http://www.gene.ucl.ac.uk/chr9/). 

Firstly, we use clone RP11-100C15 on chromosome 9q34.2–34.3. This portion of 
DNA contains coding and non-coding regions (i.e., ‘junk DNA’) as well as CpG islands. 
We apply our discriminant function to discover these regions. We first observe that 
working with the four letter alphabet {A, C, G, T} is non- desirable due to high variability 
of M. This was already observed by others (e.g., Bernaola-Galván et al., 1996, 1999, 
2000), and therefore we either group some letters to form a smaller alphabet or to extend 
the alphabet. 

Figure 4 The entropy of the human chromosome 9q34.2-34.3 from Figure 3 for level I and II 

 

In our first experiment, we consider the portion of chromosome 9q34.2–34.3 from 12,379 
bps to 15,578 bps. It contains the noncoding region (i.e., ‘junk DNA’) from 12,379 to 
14,800 bps and the coding region (i.e., exons and introns) of length 778 (14,801–15,578 
bps). We apply our discriminant function with block length b = 45 in level I and β = 9 
bps in level II for the two symbol alphabet {P, R}, where P = {A, G} (purine) and  
R = {T, C} (pyrimidine). Results are shown in Figure 3. We observe that the highest 
value of M in level I (see Figure 3(a)) occurs in the 54th block (= 2,409 bps), which 
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approximates very well the change point between coding and noncoding regions at  
2,421 bps. In Figure 3(b), we plot the discriminant M for level II around the 54th block. 
The highest value of M appears around the 7th block corresponding to 2,426 bps which 
exactly matches the change point at 2,421. 

In order to identify recurrent segments of Figure 3, we plot in Figures 4 the empirical 
entropy for level I and level II, respectively. The entropy figure is, unfortunately, more 
fuzzy, especially in level I. This is not a big surprise since, as we computed, 
P(R) ≈ 0.484963 in the first segment changes to P(R) ≈ 0.376813 in the second segment, 

finally setting at P(R) ≈ 0.483660. Thus, the difference is rather small and the entropy is 
close to 1 in all segments. However, the change of entropy is more visible in level II as 
Figure 4 shows. 

In our second set of experiments, we use the human DNA sequence from clone  
RP3-453C12 of chromosome 20 in the range q12-13.12. This DNA sequence contains 
two isoforms of the MATN4 (matrilin 4) gene, the RBPSUHL (recombining binding 
protein suppressor of hairless-like (Drosophila)) gene, the SDC4 gene, part of a gene for 
a novel protein (similar to Drosophila CG11753), part of the gene for a p53 response 
element (clg01), parts of two isoforms of a novel gene for an uncharacterised 
hypothalamus protein, a gene for a novel protein, ESTs, STSs, GSSs, and CpG islands. 
Totally it has 1,47,800 bps of DNA sequence data (www.ncbi.nlm.nih.gov/entrez/ 
query.fcgi?db=nucleotide&cmd=search&term=AL021578). 

Figure 5 Level I (part a) and level II (part b) of the discriminant function M for the human 
chromosome 20 q12-13.12 (AL021578) with 1,47,800 bps of purines (A and G) and 
pyrimidines (T and C) with a CpG island starting at the 80th block of level I and around 
block 5 of level II. The block size of level I is 350 while level II is 35 

 

We first consider 1,47,800 bps of chromosome 20q12-13.12. It contains a CpG island 
starting at position 27,752. In Figure 5, we plot level I and level II of the discriminant 
function M for the alphabet {P, R}. We clearly identify a transition occurring at the 80th 
block, which corresponds to the position 27,825 bps. A more careful analysis of level II 
(Figure 5(b)) reveals that the change point is around 27,725 bps, which is very close  
to 27,752 bps where the CpG island starts. 
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In order to verify the optimality of the block selection (b = 350), we repeat 
experiments of Figure 5 but with a non-optimal block size selection. In Figure 6, we  
re-plot Figure 5(a) with the block sizes b = 80 and b = 1,000. Clearly, non-optimal block 
sizes make the graph of M more fuzzy, and one cannot identify biologically meaningful 
change points (e.g., the CpG island of Figure 5). 

In the previous experiments, we grouped {A, C, G, T} into a new alphabet of size two 
{P, R} = {A/G, C/T} (i.e., purines and pyrimidines). We refer to this approach as the  
2-phase method. There is, however, another way of grouping {A, C, G, T} that is 
particularly useful for finding CpG islands. In Figure 7, we group C and G together, and 
then A and T together, for the AL021578 sequence. There are CpG islands in the intervals 
(4,751, 5,279), (9,429, 9,829), (22,943, 23,233), (27,905, 28,288), (59,288, 59,896), and 
(1,27,233, 1,27,761). In Figure 7 we identify six out of 16 CpG islands in AL021578. 

We now turn our attention to discovering coding regions in chromosome 20. When 
studying such translated regions, it makes sense to group symbols in triples (since, as we 
know, they are responsible for coding proteins). It was observed (Bernaola-Galván, 2000) 
that such triples do have distinctly new distribution in the coding region. Therefore, we 
propose three additional methods in which we expand the alphabet rather than shrink it: 

• 12-phase method. In this case, we consider the original alphabet {A, C, G, T} but to 
each symbol we assign one of three phases j = 0, 1, 2, that is, a nucleotide at  
position i has its phase j = i mod 3. Therefore, every nucleotide of the DNA sequence 
can be substituted by one of the following symbols: A0 A1 A2 T0 T1 T2 G0 G1 G2 
C0 C1 C2. For instance, A2 means that we have found a nucleotide A with phase 
equal to 2. This method was already used in Bernaola-Galván (2000). 

• 24-phase method. In this method, we consider triplets of purines and pyrimidines 
(hence 23 = 8 basic cases) together with three phases as in the 12-phase method.  
This gives an extended alphabet of size 24. 

• 192-phase method. The same as the 24-phase method except that we use the original 
alphabet {A, C, G, T} (i.e., 192 = 3 · 43). 

Figure 6 Level I of the discriminant function M (with block size 80 bps and 1,000 bps, 
respectively) for the human chromosome 20q12-13.12(AL021578) of purines (A and G) 
and pyrimidines (T and C). The CpG island starting at 27,752 in Figure 5(a) cannot be 
identified here 
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Figure 7 Six CpG islands found in DNA sequence AL021578 using our method with the block 
size equal to 250. The change points are at positions 21, 39, 91, 112, 239, and 510, each 
being the beginning of a CpG island 

 

In addition, the above three methods are enhanced with a ‘shifting value’ representing the 
beginning of the first block in level I. That is, the shifting value specifies the starting 
position of the DNA reading frame. For instance, if the shifting value is 300 and the 
block size b = 600, then the first block is from 300 to 900. Obviously, different shifting 
values result in different data in each block leading further to new values of M. This 
allows us to identify ‘unexpected’ change points. 

Table 1 Top two transition points in chromosome 20q12-13.12 (AL021578) 

Shifting num 2 phase 12 phase 24 phase 192 phase 

0 45/39 60/52 45/38 45/150 
100 180/45 60/48 45/38 194/45 
200 45/180 236/60 180/39 194/45 
300 45/180 60/51 45/180 14/45 
400 45/38 60/236 45/180 45/218 
500 45/38 60/51 45/180 45/195 
600 45/38 60/39 45/36 195/45 

In Table 1, we list two highest transition points for the four methods we just discussed 
together with various shifting values in the range 0–600. As before, we analyse the DNA 
sequence of human chromosome 20q12-13.12. In Table 1, we show the block numbers 
for each experiment (e.g., 45/180 means that the first transition point is at the 45th block 
and the second highest transition point is at the 180th block). Finally, we select 
biologically meaningful transition points. The results are presented in Figure 8 from 
which we conclude: 
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• In the 2-phase method with shifting value 400, the second highest transition point is 
at 38th block that corresponds to the position 22,901 bps. There is a gene 
(RBPSUHL) that starts at position 22,937 in the DNA sequence. 

• In the 24-phase method with shifting value 300, the transition point is at 45th block 
(i.e., position 27,001 bps). There is a CpG island beginning at position 27,050. 

• In the 12-phase method with shifting value 300, the highest transition point is at  
the 61st block corresponding to 36,601 bps. There is a gene (SDC4) that starts at 
position 36,558 in the DNA sequence. 

• In the 192-phase method with shifting value 200, the transition point is at the 195th 
block, that is, at position 1,27,001 bps. According to the DNA database, there is a 
gene (dj453C12.4) that begins at position 1,27,089. 

Figure 8 The discriminant function M for the human chromosome 20 q12-13.12 (a) 2-phase 
method with the shifting value 400; a gene (RBPSUHL) starts at the position close to 
38th block; (b) 24-phase method with shifting value 300; a CpG island begins near the 
45th block; (c) 12-phase method with shifting value 300; gene (SDC4) starts at the 
position near 61st block and (d) 192-phase method with shifting value 200; gene 
(dj453C12.4) begins at the position near the 195th block 
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4 Conclusion 

In conclusion, we use the algorithm and analysis of Shamir and Costello (2000) to 
present rigorous justifications of applying the discrimination function M (x, y) for DNA 
segmentation. We base our analysis on the Stein-Ziv lemma, and the MDL principle that 
guide us in the selection of block sizes. We also use several different grouping methods 
and shifting values to magnify change points. Experimental results confirm our 
theoretical predictions and coincide with biologically meaningful transition points  
(e.g., coding/non-coding regions, CpG islands, and starting points of genes). 

Our coding/noncoding region findings suggest that: 
• The 2-phase method and the 24-phase method produce similar results, and shifting 

value does not alter significantly results (e.g., the top points are around the 38th,  
the 45th, and the 180th block). 

• Shifting helps in the 12-phase method and the 192-phase method (Table 1).  
In particular, combining A/G and C/T leads to more stable results (e.g., the 
transitions in the 61st and the 195th block were found, by the 12-phase method and 
the 192-phase method, respectively). 

• Sometimes the first highest calculated value has biological meaning, while in other 
cases the second highest value leads to a biologically meaningful result. By trying 
various methods and shifting values, we are usually able to find interesting change 
points. 

• For finding coding regions, we conclude that grouping the original alphabet in 
triplets, as in the 24-phase method and 192-phase method, is better than the  
12-base method proposed in Bernaola-Galván (2000). 

In summary, our observations suggest that the proposed segmentation algorithm is able to 
identify biologically meaningful regions. Its running time is O(N), which is very 
attractive for biological applications. 
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