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Abstract
We study the problem of learning functional dis-
tributions in the presence of noise. A functional is
a map from the space of features to distributions
over a set of labels, and is often assumed to be-
long to a known class of hypotheses F . Features
are generated by a general random process and
labels are sampled independently from feature-
dependent distributions. In privacy sensitive ap-
plications, labels are passed through a noisy ker-
nel. We consider online learning, where at each
time step, a predictor attempts to predict the ac-
tual (label) distribution given only the features
and noisy labels in prior steps. The performance
of the predictor is measured by the expected KL-
risk that compares the predicted distributions to
the underlying truth. We show that the minimax
expected KL-risk is of order Θ̃(

√
T log |F|) for

finite hypothesis class F and any non-trivial noise
level. We then extend this result to general infinite
classes via the concept of stochastic sequential
covering and provide matching lower and upper
bounds for a wide range of natural classes.

1. Introduction
Consider the problem of finding how clinical factors (such
as age, gender, smoking history etc.) impact the probability
of manifesting various sequelaes after catching a disease.
We represent clinical factors as a set of features X , the out-
comes (i.e., sequelaes) as a set of labels Y , and ∆(Y) as the
set of all probability distributions over Y . Our goal is to find
a mapping (a functional distribution) from X to ∆(Y) by
observing a set of sample-label pairs (x1, y1), · · · , (xT , yT )
sampled from a group of real patients. We aim to recover
the true relationship (i.e., X → ∆(Y)) with minimal loss.
Since clinical data is sensitive, one typically does not reveal
them publicly, choosing instead to reveal perturbed labels
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ỹT = {ỹ1, · · · , ỹT } that are generated by adding noise to
yT . Note that in this case, clinical factors are not consid-
ered sensitive, and therefore features xT = {x1, · · · , xT }
are revealed exactly. Our goal is to design a noisy process
that prevents inferring yT from (xT , ỹT ) (i.e., one that pre-
vents inference of true labels) while allowing us to learn the
underlying relationship even with the noisy labels.

Our setup can be understood as an extension of the classi-
cal randomized response of surveying proposed by (Warner,
1965) to our functional scenario with additional features. We
model the functional dependency as a map p : X → ∆(Y).
We assume that the underlying true relationship comes from
a class of hypothesis F ⊂ ∆(Y)X , i.e., we consider the
well specified case. While our above clinical example rep-
resents a batch (supervised) learning scenario, in this paper
we consider a more general online learning case. This will
not only provide us with more general application scenar-
ios (e.g., online advertisement) but also resolves the batch
learning as a special case.

Let p ∈ F be the underlying true mapping. We consider
the following online learning scenario that occurs over time
horizon of T steps. At each time t, Nature generates feature
xt and reveals it to a predictor. The predictor then makes a
prediction p̂t ∈ ∆(Y) based on the history observed thus
far, i.e., xt, ỹt−1. Nature then generates yt ∼ p(xt) in-
dependently of all previous data and reveals a noisy label
ỹt = Kη(yt) where Kη represents a noisy kernel (chan-
nel). The goal of the predictor is to minimize the following
expected KL-risk:

sup
p∈F

E

[
T∑

t=1

KL(p(xt), p̂t(xt, ỹt−1))

]
,

where KL is the KL-divergence and the expectation is over
all randomness involved in this process. By standard online-
to-batch conversion, any online predictor p̂ implies a batch
learner that achieves the same performance bound. See
Section 2 for more formal assertions. The goal of this paper
is to understand how the class F and the process generating
xT affect the expected KL-risk in the presence of the noisy
labels ỹT .

Our contributions. We formulate the problem of learn-
ing functional distributions from noisy labels by allowing
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features to influence outcome distributions. This offers a
natural extension of the classical randomized response sce-
nario (Warner, 1965) with a learning-theoretic context. Our
formulation differs substantially from classical label differ-
ential privacy (Chaudhuri & Hsu, 2011), where the goal
is to recover a classification function that best fits actual
data. Our goal is to recover the underlying distribution it-
self, and the learning quality is measured by the expected
KL-risk. This formulation also provides a resolution to label
inference attacks (Wu et al., 2023) in the label differential
privacy scenario.

Specifically, we introduce a noisy kernel (channel) Kη pa-
rameterized by the noise level η > 0. We show that by
tuning noise level η, one can make probability of recovering
the actual label yT , given the noisy label ỹT , arbitrarily
close to the optimal recovering probability by knowing only
the underlying distribution. We design a general algorithm
(Algorithm 1) for learning distributions in the presence of
such noisy labels, which is based on the Bayesian aver-
aging (i.e., exponential weighted average). We show that
this algorithm provides a tight expected KL-risk for a wide
range of hypothesis classes. Specifically, we show that: (i)
for any finite class F and adversarially presented features,
the expected KL-risk grows as Θ̃(

√
T log |F|) upto a log T

factor for any nontrivial noise levels η. Furthermore, the
expected KL-risk becomes O(log |F|) if the probabilities
in F are bounded away from 0; (ii) we provide a general
approach for reducing the expected KL-risk of general infi-
nite classes to finite classes using the concept of stochastic
sequential covering. This yields tight bounds for a wide
range of natural classes, including logistic regression and
classes that can be kernelized by a function class of finite
pseudo-dimension. Our main technique for establishing up-
per bounds is through a reduction to sequential probability
assignment under logarithmic loss via a novel denoising
approach that relates KL-divergence and total variation dis-
tance. For lower bounds, we construct hard classes with
probabilities close to 0 via the classical lower bounding
techniques such as Le Cam and Fano’s methods.

In summary, our main contributions are: (i) a fundamentally
new formulation that extends the classical randomized re-
sponse scenario to a learning context; (ii) tight lower and
upper bounds for the expected KL-risk for a wide range of
hypothesis classes; and (iii) novel algorithmic and analysis
techniques for establishing upper and lower bounds, which
may be of independent interest beyond our target problem.

Related work. Our setup is related to label differential
privacy as studied in (Chaudhuri & Hsu, 2011; Esfandiari
et al., 2022; Ghazi et al., 2021). However, our framework is
different in the sense that our learning goal is to recover the
actual underlying distribution that generates data, and not
classification functions that fit the data. For instance, sup-

pose the underlying distribution is uniform over {0, 1} for
all x ∈ X , then any classification function cannot achieve
cumulative error better than T/2. However, one can still
learn the distribution with sublinear KL-risk. The learned
distribution will then be used in applications beyond clas-
sification. Learning functional distributions has also been
extensively studied in the context of sequential probability
assignment under logarithmic loss (Yang & Barron, 1998;
Cesa-Bianchi & Lugosi, 2006; Rakhlin & Sridharan, 2015;
Bilodeau et al., 2020; Wu et al., 2022b; Bhatt & Kim, 2021;
Bilodeau et al., 2021). However, these efforts assume that
the labels are noiseless. In some of these results the labels
are non-realizable but the regret is still evaluated on the
observed labels. In our work, we evaluate the quality of
learned models by comparing it to the actual underlying
truth, even when observing only noisy labels.

2. Problem Formulation
Let X be the feature space and Y be the label space. We will
assume throughout the paper that Y is finite and |Y| = M
for some integer M ≥ 2. We denote by

∆(Y) =

{
(u1, · · · , uM ) ∈ [0, 1]M :

M∑
m=1

um = 1

}

the set of all probability distributions over Y . A function p :
X → ∆(Y) is said to be a hypothesis, and maps each x ∈ X
to a distribution p(x) ∈ ∆(Y) over Y . We write p(x)[m] to
be the probability mass of p(x) on the mth element of Y . A
set F ⊂ ∆(Y)X is called the hypothesis class.

We provide several natural hypothesis classes F below, with
analysis in Section 3.2.
Example 2.1 (Constant functions). Let X be any feature
space. We define the following class

F = {pq(·) : ∀x ∈ X pq(x) = q and q ∈ ∆(Y)},

i.e., x ∈ X is mapped to the same distribution q under pq(x).
When |Y| = 2, our setup recovers the classical randomized
response scenario as in (Warner, 1965).
Example 2.2 (Logistic Regression). Let X = Rd and W =
(w1, · · · ,wM ) ∈ Rd×M . The function

p(W, x)[m] =
e⟨wm,x⟩∑M
i=1 e

⟨wi,x⟩

with m ∈ [M ]
def
= {1, · · · ,M} defines a hypothesis map

X → ∆(Y). The set F of all such hypothesis p(W, ·)
parameterized by W ∈ Rd×M is known as the Logistic
hypothesis class.
Example 2.3 (Hidden Classification Model). Let H ⊂ [N ]X

be a class of functions X → [N ] with N ∈ N. For any tuple
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q = (q1, · · · , qN ) ∈ ∆(Y)N and h ∈ H, we define a
hypothesis

p(h,q, x) = qh(x),

i.e., for any x ∈ X if h(x) = n ∈ [N ], we have the value
p(h,q, x) = qn. The class

F =
{
p(h,q, ·) : h ∈ H,q = (q1, · · · , qN ) ∈ ∆(Y)N

}
defines a hypothesis class. We call such a class the hidden
classification model w.r.t. H. Intuitively, we can understand
the functions in F as classifying the features X into N
classes such that each class corresponds to the same (but not
fixed) distribution over Y . We will often assume the class H
to have bounded complexity, e.g., finite pseudo-dimension.
This can be viewed as a generalization of the setup in (Bhatt
& Kim, 2021) to the multi-class case.

For any two probability distributions p, q ∈ ∆(Y), we have

1. The KL-divergence is defined as

KL(p, q) =
M∑

m=1

p[m] log
p[m]

q[m]
. (1)

2. The Total Variation is defined as

TV(p, q) =
1

2

M∑
m=1

|p[m]− q[m]|.

3. The χ2-divergence is defined as

χ2(p, q) =

M∑
m=1

(p[m]− q[m])2

q[m]
.

We assume throughout this paper that log(x) is in base e.

Let η ∈ [0, 1] be fixed and known. We define a noisy kernel
Kη to be a random map Y → Y such that for all y ̸= y′ ∈ Y
we have Pr[Kη(y) = y] = 1 − η and Pr[Kη(y) = y′] =

η
M−1 . With a slight abuse of notation, we also interpret Kη

as a map from ∆(Y) → ∆(Y) such that for any p ∈ ∆(Y),
we find Kη(p)[m] = (1− η)p[m] + η(1−p[m])

M−1 . We assume
here that η ∈ [0, (M − 1)/M). The inverse kernel K−1

η is
a map ∆(Y) → ∆(Y) such that for any p ∈ ∆(Y) in the
image of Kη , we have

K−1
η (p)[m] =

η
M−1 − p[m]

1− Mη
M−1

.

It is easy to verify that for any p ∈ ∆(Y), we have
K−1

η (Kη(p)) = p. We note that both Kη and K−1
η are

linear maps from RM → RM .

Let T be a time horizon. We denote by P a set of distri-
butions over X T , for instance P could be the class of all
i.i.d. distributions, which models the statistical generation
mechanism of the feature vectors xT .

Online learning with private labels. For any hypothesis
class F and distribution class P , we consider the following
online learning game between Nature and predictor. At the
beginning of the game Nature selects some p ∈ F (i.e.,
the well specified case) and νννT ∈ P . Nature then samples
xT ∼ νννT . At each time step t ≤ T , Nature reveals the tth
sample xt of xT . The predictor then makes a prediction
p̂t ∈ ∆(Y) using a strategy Φ, which is based on the history
xt = {x1, · · · , xt} and ỹt−1 = {ỹ1, · · · , ỹt−1}, i.e., p̂t =
Φ(xt, ỹt−1). Nature then samples yt ∼ p(xt) (independent
of all previous data) and reveals the noisy label ỹt = Kη(yt)
to the predictor. We emphasize that the parameter η is
fixed and known to the predictor. We are interested in the
following (minimax) expected KL-risk:

rKLT (F ,P) = inf
Φ

sup
p∈F, νννT∈P

E

[
T∑

t=1

KL(p(xt), p̂t)

]
, (2)

where the expectation is over the joint distribution of xT
and ỹT that are generated in the above process, and Φ runs
over all possible (randomized) prediction rules.

Privacy of noisy label ỹT . We note that if we take η =(
eϵ

M−1 + 1
)−1

for some ϵ > 0, i.e., ϵ = log
(

1−η
η/(M−1)

)
,

then our kernel Kη automatically provides (ϵ, 0)-differential
privacy on the true label yT . However, as noticed in some
recent papers (Wu et al., 2023), label differential privacy
cannot prevent label inference attack for any non-trivial
learning accuracy. We note that this argument holds only
for the classification problem, where the learning goal is to
recover the labeling function. This does not apply to our
distribution recovering problem, since our learning goal is to
estimate the distribution of the true label yT , not the labeling.
Indeed, let p ∈ ∆(Y) and y ∼ p. We show that knowing the
additional information ỹ = Kη(y) does not provide much
advantage for recovering y when compared to only knowing
p. To see this, we observe that the best strategy to recover y
by knowing only p is to predict the label y′ for which p[y′]
is maximum (i.e., the Bayesian optimal predictor), which
has prediction accuracy of pmax = max{p[y] : y ∈ Y}.
Suppose now we have the additional knowledge ỹ, then the
best strategy is the maximum a-posterior prediction (i.e.,
we predict y′ for ỹ such that p[y′ | ỹ] is maximum), which
has prediction accuracy upper bounded by pmax(1−η)

η/(M−1) . See
Appendix A for a complete derivation. This implies that
knowing noisy label ỹ only provides a 1−η

η/(M−1) factor in
the accuracy of recovering of y. By taking η ∼ M−1

M , we
have 1−η

η/(M−1) close to 1.

Online to batch conversion. Let µ be an arbitrary distri-
bution over X and F be a hypothesis class. Suppose we
observe xT i.i.d.∼ µ and ỹT be generated for some p ∈ F as
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in the online case. The batch learning problem is to find a
function Ψ : X T × YT → ∆(Y)X that minimizes

RKL
T (Ψ,F) = sup

µ,p
ExT ,ỹT ,x∼µ

[
KL(p(x),Ψ(xT , ỹT )[x])

]
.

We show in Appendix B that any online strategy Φ that
minimizes rKLT (F , IID) automatically implies a strategy Φ̄
such that

RKL
T (Φ̄,F) ≤ rKLT (F , IID)

T
,

where IID is the class of all i.i.d. distributions over X T and

Φ̄(xT , ỹT )[x] =
1

T

T∑
t=1

Φ(xt−1x, ỹt−1).

Here, the summation of probability distributions is under-
stood as the summation of the corresponding vectors in
∆(Y), and xt−1x means concatenation of xt−1 and x. We
note also that the expected guarantee of RKL

T (Ψ,F) can be
boosted to a high probability guarantee by splitting the sam-
ple xT into blocks and performing cross-validation to select
the best predictor on one of the blocks. See Appendix B for
detailed discussion.

Therefore, our main focus of this paper is to bound
rKLT (F ,P) for general classes F and P , and understand
how the complexity of F and P affect the precise KL-risk.

3. Main Results
This is the main section of our paper, where we provide
general lower and upper bounds on rKLT (F ,P) for various
classes F and P under noise kernel Kη .

3.1. Finite hypothesis class F

We assume that F is finite and S = {δxT : xT ∈ X T } is the
class of singleton distributions over X T , where δxT is the
distribution over X T that assigns probability 1 to xT . Note
that S is equivalent to features xT being presented adver-
sarially and can actually provide a general upper bound for
any class of distributions over X T including, for example,
the class IID of i.i.d. processes. Our first main result is the
following theorem:

Theorem 3.1. Let F ⊂ ∆(Y)X be a finite class and S be
the class of all singleton distributions over X T . Then:

rKLT (F ,S) ≤ O

(
log(MT )

√
T log |F|

1− Mη
M−1

)
. (3)

Furthermore, for Y = {0, 1} and X = {1, · · · , k} with
1 ≤ k ≤ T , there exists a function class F ⊂ ∆(Y)X and
η ≥ 1

4 such that |F| = 2k and

rKLT (F ,S) ≥ Ω
(√

T log |F|
)
. (4)

Note that for η < M−1
M the denominator of (3) is strictly pos-

itive and therefore for any such η the bound of Theorem 3.1
is of the form Õ(

√
T log |F|), where Õ hides a poly log T

factor. Compared to the privacy loss 1−η
η/(M−1) (i.e., the ad-

vantage of recovering yT when observing ỹT ) established
in Section 2, we known that by tuning the parameter η close
to M−1

M , one can make the privacy loss arbitrarily close
to 1 while achieving sublinear expected KL-risk of form
Õ(
√
T log |F|). The privacy-accuracy trade offs are related

by the constants 1−η
η/(M−1) and (1− Mη

M−1 )
−1.

Remark 3.2. Theorem 3.1 establishes a fundamental
distinction between the noisy and noiseless cases, i.e.,
Õ(
√
T log |F|) v.s. O(log |F|) (see (Wu et al., 2022b)).

Perhaps surprisingly, this distinction is actually real, i.e., the
lower bound Ω(

√
T log |F|) is attainable for certain classes

F . This differs from the classification problem, where be-
nign noise (such as our Kη) does not effect the performance
substantially, see e.g., (Ben-David et al., 2009, Thm 15).

Before we present our proof of Theorem 3.1, we empha-
size that the knowledge of η is key to achieving sub-linear
risk (this is true even in the constant function cases such
as (Warner, 1965)). Indeed, we may consider two constant
functions p1 = (0, 1), p2 = ( 14 ,

3
4 ) (with Y = {0, 1}). By

selecting η1 = 1
4 , η2 = 0, we have Kη1

(p1) = Kη2
(p2).

Therefore, no predictor can distinguish between the noisy
sample from p1, p2 with parameters η1, η2, respectively.
Hence, the expected KL-risk must be Ω(T ) for either p1
or p2 since KL(p1, p2) = Ω(1).

Our proof of Theorem 3.1 is based on the Noisy Smooth
Bayesian Predictor described in Algorithm 1, which is the
main algorithmic contribution of this paper. Recall the
following definition of logarithmic loss: For any y ∈ Y
and p ∈ ∆(Y), logarithmic loss (log-loss) is defined as
ℓlog(p, y) = − log(p[y]), i.e., negative logarithm of the
probability p on label y. For any online prediction rule
Φ and xT , yT , the point-wise regret (Wu et al., 2022b) is

R(Φ, yT ,F | xT ) =
T∑

t=1

ℓlog(p̂t, yt)− inf
p∈F

T∑
t=1

ℓlog(p(xt), yt)

where p̂t = Φ(xt, yt−1).

We start with the following technical lemmas with proofs
presented in Appendix E.

Lemma 3.3. Let F ⊂ ∆(Y)X and xT ∈ X T . For any
p ∈ F and online prediction rule Φ

EyT [R(Φ, yT ,H | xT )] ≥ EyT

[
T∑

t=1

KL(p(xt), p̂t)

]
,

where yT is independently generated so that yt ∼ p(xt) for
all t ∈ [T ], and p̂t = Φ(xt, yt−1).
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Algorithm 1 Noisy Smooth Bayesian Predictor
Input: Finite class F ⊂ ∆(Y)X and η < (M − 1)/M

1: Let F = {p1, · · · , pK} and w1 = (1, · · · , 1) ∈ RK

2: for t = 1, · · · , T do
3: Receive feature xt.
4: For all k ∈ [K], set p̃k(xt) = Kη(pk(xt)).
5: For all y ∈ Y , compute

p̄t[y] =

∑K
k=1 p̃k(xt)[y] · wt

k∑K
k=1 w

t
k

,

where p̄t defines a distribution over Y .
6: Make prediction

p̂t =
K−1

η (p̄t) + 1/(TM2)

1 + 1/(MT )
.

7: Receive noisy label ỹt.
8: For all k ∈ [K], update:

wt+1
k = wt

k · p̃k(xt)[ỹt].

9: end for

Lemma 3.4. For any distributions p, q ∈ ∆(Y), we have

1. TV(p, q) ≤
√

1
2KL(p, q);

2. KL(p, q) ≤ (2 − log(qmin))TV(p, q), where qmin =
min{q[y] : y ∈ Y}.

3. KL(p, q) ≤ χ2(p, q).

Proof of Theorem 3.1(Upper Bound). We first observe that
for any p ∈ ∆(Y), if y ∼ p, then ỹ = Kη(y) is distributed
according to Kη(p). For any class F ⊂ ∆(Y)X , we denote

F̃ = {Kη(p) : p ∈ F}.

By the construction of Algorithm 1, we know that the predic-
tor p̄t (step 5) is simply the Bayesian predictor (a.k.a., aggre-
gating algorithm) over F̃ . By (Wu et al., 2022b, Lemma 3),
for all xT , ỹT we know that R(p̄T , ỹT , F̃ | xT ) ≤ log |F̃ |.
Invoking Lemma 3.3, we conclude:

sup
p̃∈F̃

EỹT

[
T∑

t=1

KL(p̃(xt), p̄t)

]
≤ log |F̃ |, (5)

where ỹt ∼ p̃(xt). We now derive the expected KL-risk of
predictor p̂t (step 6) using (5) by leveraging the relations
between information divergences in Lemma 3.4. Our first
observation is that p̄t (in step 5 of Algorithm 1) is a convex
combination of the functions p̃k ∈ F̃ . Therefore, p̄ts are in
the image of Kη , since Kη is a linear map.

For any distributions p, q ∈ ∆(Y) such that q is in the image
of Kη , we claim that:

TV(Kη(p), q) =

(
1− Mη

M − 1

)
TV(p,K−1

η (q)). (6)

To see this, we analyze the total variation entry-wise. For
any a, b ∈ [0, 1], we have |a + bp[m] − q[m]| = b|p[m] −
(q[m]− a)/b|. By letting a = η

M−1 , b =
(
1− Mη

M−1

)
and

noting that (x − a)/b is the inverse of a + xb, clearly (6)
follows. We now abbreviate cη =

(
1− Mη

M−1

)
.

Therefore, for all t ∈ [T ] and k ∈ [K]

TV(p̃k(xt), p̄t) = cηTV(pk(xt),K−1
η (p̄t)).

By elementary inequality |a − (b + 1/(M2T ))/(1 +
1/(MT ))| ≤ |a− b|+ 2/(MT ) for a, b ∈ [0, 1], we have

TV(pk(xt), p̂t) ≤ TV(pk(xt),K−1
η (p̄t)) +

2

T
,

where p̂t is defined in step 6 of Algorithm 1. Combining the
inequalities, for all t ∈ [T ] and k ∈ [K] we find:

TV(pk(xt), p̂t) ≤ c−1
η TV(p̃k(xt), p̄t) +

2

T
. (7)

We now upper and lower bound the total variations of (7)
with KL-divergence using Lemma 3.4. By inequality 1 of
Lemma 3.4,

TV(p̃k(xt), p̄t) ≤
√

1

2
KL(p̃k(xt), p̄t).

By inequality 2, we obtain:

TV(pk(xt), p̂t) ≥ (2 + log(2TM2))−1KL(pk(xt), p̂t),

where we use the fact that p̂min
t ≥ 1

2TM2 due to the smooth-
ing at step 6 of Algorithm 1. Therefore, for all k ∈ [K]

T∑
t=1

KL(pk(xt),p̂t) ≤ O(c−1
η log(TM))

T∑
t=1

√
KL(p̃k(xt), p̄t)

(a)

≤ O(c−1
η log(TM))

√√√√T

T∑
t=1

KL(p̃k(xt), p̄t)

where (a) follows by Cauchy-Schwarz inequality∑T
t=1

√
at ≤

√
T
∑T

t=1 at for all at ≥ 0. Taking

expectation over ỹT and noting that E[
√
X] ≤

√
E[X], the

expected KL-risk rKLT (F ,P) is upper bounded by:

O(c−1
η log(TM))

√√√√T sup
p̃k∈F̃

EỹT

[
T∑

t=1

KL(p̃k(xt), p̄t)

]
≤ O(c−1

η log(TM))
√
T log |F|)

where the inequality follows by (5) and therefore (3) follows.
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Remark 3.5. Our proof presented above actually shows the
upper bound for the total variation risk as well, i.e.,

sup
p∈F

E

[
T∑

t=1

TV(p(xt),K−1
η (p̄t))

]
≤ O

(√
T log |F|

)
,

where p̄t is in step 5 of Algorithm 1 (note that here we used
O not Õ). This will sometimes be more useful than the
KL-risk for certain application scenarios.

Proof of Theorem 3.1(Lower Bound). We now assume the
label space Y = {0, 1} and feature space X = [k] with
k ≤ T . For any binary sequence b ∈ {0, 1}k, we define a
function such that for all i ∈ [k]:

pb(i)[1] =

{
0, if bi = 0,

0.1√
T/k

, otherwise .

and pb(i)[0] = 1− pb(i)[1]. Let

F = {pb(·) : b ∈ {0, 1}k}.

We now partition the sequence xT into k blocks, each of
size T/k such that the ith block x(i) takes value i ∈ [k].
We shall show below that the expected KL-risk is lower
bounded by Ω(

√
T/k) for each block. Suppose this holds,

and let gi(Φ, p(i)) be the expected KL-risk at block i for
strategy Φ when the labels are generated by p(i). Then

inf
Φ

sup
p∈F

E

[
T∑

t=1

KL(p(xt), p̂t)

]
(a)
= inf

Φ
sup
p∈F

∑
i∈[k]

gi(Φ, p(i))

(b)
= inf

Φ

∑
i∈[k]

sup

p(i)[1]∈
{
0, 0.1√

T/k

} g(Φ, p(i))

(c)

≥
∑
i∈[k]

inf
Φi

sup

p(i)[1]∈
{
0, 0.1√

T/k

} g(Φi, p(i))

≥ k × Ω(
√
T/k) ≥ Ω(

√
Tk)

where (a) follows by linearity of expectation, (b) follows
by the fact that the p(i)s that maximize gi(Φ, p(i)) locally
can be ”glued” into a function pb ∈ F for some b, and (c)
follows by inf

∑
≥
∑

inf . Hence (4) is proved.

We now focus on lower bounding the expected KL-risk
gi(Φi, p(i)) for each block i. Our proof is based on the
Le Cam’s two point method. Let T ′ = T/k and η ≥ 1

4
in the sequel. Recall the features in each block i equals
i, therefore, we fix xT ′

= {i}T ′
. We select two sources

p1, p2 ∈ ∆({0, 1}) to be p1[1] = 0, p2[1] = 0.1√
T ′ .

By Lemma C.2 (in Appendix C), for any prediction p̂t:

max{KL(p1, p̂t),KL(p2, p̂t)} ≥ 0.02√
T ′

, (8)

and KL(Kη(p1),Kη(p2)) ≤ 0.08
T ′ , where Kη is the noise

kernel.

Denote by ỹT
′

1 , ỹT
′

2 the noisy samples from p1, p2 under
kernel Kη, respectively, i.e., ỹT

′

i
i.i.d.∼ Kη(pi). By produc-

tive property of KL-divergence we obtain KL(ỹT
′

1 , ỹT
′

2 ) ≤
T ′ · 0.08

T ′ = 0.08. By Lemma 3.4 (1), this implies that:

TV(ỹT
′

1 , ỹT
′

2 ) ≤ 0.2. (9)

We now assume there exists a predictor Φ that achieves KL-
risk < 0.01

√
T ′ w.p. ≥ 0.7 for any underlying source in

{p1, p2}, i.e., for all p ∈ {p1, p2} with ỹT
′ i.i.d.∼ p̃

PrỹT ′

 T ′∑
t=1

KL(p,Φ(xt, ỹt−1)) < 0.01
√
T ′

 ≥ 0.7.

For any pi, Φ and ỹT , we define the empirical KL-risk as:

r(pi,Φ) =

T ′∑
t=1

KL(pi,Φ(xt, ỹt−1)).

Let ϕ(ỹT ) = argminp∈{p1,p2}{r(p,Φ)} be a source iden-
tifier. We claim that:

sup
i∈{1,2}

Pr
ỹT ′
i

i.i.d.∼ p̃i
[ϕ(ỹT

′

i ) ̸= pi] < 0.3. (10)

To see this, we have by (8) that for any predictor Φ

sup
p∈{p1,p2}

r(p,Φ) ≥ T ′

2

0.02√
T ′

= 0.01
√
T ′,

where we used the fact that there must be one of p1, p2
that achieves the maximum of (8) for at least T ′/2 steps.
Therefore, if the KL-risk of Φ against the true source is
< 0.01

√
T ′, the rule ϕ must identify the true source, which

happens w.p. ≥ 0.7 by our assumption. Therefore, the
claim (10) follows. However, this contradicts Le Cam’s two
point lemma (Yu, 1997, Lemma 1), which asserts that for
any identifier ϕ we have:

sup
i∈{1,2}

Pr[ϕ(ỹT
′

i ) ̸= pi] ≥
1− TV(ỹT

′

1 , ỹT
′

2 )

2
≥ 0.4.

This contradiction implies for any Φ, there must be p ∈
{p1, p2} such the w.p. ≥ 0.3, the KL-risk is lower bounded
by 0.01

√
T ′; i.e., expected KL-risk must be lower bounded

by 0.3∗0.01
√
T ′ = Ω(

√
T ′). This completes the proof.

One may observe that the main ingredient in the lower
bound proof of Theorem 3.1 is to take the probability mass
near 0. A natural question is: if the probability mass is
bounded away from 0 can we obtain better bounds? Perhaps
surprisingly, this turns out to be true. We have the following
complementary theorem to Theorem 3.1.
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Theorem 3.6. Let F ⊂ ∆(Y)X be a finite class and S be
the class of all singleton distributions over X T . If there
exists a number δmin > 0, such that for all x ∈ X , p ∈ F
and y ∈ Y we have p(x)[y] ≥ δmin, Then

rKLT (F ,S) ≤ O

 log |F|

δmin

(
1− Mη

M−1

)2
 . (11)

Proof. We specify predictor p̂′t = K−1
η (p̄t) with p̄t defined

in step 5 of Algorithm 1, i.e., we do not do smoothing
as p̂t. From the proof of Theorem 3.1, we conclude it
is sufficient to bound KL(pk(xt), p̂

′
t) with KL(p̃k(xt), p̄t).

Let p = pk(xt) and q = p̂′t. Our goal is to find a rela-
tion between KL(p, q) and KL(p̃, q̃). To do so, we exploit
properties of χ2-divergence. We have, by inequality 3 of
Lemma 3.4, that KL(p, q) ≤ χ2(p, q). Therefore,

KL(p, q) ≤ 1

δmin

M∑
t=1

(p[m]− q[m])2

since q[m] ≥ δmin by assumption. Invoking inequality
1 of Lemma 3.4, we conclude KL(p̃, q̃) ≥ 2TV(p̃, q̃)2 ≥
1
2

∑M
m=1(p̃[m]− q̃[m])2, where the last inequality follows

from (
∑

a)2 ≥
∑

a2. By linearity of Kη , we have (p[m]−
q[m])2 = c−2

η (p̃[m]− q̃[m])2, where cη = 1− Mη
M−1 . This

implies that

KL(pk(xt), p̂′t) ≤
KL(p̃k(xt), p̄t)

δminc2η
.

The theorem now follows by the reduction from KL-risk to
log-loss as in Equation (5).

Remark 3.7. Theorem 3.6 shows that if the probability
lower bound δmin is a constant, then we essentially achieve
the same bound as in the noiseless case! If δmin ≥
Ω

(√
log |F|

T

)
we obtain better bounds than Theorem 3.1.

However, the upper bound of Theorem 3.1 holds even with
δmin = 0, in which case Theorem 3.6 only provides vacuous
bounds.
Example 3.8. Let F = {pw(x)[1] = (1+e⟨w,x⟩)−1 : w, x ∈
Rd and ||w||2 ≤ R, ||x||2 ≤ 1} be binary Logistic func-
tions. We have δ−1

min = 1+eR for F . Using a covering argu-
ment as Theorem 3.13 (in Section 3.2) and Theorem 3.6, we
have rKLT (F ,S) ≤ O((eR + 1)d log(RT )). When R = 1,
i.e., w is in a unit ball, this matches the noiseless O(d log T )
bounds as in (Foster et al., 2018; Shamir, 2020).

3.2. General class F via covering

We established in Theorem 3.1 the (near) optimal depen-
dency of the expected KL-risk for finite classes. We shall
show in this section that such techniques can be generalized

to broad classes F via the powerful technique of covering.
We need the following extended notion of the stochastic se-
quential covering introduced recently in (Wu et al., 2022a).

Definition 3.9. For any class F ⊂ ∆(Y)X and a class
of distributions P over X T , we say a class G ⊂ ∆(Y)X

∗

(where X ∗ denotes the set of all finite sequences of X ) is a
stochastic sequential cover F w.r.t. P at scale α ≥ 0 and
confidence δ > 0 if for all νννT ∈ P

PrxT∼νννT

[
∃p ∈ F∀q ∈ G∃t ∈ [T ], TV(p(xt), q(xt)) > α

]
≤ δ.

The following covering bound generalizes Theorem 3.1 to
general infinite classes with detailed proof in Appendix F.

Theorem 3.10. Let F ⊂ ∆(Y)X be any hypothesis class
and P be any distribution class. If for all α ≥ 0, there
exists a stochastic sequential covering set Gα of F w.r.t. P
at scale α and confidence δ = 1

TM , then

rKLT (F ,P) ≤ Õ

(√
T inf

α≥0
{Mα2T/η + log |Gα|}

)
,

where Õ hides the term O(log(MT )(1−Mη/(M−1))−1).

Remark 3.11. At a high level, the proof of Theorem 3.10
exploits the following general reduction from KL-risk to
Log-loss. For any predictor Φ that achieves regret r̃T (F ,P)
under log-loss for class F and P , we can apply Φ with
reference class F̃ = {Kη(p) : p ∈ F} to obtain a predictor
Φ̃. If Φ̃ makes prediction within the image of Kη, then the
prediction (K−1

η (Φ̃)+1/TM2))/(1+1/TM) as in step 6 of

Algorithm 1 achieves rKLT (H,P) ≤ Õ(
√

T · r̃T (F̃ ,P)) by
the same argument as in Theorem 3.1. Note that this requires
Φ̃ to make predictions in the image of Kη , which is satisfied
for our Bayesian averaging based approach. Moreover,
Theorem 3.10 has dependency Mα2T + log |Gα| on regret,
which is tighter than the worse case regret in (Wu et al.,
2022b) and matches the average case regret in (Bilodeau
et al., 2021). We note that η is a constant close to M−1

M .

We now prove tight expected KL-risk bounds for several
natural infinite classes using Theorem 3.10. We abbreviate
cη = 1−Mη/(M − 1) in the sequel.

Theorem 3.12. Let F be the class of all constant func-
tions as in Example 2.1 and S be the class of all singleton
distributions over X T . Then

rKLT (F ,S) ≤ O(c−1
η log3/2(TM)

√
TM).

Moreover, for η ≥ 1
4 , we have rKLT (F ,S) ≥ Ω(

√
TM).

Sketch of Proof. Note that the set ∆(Y) can be uniformly
covered by a set G with α = 1

TM such that |G| ≤

7
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TM2

)M−1
under L1 distance. To see this, we construct

an α-grid of ∆(Y), with step size 1
TM2 . Since ∆(Y) is

determined by only M −1 free parameters, we have that the
upper bound on |G| holds. The upper bound on the expected
KL-risk follows directly by Theorem 3.10 by noticing that
uniform cover implies stochastic sequential cover under S.

To prove the lower bound, we apply the Fano’s method by
constructing a hard subclass of F that achieves the tight
lower bound. See Appendix G for detailed proof.

Theorem 3.13. Let F be the Logistic hypothesis class as in
Example 2.2 with ||W ||2 ≤ B and ||x||2 ≤ 1 and S be the
class of all singleton distributions over X T . Then

rKLT (F ,S) ≤ O(c−1
η log(TM)

√
dMT log(TMB)).

Sketch of Proof. This follows from the fact that the set W =
{W ∈ RdM : ||W ||2 ≤ B} can be 1

MT -covered with size
≤ (TMB)dM under L2 norm. Since logistic function is
Lipschitz on W under L2 norm, the L2 cover of W implies
an (uniform) L1 cover in the sense of Definition 3.9. The
theorem follows from Theorem 3.10.

The following result provides tight bounds for the Hidden
Classification Model under i.i.d. processes.

Theorem 3.14. Let F be the Hidden Classification Model
as in Example 2.3 with reference class H ⊂ [N ]X of pseudo-
dimension d and IID be the class of all i.i.d. distributions
over X T . Then

rKLT (F , IID) ≤ O
(
c−1
η log2(TMN)

√
T (d+NM)

)
.

Moreover, there exists a class H of pseudo-dimension d such
that

rKLT (F , IID) ≥ Ω
(√

T max{d,NM}
)
,

provided d,N = O(T/ log T ) and η ≥ 1
4 .

Our proof is based on the following key lemma that bounds
the stochastic sequential covering of F w.r.t. i.i.d. processes.
See Appendix H for detailed proof.

Lemma 3.15. Let H ⊂ [N ]X be a class with pseudo-
dimension d and F be the Hidden Classification Model
w.r.t. H. Then, there exists a stochastic sequential cover G
of F w.r.t. IID at scales 1

TM and confidence δ > 0 such that

log |G| ≤ O

(
d
(
log2(TN)+ log(TN) log(1/δ)

)
+N(M − 1) log(TM)

)
.

Proof of Theorem 3.14. The upper bound follows directly
from Theorem 3.10 and Lemma 3.15 with α = δ = 1

TM .

We now prove the lower bound by a novel combination of
the lower bounds in Theorem 3.1 and 3.12. We first prove
the Ω(

√
Td) bound. To see this, we denote by x1, · · · , xd

the samples that are pseudo-shattered by H witnessed by
r1, · · · , rd (Mohri et al., 2018, Def. 11.4). We construct the
hard class as in Theorem 3.1 (with Y = {0, 1}) by defining
for each h a function ph(xi)[1] = 0.1/

√
T/d if h(xi) ≥ ri

and ph(xi)[1] = 0 otherwise. Let µ be the uniform distri-
bution over xd, and the features be generated i.i.d. from
µ. By the multiplicative Chernoff bound (Mitzenmacher
& Upfal, 2017, Thm 4.5(2)) we have w.p. ≥ 1/2 any xi
with i ∈ [d] appears Θ(T/d) times provided d ≪ T/ log T .
Using the same argument as in the lower bound proof of The-
orem 3.1, we have the expected KL-risk is lower bounded
by d× Ω(

√
T/d) = Ω(

√
Td).

To establish the lower bound Ω(
√
TNM), we assume that

there exists a function h ∈ H taken values in the full range
of [N ]. Denote by x1, · · · , xN the points such that h(xi) =
i. We again choose µ to be uniform over xN and the features
are generated i.i.d. from µ. By our argument above, each xi
appears Θ(T/N) times in the sample w.p. ≥ 1/2 provided
N ≪ T/ log T . For each xi with i ∈ [N ], we construct the
hard constant function class Fi as in Theorem 3.12. Now,
for any tuple q1, · · · , qN with qi ∈ Fi, we define a function
pq(xi) = qi. Let F ′ ⊂ F be the class consisting of all
such pqs. By the lower bound proof of Theorem 3.12 (in
Appendix G), the expected KL-risk of F ′ is lower bounded
by NΩ(

√
MT/N) = Ω(

√
MTN).

Example 3.16. Let Y = {0, 1}, N = 2, and VC-dimension
of H be d. Then, we recover the setup of (Bhatt & Kim,
2021). By Theorem 3.14, we have rKLT (F , IID) = Θ̃(

√
Td)

for the (worst case) hidden classification mode F w.r.t. H.
Here, we use the fact that the pseudo-dimension degenerates
to VC-dimension for a binary valued class. This differs sub-
stantially from the O(d log2 T ) noiseless bound established
in (Bilodeau et al., 2021; Wu et al., 2022a). Moreover, if
F ⊂ ∆({0, 1})X is a class with α-fat-shattering number
O(α−s) (view the functions in F as [0, 1]-valued, inter-
preted as the probability on label 1), then

rKLT (F , IID) ≤ Õ
(
T (s+1)/(s+2)

)
by Theorem 3.10 and the sequential covering estimates
as (Wu et al., 2022a, Thm 17).

4. Discussion and Extension
In this paper, we established tight expected KL-risk bounds
for learning functional distributions in the presence of
noisy labels. Our main technique for establishing the up-
per bounds is through a reduction to sequential probabil-
ity assignments, which is achieved by relating KL(p, q) to
KL(p̃, q̃) (where p̃ = Kη(p)). For instance, our Theorem 3.1

8
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relies on the relation KL(p, q) ≤ Õ(
√
KL(p̃, q̃)), while

Theorem 3.6 relies on KL(p, q) ≤ O(δ−1
minKL(p̃, q̃)). We

believe investigating other relations will be an interesting
future direction and may result in better bounds. Another ex-
tension is the generalization to miss-specified cases, i.e., the
underlying function is not covered by the hypothesis class.
However, we stress that such a generalization (with sublin-
ear regret) is not an easy task, since for miss-specified cases,
the relations of information divergences as Lemma 3.4 may
not hold, and would require substantially new techniques.
Furthermore, we can also examine general noisy kernels and
risk-loss functions, in addition to the kernel Kη and KL-risk
studied in this paper.
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A. Accuracy of Recovering True Labels from Noisy Labels
We provide a derivation of the prediction accuracy for recovering y ∼ p when observing ỹ = Kη(y). Let ϕ be any recovering
rule, we have:

Pr[ϕ(ỹ) = y] = Eỹ [Pr[ϕ(ỹ) = y | ỹ]] ≤ Eỹ [max{p[y | ỹ] : y ∈ Y}] .

We now analyze the maximum a-posterior probability max{p[y | ỹ] : y ∈ Y}. We assume Y = [M ] for simplicity. Let
ỹ = m, we have if n ̸= m then:

Pr[y = n | ỹ = m] =
p[n]η/(M − 1)

p[m](1− η) + (1− p[m])η/(M − 1)
,

else

Pr[y = m | ỹ = m] =
p[m](1− η)

p[m](1− η) + (1− p[m])η/(M − 1)
.

Now, the key observation is that if η ≤ (M − 1)/M , we have η/(M − 1) ≤ 1 − η. Meaning that p[m](1 − η) + (1 −
p[m])η/(M − 1) ≥ η/(M − 1), i.e., we have

Pr[y | ỹ] ≤ max
m,n

{
p[n],

p[m](1− η)

η/(M − 1)

}
≤ pmax(1− η)

η/(M − 1)
.

B. Online to Batch Conversion
We establish the online to batch conversion results under KL-risk. Let Φ be the online predictor that achieves rKLT (F , IID),
we define the batch learner to be Φ̄(xT , ỹT )[x] = 1

T

∑T
t=1 Φ(x

t−1x, ỹt−1). For any t ∈ [T ], let

et = KL(h(xt),Φ(xt, ỹt−1)).

We have

RKL
T (Φ̄,F) = sup

µ,p
ExT ,ỹT

[
Ex∼µ

[
KL(p(x), Φ̄(xT , ỹT ))[x]

]] (a)

≤ sup
µ,p

ExT ,ỹT

[
Ex∼µ

[
1

T

T∑
t=1

KL(p(x),Φ(xt−1x, ỹt−1))

]]

= sup
µ,p

ExT ,ỹT

[
1

T

T∑
t=1

Ex∼µ

[
KL(p(x),Φ(xt−1x, ỹt−1))

]]
(b)
= sup

µ,p
ExT ,ỹT

[
1

T

T∑
t=1

Ext
[
KL(p(xt),Φ(xt, ỹt−1))

]]
(c)
= sup

µ,p
ExT ,ỹT

[
1

T

T∑
t=1

et

]
=

rKLT (F , IID)

T
,

where (a) follows by convexity of KL-divergence (Polyanskiy & Wu, 2022, Theorem 7.5(b)); (b) follows by the fact that xt

is independent of xt−1 and distributed as x, and xT i.i.d.∼ µ with ỹT being noisy sample of p on xT ; (c) follows by the law of
total probability. Note that the only property we used in the above derivation is the convexity of KL-divergence, which holds
for any f -divergence (Polyanskiy & Wu, 2022, Theorem 7.5(b)).

B.1. Boosting expected guarantee to high probability guarantee

We now describe a general approach for boosting the expected guarantee of a batch learner to high probability guarantee. We
will establish the result only for total variation since the result for KL-divergence follows by Remark 3.5 and Lemma 3.4.
Let F ⊂ ∆(Y)X be an arbitrary class, µ be any distribution over X . Suppose there exists a learning rule Ψ such that

sup
p∈F

ExT ,ỹT

[
Ex∼µ

[
TV(p(x),Ψ(xT , ỹT )[x])

]]
≤ R(T ),

11
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for some function R(T ). We partition the sample xT into k blocks each of size T/k, where k is to be determined later. We
now fix some p ∈ F and denote Ψi to be the function generated by Ψ on the ith block, and

Ei = Ex∼µ [TV(p(x),Ψi(x))] .

By definition, we have the Eis are independent among different i ∈ [k] and

∀i ∈ [k], ExT ,ỹT [Ei] ≤ R(T/k).

Let Ii be the indicator of event {Ei ≤ 3R(T/k)}, we have E[Ii] ≥ 2
3 . By Hoeffding bound (Cesa-Bianchi & Lugosi, 2006,

Corollary A.1), w.p. ≥ 1− e−k/3, there exist at least half of the indicators Ii that equal 1. Now, for any pair i, j ∈ [k], we
compute the distance

d(Ψi,Ψj) =
1

|Ji,j |
∑

xt∈Ji,j

TV(Ψi(xt),Ψj(xt))

where Ji,j is the subset of xT that corresponds to the blocks other than i, j and therefore is independent of Ψi,Ψj . Note
that for any i, j, if Ii = Ij = 1, then w.p. ≥ 1− 2e−2r we have

d(Ψi,Ψj) ≤ 6R(T/k) +

√
r

T (k − 2)/k

by Hoeffding bound and triangle inequality of total variation. Similarly, for any Ei > 9R(T/k) + 2
√

r
T (k−2)/k and Ij = 1,

we have w.p. ≥ 1− 2e−2r that

d(Ψi,Ψj) > 6R(T/k) +

√
r

T (k − 2)/k
.

We now define the learner Ψ′ to be any Ψi so that

d(Ψi,Ψj) ≤ 6R(T/k) +

√
r

T (k − 2)/k

for at least half of the Ψj . Taking k = 3 log(2/δ) and r = log(4k2/δ)/2, we have by union bound (over all the events
above), w.p. ≥ 1− δ over xT , ỹT , that

Ex∼µ [TV(p(x),Ψ′(x))] ≤ 9R(T/k) + 2

√
r

T (k − 2)/k
≤ 9R

(
T

3 log(2/δ)

)
+O

(√
log(1/δ)

T

)
. (12)

Proposition B.1. Let H ⊂ [N ]X be a class of pseudo-dimension d, µ be an arbitrary distribution over X and F be the
hidden classification model w.r.t. H. Then, there exists a learning rule Ψ such that for any p ∈ F w.p. ≥ 1− δ over (xT , ỹT )

where xT i.i.d.∼ µ and ỹt ∼ Kη(p(xt)) be the noisy labels, we have

Ex∼µ

[
KL(p(x),Ψ(xT , ỹT )[x])

]
≤ O

(
c−1
η log2(TMN)

√
(d+NM) log(1/δ)

T

)
,

where cη = (1− (Mη)/(M − 1)) and η ∈ [0, (M − 1)/M).

Proof. Let G be the stochastic sequential cover of F w.r.t. IID at α = δ = 1
TM as in Lemma 3.15. Let p̂′t = K−1

η (p̄t), where
p̄t is the predictor at step 5 of Algorithm 1 with input G. By (14) and Lemma 3.4 (1), we have the expected TV-risk (see
Remark 3.5) of p̂′t is upper bounded by O(c−1

η

√
T log |G|). Since total variation is convex, this implies the batch learner

Ψ′(xT , ỹT )[x] = 1
T

∑T
t=1 p̂

′
t(xt−1x, ỹt−1) achieves expected (batch) TV-risk

sup
p∈F

ExT ,ỹT

[
Ex∼µ

[
TV(p(x),Ψ′(xT , ỹT )[x])

]]
≤ O

(
c−1
η

√
log |G|
T

)
.

By (12) and |G| ≤ O((d+NM) log2(TNM)) (Lemma 3.15), we have for all p ∈ F , w.p. ≥ 1− δ over xT , ỹT that

Ex∼µ

[
TV(p(x),Ψ′(xT , ỹT )[x])

]
≤ O

(
c−1
η log(TMN)

√
(d+NM) log(1/δ)

T

)
.

We now define the smoothed learner Ψ = (Ψ′+1/(TM2))/(1+1/TM). Invoking Lemma 3.4 (2) and noting that Ψmin ≥
1

TM2 , we have KL(p(x),Ψ(xT , ỹT )[x]) ≤ O(log(TM) · TV(p(x),Ψ′(xT , ỹT )[x])) and therefore the result follows.

12
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C. Supporting Lemmas of Theorem 3.1(Lower Bound)
We now prove the following technical lemmas which are crucial in the proof of Theorem 3.1 (Lower Bound).
Lemma C.1. For any distributions p, q ∈ ∆(Y), we have

arg min
r∈∆(Y)

{KL(p, r) + KL(q, r)} =
p+ q

2
.

This implies that infr∈∆(Y) max{KL(p, r),KL(q, r)} ≥ 1
2

(
KL(p, p+q

2 ) + KL(q, p+q
2 )
)
.

Proof. This result already appeared in (Nielsen, 2021, Equation (32)). However, we provide an alternative simpler proof
here. We observe that

KL(p, r) + KL(q, r) = 2

M∑
m=1

p[m] + q[m]

2
log

1

r[m]
−H(p)−H(q)

where H(·) denotes for Shannon entropy. It is sufficient to minimize
∑T

m=1
p[m]+q[m]

2 log 1
r[m] = KL(p+q

2 , r) +H(p+q
2 ),

which attains minima when r = p+q
2 . The last part of the lemma follows from that max{a, b} ≥ a+b

2 for all a, b ≥ 0.

Lemma C.2. Let p1, p2 ∈ ∆({0, 1}) be two distributions such that p1[1] = 0 and p2[1] =
0.1√
T

, we have

1. For any r ∈ ∆({0, 1}),

max{KL(p1, r),KL(p2, r)} ≥ 1

2
KL

(
p1,

p1 + p2
2

)
≥ 0.02√

T
;

2. Let p̃1 = Kη(p1) and p̃2 = Kη(p2), then

KL(p̃1, p̃2) ≤
0.08

T
.

Proof. The first inequality of statement (1) follows by Lemma C.1. To prove the second inequality, we have by direct
computation:

1

2
KL

(
p1,

p1 + p2
2

)
=

1

2
log

(
1

1− 0.05/
√
T

)
≥ 0.025√

T
≥ 0.02√

T
,

where the first inequality follows by log(x) ≥ 1 − 1
x for all x > 0. To prove statement (2), we observe that for any

a, b ∈ [0, 1]

a log
a

b
+ (1− a) log

1− a

1− b

≤ a
(a
b
− 1
)
+ (1− a)

(
1− a

1− b
− 1

)
=

(a− b)2

b(1− b)

where the inequality follows by log(x) ≤ x− 1 for all x ≥ 0. This implies

KL(p̃1, p̃2) ≤
(p̃1[1]− p̃2[1])

2

p̃2[1](1− p̃2[1])
≤

16
(

1
2

0.1√
T

)2
3

≤ 4

3

0.01

T
≤ 0.08

T
,

where the first inequality follows by p̃2[1](1− p̃2[1]) ≥ 3
16 and p̃1[1]− p̃2[1] ≤ 1

2
0.1√
T

by definition of Kη and η ∈ [ 14 ,
1
2 ),

the constant 0.08 is selected for ease of computation.

Remark C.3. Note that if we take p1[1] = 0 and p2[1] = 0.1 · cη/
√
T with cη = (1 − 2η)−1, then the statement 2 of

Lemma C.2 still holds while the statement 1 will be lower bounded by 0.02 · cη/
√
T . This can be exploited to establish

the tight dependency on η of the lower bound in Theorem 3.1. Moreover, the upper bound established for our Kη in
statement 2 can be extended to any noisy kernel K provided χ2(K(0),K(1)) ≤ 16, by the locally χ2-like property of
KL-divergence (Polyanskiy & Wu, 2022, Prop. 2.19), i.e., KL(λp + (1 − λ)q, q) ≤ λ2

2 χ2(p, q) + o(λ2), and taking
λ = 0.1/

√
T , p = K(1) and q = K(0) for sufficient large T .

13
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D. Packing Number of Boolean Cube with Given Hamming Weight
We now establish a lower bound for the packing number of Boolean cube with given Hamming weight, which is crucial for
our lower bound proof in Theorem 3.12.

Theorem D.1. There exists a set V ⊂ {0, 1}2n such that for all v1 ̸= v2 ∈ V , we have Ham(v1, 0) = Ham(v2, 0) = n,
Ham(v1, v2) ≥ n

2 and

|V | ≥
√

1

8n
en/8,

where Ham is the Hamming distance and 0 is the all zero vector.

Proof. We use the probabilistic method as in the usual packing number estimates with no Hamming weight restriction. We
select vectors in V uniformly at random from all the vectors of Hamming weight n. Now, for any vector v1 and v2, the
following holds:

Pr
[
Ham(v1, v2) ≤

n

2

]
≤ 1(

2n
n

) n/4∑
i=0

(
n

i

)(
n

n− i

)

≤ 1(
2n
n

)
n/4∑

i=0

(
n

i

)2

≤ 2n22ne−n/4

22n
= 2ne−n/4.

The first inequality follows by conditioning on v1 and computing the probability on the randomness of v2, the third inequality
follows by Hoeffding bound (since the inner sum equals 2nPr [X1 + · · ·+Xn ≤ n/4] where Xn i.i.d.∼ Bernoulli( 12 )) and
the fact that

(
2n
n

)
≥ 22n

2n . By union bound

Pr
[
∃v1, v2 ∈ V, Ham(v1, v2) ≤

n

2

]
≤ |V |22ne−n/4.

Therefore, if we take |V | =
√

e−n/4/2n

2 , the probability will be upper bounded by 1
2 . Meaning that there must exist class V

with the required property.

E. Proofs of Lemma 3.3 and 3.4
Proof of Lemma 3.3. By definition of log-loss, we have for any p ∈ F :

R(Φ, yT ,F | xT ) = sup
p′∈F

T∑
t=1

log
p′(xt)[yt]
p̂t[yt]

≥
T∑

t=1

log
p(xt)[yt]

p̂t[yt]
.

For any random variable Z, we denote Et[Z] = E[Z | yt−1] to be the conditional expectation conditioning on yt−1. By
definition of KL-divergence, we have

Et

[
log

p(xt)[yt]

p̂t[yt]

]
= KL(p(xt), p̂t),

since yt ∼ p(xt). By the law of total probability:

E[Z1 + · · ·+ ZT ] = E[E1[Z1] + · · ·+ ET [ZT ]],

the lemma follows if we take Zt = log p(xt)[yt]
p̂t[yt]

.

Proof of Lemma 3.4. The first inequality is known as Pinsker’s inequality (Cover & Thomas, 2006, Lemma 11.6.1). The
second inequality follows by (Yang & Barron, 1998, Lemma 4) that KL(p, q) ≤ (2− log(qmin))H2(p, q) and H2(p, q) ≤
TV(p, q), where H2(p, q) = 1

2

∑M
m=1(

√
p[m]−

√
q[m])2 and the second inequality follows by |a− b| = |

√
a+

√
b||
√
a−√

b| ≥ |
√
a−

√
b|2, for all a, b ∈ [0, 1]. The third inequality is standard, see (Polyanskiy & Wu, 2022, Equation 7.31).

14
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F. Proof of Theorem 3.10
The proof will follow a similar path as the upper bound proof of Theorem 3.1. For any stochastic sequential covering set Gα

of F w.r.t. P at scale α and confidence δ = 1
TM , we denote by p̂t the predictor that runs Algorithm 1 with input Gα (the

adaption to sequential functions g ∈ Gα is straightforward by replacing every occurrence of p(xt) with g(xt)). We show
that for such predictor p̂t, we have:

sup
p∈F, νννT∈P

E

[
T∑

t=1

KL(p(xt), p̂t)

]
≤ O

(
log(TM)

√
T (Mα2T/η + log |Gα|)
1− Mη

M−1

)
. (13)

The theorem will then follow by optimizing on α ≥ 0.

By the argument as in the upper bound proof of Theorem 3.1, it is sufficient to prove that:

sup
p∈F,νννT∈P

E

[
T∑

t=1

KL(p̃(xt), p̄t)

]
≤ O(Mα2T/η + log |Gα|), (14)

where p̃ = Kη(p) and p̄t is the Bayesian predictor at step 5 of Algorithm 1 with input Gα. To achieve this, by standard regret
bound of Bayesian algorithm (Wu et al., 2022b, Lemma 3), we have for any xT and yT :

sup
g∈Gα

T∑
t=1

ℓlog(p̄t, yt)− ℓlog(g̃(xt), yt) ≤ log |Gα|, (15)

where g̃ = Kη(g). We now fix any νννT ∈ P . By definition of stochastic sequential covering, we have w.p. ≥ 1− 1
TM over

xT ∼ νννT , for any p ∈ F , there exists g ∈ Gα such that

∀t ∈ [T ], TV(p(xt), g(xt)) ≤ α.

Denote A to be such an event. We now fix xT ∈ A to be any realization. We have for any p ∈ F and g ∈ Gα with ỹt ∼ p̃(xt),
the following holds:

EỹT

[
T∑

t=1

KL(p̃(xt), p̄t)− KL(p̃(xt), g̃(xt))

]
= EỹT

[
T∑

t=1

ℓlog(p̄t, ỹt)− ℓlog(p̃(xt), ỹt) + ℓlog(p̃(xt), ỹt)− ℓlog(g̃(xt), ỹt)

]
(16)

= EỹT

[
T∑

t=1

ℓlog(p̄t, ỹt)− ℓlog(g̃(xt), ỹt)

]
≤ log |Gα|, (17)

where the first equality follows by definition of KL-divergence and the law of total probability as in Lemma 3.3, the last
inequality follows by (15). For any p ∈ F , we take g ∈ Gα to be the function such that for all t ∈ [T ], TV(p(xt), g(xt)) ≤ α.
By the data processing inequality for f -divergence (Polyanskiy & Wu, 2022, Theorem 7.4), we have for all t ∈ [T ],
TV(p̃(xt), g̃(xt)) ≤ α. Now, the key observation is that g̃(xt)[y] ≥ η

M−1 for all y ∈ Y by definition of Kη. By the
relationship between KL-divergence and χ2-divergence (see Lemma 3.4 (3)), we have:

KL(p̃(xt), g̃(xt)) ≤ χ2(p̃(xt), g̃(xt)) (18)

=

M∑
m=1

(p̃(xt)[m]− g̃(xt)[m])2

g̃(xt)[m]
(19)

≤ 4(M − 1)

η
TV(p̃(xt), g̃(xt))2 ≤ 4(M − 1)α2

η
, (20)

where the last two inequalities follow by the fact that
∑

a2 ≤ (
∑

a)2 for a ≥ 0, g̃(xt)[m] ≥ η
M−1 and TV(p̃(xt), g̃(xt)) ≤

15
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α. This implies

sup
p∈F

EỹT

[
T∑

t=1

KL(p̃(xt), p̄t)

]
= sup

p∈F
EỹT

[
T∑

t=1

KL(p̃(xt), p̄t)− KL(p̃(xt), g̃(xt)) + KL(p̃(xt), g̃(xt))

]

= sup
p∈F

EỹT

[
T∑

t=1

KL(p̃(xt), p̄t)− KL(p̃(xt), g̃(xt))

]
+ EỹT

[
T∑

t=1

KL(p̃(xt), g̃(xt))

]

≤ log |Gα|+
4(M − 1)α2T

η
,

where the inequality follows by (17) and (20). We now remove the conditioning on event A. Note that p̄min
t ≥ η

M−1 since
p̄t is a convex combination of g̃. We have KL(p̃(xt), p̄t) ≤ log((M − 1)/η) by inequality 2 of Lemma 3.4. Therefore,
expected KL-risk contributed by event A not happening, is upper bounded by log((M − 1)/η)/M , which is a constant
independent of T . Therefore, we have

sup
p∈F,νννT∈P

ExT∼νννT ,ỹT

[
T∑

t=1

KL(p̃(xt), p̄t)

]
≤ O

(
log |Gα|+

4(M − 1)α2T

η

)
.

This completes the proof of (14) and therefore the theorem.

G. Proof of Theorem 3.12 (Lower Bound)
We prove the lower bound of Theorem 3.12. The proof follows the so-called Fano’s method. By Theorem D.1, there exists a
set V ⊂ {0, 1}M−1 such that any vector in V has exactly M−1

2 ones and any v1 ̸= v2 ∈ V differ on at least M−1
4 positions

and |V | ≥
√

1
4(M−1)e

(M−1)/16. We assume here w.l.o.g. that M − 1 is even (otherwise we can leave one of the coordinates

zero). For any v ∈ V , we construct a distribution qv ∈ ∆(Y) such that qv[M ] = 1− c1
√
M√
T

and for all m < M

qv[m] =

{
0, if v[m] = 0
2c1

√
M

(M−1)
√
T
, otherwise

where c1 > 0 is a constant to be determined later. By Lemma C.1, for any prediction p̂t and v1 ̸= v2 ∈ V , we have by direct
computation that

max{KL(qv1 , p̂t),KL(qv2 , p̂t)} ≥ KL(qv1 ,
qv1 + qv2

2
) ≥ c2

√
M

T
(21)

where c2 = c1 log 2
2 and we have used the fact that v1, v2 differs on at least (M−1)

4 positions. By Lemma 3.4 (3), we have

KL(ỹT1 , ỹ
T
2 ) = T · KL(Kη(qv1),Kη(qv2)) ≤ T · χ2(Kη(qv1

),Kη(qv2)) ≤ 16c21M

where ỹT1 , ỹ
T
2 are the noisy samples from qv1 and qv2 under kernel Kη , respectively, and the last inequality follows by direct

computation and noting that η ≥ 1
4 and Kη(q)

min ≥ η
M−1 for all q ∈ ∆(Y). We now assume there exists a prediction rule

Φ that achieves < c2
√
TM
2 KL-risk w.p. ≥ c3 for some constant 0 < c3 < 1 independent of c1. Conditioning on such an

event, we will be able to identify the true sources using the noisy label ỹT by selecting some v ∈ V such that qv has minimal
empirical KL-risk incurred by Φ, since the true source has empirical KL-risk < c2

√
TM
2 by assumption, but any other source

must have empirical KL-risk lower bounded by c2
√
TM
2 due to (21). Here, for any xT , ỹT and predictor Φ, the empirical

KL-risk against a source q ∈ ∆(Y) is defined as

T∑
t=1

KL(q,Φ(xt, ỹt−1)).

However, this contradicts to the Fano’s inequality (Polyanskiy & Wu, 2022, Theorem 31.3), which asserts that any identifier
(that identifies the true source) must have error probability lower bounded by c4 = 1− 16c21M+log 2

log |V | . By selecting c1, c3 to
be small enough one can make 1− c3 < c4 < 1 for sufficiently large M , since log |V | = M−1

16 −O(logM). This implies
that any predictor Φ must incur the expected KL-risk lower bounded by (1− c3) · c2

√
TM = Ω(

√
TM).

16



Learning Functional Distributions with Private Labels

H. Proof of Lemma 3.15
Our proof follows (Wu et al., 2022a, Theorem 6) with an extension to the multi-label case. To do so, we consider the
multiclass one-inclusion graph predictor introduced in (Rubinstein et al., 2006), which maps (X × [N ])∗ ×X → [N ]. Let
Φ be the multiclass one-inclusion graph predictor and H ⊂ [N ]X be any class. We define the following quantity

M̂Φ,H(t) = sup
xt∈X t

sup
h∈H

Eσ

[
1{Φ(xσ(t−1), h(xσ(t−1)), xσ(t)) ̸= h(xσ(t))}

]
,

where h(xσ(t−1)) = {h(xσ(1)), · · · , h(xσ(t−1))} and σ is the uniform random permutation over [t]. By (Rubinstein et al.,
2006, Thm 5.2) for any class H with pseudo-dimension d and the multiclass one-inclusion predictor Φ, we have

M̂Φ,H(t) ≤ d

t
.

Since the multiclass one-inclusion predictor is permutation invariant, by (Wu et al., 2022a, Lemma 7) for any xT ∈ X T and
δ > 0 the following holds:

Prσ

[
T∑

t=1

1{Φ(xσ(t), h(xσ(t−1))) ̸= h(xσ(t))} ≥ c(d log T + log(1/δ))

]
≤ δ (22)

for some constant c, where σ is uniform random permutation over [T ]. For any xT ∈ X T , by the generalized Sauer’s
lemma (Haussler & Long, 1995, Corollary 3) the number of functions of H restricted on xT is upper bounded by (TN)d.
Taking δ := δ

(TN)d
in (22), we arrive at:

Prσ

[
sup
h∈H

T∑
t=1

1{Φ(xσ(t), h(xσ(t−1))) ̸= h(xσ(t))} ≥ c(d log(T 2N) + log(1/δ))

]
≤ δ.

By symmetries of i.i.d. distributions, this implies that for any distribution µ over X

Pr
xT i.i.d.∼ µ

[
sup
h∈H

T∑
t=1

1{Φ(xt, h(xt−1)) ̸= h(xt)} ≥ c(d log(T 2N) + log(1/δ))

]
≤ δ. (23)

We now exploit (23) to construct a stochastic sequential cover G ⊂ [N ]X
∗

of H w.r.t. IID at scale 0 and confidence δ. The
construction goes along a similar path as (Daniely et al., 2015, Theorem 25). Let Φ be the multiclass one-inclusion predictor.
For any I ⊂ [T ] with |I| ≤ c(d log(T 2N) + log(1/δ)) and K = {ki}i∈I ∈ [N ]|I|, we define a sequential function gI,K
recursively in the following way. For any t ̸∈ I , we set gI,K(xt) = Φ(xt, {gI,K(x1), gI,K(x2), · · · , gI,K(xt−1)}), else we
set gI,K(xt) = kt. It is easy to verify that the class G consisting of all such gI,K is the desired covering set, and

log |G| ≤ log

c(d log(TN)+log(1/δ))∑
b=1

(
T

b

)
N b ≤ O(d log2(TN) + log(TN) log(1/δ)).

We now use the covering set G of H to construct a stochastic sequential covering set G′ of F w.r.t. IID at scales 1
TM

and confidence δ. To do so, we let Q be the a 1
M2T -cover of ∆(Y) under L∞ norm, where |Q| ≤ (TM2)M−1 (this

implies a 1
TM -cover under total variation). Now, for any N -tuple q1, · · · , qN ∈ Q and g ∈ G, we construct a function

g′qN ,g(x
t) = qg(xt) for all xt ∈ X ∗. Let G′ be the class of all of the functions g′qN ,g(·). Then G′ forms a stochastic sequential

1
TM -cover of F at confidence δ w.r.t. IID per Definition 3.9 and

log |G′| ≤ O(d(log2(TN) + log(TN) log(1/δ)) +N(M − 1) log(TM)),

as needed.
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