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Abstract
We develop a Fourier-based approach for classification. We use the approach for the feature se-
lection problem, which we study and analyze from a PAC learning perspective for non-uniform
(product) probability distributions in deterministic and stochastic settings. In this problem, given
the training instances and a parameter k, the objective is to select the best k out of d features
along with a k-variable predictor that yield the minimum misclassification probability. We for-
mulate this problem as an optimization in the Fourier domain to characterize the optimal features
and the predictor. Our algorithm can be viewed as a Fourier-based implementation of L1 poly-
nomial regression — an L1 counterpart of the well-known low-degree algorithm. We show that,
under statistical independence of the features, our algorithm agnostically learns with respect to the
class of k-variable predictors (a.k.a k-juntas) and outperforms other PAC learning approaches in
terms of sample complexity and computational complexity. In addition, our results can be used in
other fundamental problems under non-uniform distributions, such as learning Boolean k-junta and
linear-threshold functions.
Keywords: Agnostic PAC Learning, Fourier Expansion, Polynomial Regression, Feature Selection
Binary Classification

1. Introduction

Feature selection is critical to the design of learning systems impacting their performance and com-
plexity. In the supervised learning paradigm, studied in this paper, good feature selection can reduce
the training and utilization running time, as well as improve model interpretability (Guyon and Elis-
seeff, 2003). The objective of feature selection can be stated as finding a set of features (say k out
of d) so that the prediction accuracy remains relatively unchanged. For that, the main challenge is
formulating a measure to evaluate the feature subsets. Such a measure needs to be computationally
efficient and theoretically justified. Several measures and methods have been introduced in the liter-
ature (Kohavi and John, 1997; Koller and Sahami, 1996; Battiti, 1994; Vergara and Estévez, 2014;
Yu and Liu, 2004; Peng et al., 2005; Gretton et al., 2005; Chen et al., 2017). However, in general,
provable relations between these measures and the prediction accuracy remain open. In this work
we study the feature selection problem as a Probably Approximately Correct (PAC) learning prob-
lem. The PAC framework and its agnostic version were introduced by Valiant (1984) and Kearns
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et al. (1994), respectively. Learning under this model has been studied extensively (Linial et al.,
1993; Valiant, 2015; Goel and Klivans, 2019).

We formulate feature selection as an agnostic PAC learning problem. The focus of this paper
is on supervised binary classification with features taking values on the Boolean hyper-cube. Our
model considers learning mappings from an example, which consists of d features, to a binary
label. The mapping should map every possible combination of feature values in an example to
a label. In particular, our model observes n training instances each of which contains d features
x P t´1, 1ud with labels y P t´1, 1u. The samples are generated independent and identically
distributed (i.i.d.) according to an unknown, but fixed probability distribution PXY . The 0-1 loss
function is used to measure the prediction accuracy. The expectation of this loss over PXY is
referred to as misclassification probability.

More precisely, in feature selection, given a parameter k ă d, the objective is to find the set of
best k features with a k-variable predictor that minimizes the misclassification probability. Hence,
the set of all k-variable predictors g : t´1, 1uk ÞÑ t´1, 1u followed by the selected features pj1,
j2, ..., jkq are considered as the target class. The size of this set is Opdk22kq (Opdkq for selecting a
k-features combination, and Op22kq for assigning a dictionary to all possible feature vectors and for
all possible dictionaries). The Vapnik–Chervonenkis (VC) dimension of the class is between 2k and
2k `Opk log dq ( VC dimension of a hypothesis class is the maximum size of the input set that can
be shattered (Shalev-Shwartz and Ben-David, 2014)). For this target class, the minimum attainable
misclassification probability is defined as

Popt “
∆ min
j1,j2,..,jkPrds

min
g:t´1,1uk ÞÑt´1,1u

PX,Y

!

Y ‰ gpXj1 , Xj2 , ..., Xjkq

)

.

In the PAC learning framework, upon observing the training instances, a learning algorithm outputs,
with probability p1 ´ δq, a feature subset of cardinality k with a predictor so that the resulted
misclassification probability is at most Popt` ε, where ε, δ P p0, 1q. The goals are to minimize both,
the number of training examples needed to achieve such probabilities, and the complexity of the
algorithm.

1.1 Summary of Our Contributions and Approach

In this work, we propose a Fourier-framework to study the feature selection problem. In our earlier
work (Heidari et al., 2019), we characterized Popt under the deterministic labeling, i.e., Y “ fpXq,
and under known statistics. In this paper, we extend that result to agnostic settings with stochastic
mappings. Further, we propose an agnostic-PAC feature selection and learning algorithm and derive
theoretical guarantees for the case where the features are statistically independent. For the feature
selection problem, our algorithm agnostically PAC-learns with sample complexityOpc2

k
k222k

ε2
log d

δ q

and with Opnkp2dqkq arithmetic operations (see Theorem 4). Table 1 compares our approach with
well-known PAC learning algorithms adopted to the above feature selection problem. To the best
of our knowledge, both the sample and computational complexities of our algorithm improve upon
previously known PAC-learning algorithms. In particular, we improve the misclassification prob-
ability of the low-degree algorithm (Linial et al., 1993), which has a comparable computational
complexity. As compared to Kalai et al. (2008)’s approach using L1-polynomial regression, we
obtain a lower sample complexity and significantly lower computational complexity (especially for
large data sets). These algorithms are explained in Subsection 1.2. Our main contributions are
itemized below.
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Table 1: Comparison of our algorithm with other PAC-learning approaches

Approach Sample Cmpx. Computational Cmpx. Misclassification Prob.
ERM
(Naive Exhaustive)

Opk2k

ε2
log d

δ q Opndk22kq Popt ` ε

L1-Poly. Regression
(Kalai et al., 2008)

OpdΘpkq{εq Opn2dp3`ωq3kq Popt ` ε

Low-degree Algorithm
(Linial et al., 1993)

Op2k log 1
δ q Opnkdkq 8Popt (uniform dist.)

Our Approach Opc2
k
k222k

ε2
log d

δ q Opnkp2dqkq
Popt ` ε (product dist.,
stochastic labeling)

A Fourier Framework: We extend the range of applications of Fourier expansion on Boolean
cubes, by adapting it to the more general space of stochastic mappings (e.g., mappings from one
probability space to another). Then, we develop a framework that allows us to characterize Popt in
the Fourier domain and find the optimal predictor and the feature subset. Note that, applying this
framework, we do not require any distributional assumption on the label other than taking values
from t´1, 1u.

We leverage the standard Fourier expansion on the Boolean cube, which has been central
in a range of other applications such as noise sensitivity (O’Donnell, 2014; Kalai, 2005), and
information-theoretic problems (Courtade and Kumar, 2014). In this expansion, (analogue to stan-
dard Fourier series on a periodic function) any real-valued function on the Boolean cube can be
expressed as a linear combination of parities (O’Donnell, 2014; Wolf, 2008). The Fourier coeffi-
cients quantify the levels of “nonlinearities” in a function, and this property can be leveraged to our
results.

Guaranteed Universal Learning for Independent Features: We consider Universal PAC learn-
ing, i.e., agnostic PAC learning under some distributional (class) restrictions without knowing the
actual distribution in the class. From an information-theoretic standpoint, the term universal indi-
cates that a data-processing scheme achieves certain theoretical optimalities while agnostic to the
statistics of the data (Cover and Thomas, 2006)1. That said, we restrict ourselves to agnostic PAC
learning under the distributional restrictions that the features are independent. We note that, this
condition can be relaxed to being almost independent (Blais et al., 2010), that is PX is close to a
product probability distribution in total variation distance.

Fourier-Based Learning Algorithm: We propose a feature selection algorithm with PAC learn-
ing guarantees using lower sample and computations complexities than previously known PAC
learning algorithms. For that, we propose a Fourier-based implementation of L1 polynomial re-
gression — that is an L1 counterpart of the low-degree algorithm. Hence, our algorithm achieves
Popt with lower computational complexity as compared to L1 polynomial regression. The objective
of L1 polynomial regression is to minimize the mean absolute error (MAE) over all polynomials
of a given degree, that is minppxq Er|Y ´ ppXq|s, where P pxq is a polynomial of fixed degree (say
k). In L2 polynomial regression, the objective is to minimize the mean square error (MSE), that
is minppxq ErpY ´ ppXqq2s. The low-degree algorithm can be viewed as a computationally more

1. Lempel-Ziv (Ziv and Lempel, 1977) is an example of a universal algorithm.
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efficient way of implementing L2 polynomial regression (Kalai et al., 2008). However, due to L2

polynomial regression, the current PAC learning guarantees are 8Popt in small-error regions. We
address this issue by implementing L1 regression instead of L2. Hence, benefiting from the learning
capability of L1 regression as well as computational efficiency of the low-degree algorithm.

Via a large deviation analysis based on Azuma’s inequality for the concentration of martin-
gales (Azuma, 1967; Szpankowski, 2011), we provide bounds on the rate of the convergence of the
algorithm’s misclassification probability. More precisely, we show in Theorem 5 that the expected
misclassification probability of the algorithm converges to Popt with rateOpn´γq for some γ ă 1{2.

Other Applications. Building upon the prior concentration results (Blais et al., 2010), our algo-
rithm can be used in other fundamental problems in computational learning, such as agnostic PAC
learning with respect to linear threshold functions and the class of αpε, kq concentrated functions,
that is a collection of functions each of which approximated by a polynomial of degree k with MSE
at most ε. Also, our Fourier-based measure can be used in feature selection problems to evaluate
the feature subsets. One can adopt conventional search algorithms ( e.g., the greedy algorithm or
ranking methods) with our measure for feature selection.

1.2 Related Approaches

Several approaches have been proposed in the literature for the feature selection problem with PAC
guarantees. We briefly review them below.

Naive Empirical Risk Minimization (ERM): This is an exhaustive search over all feature sub-
sets and predictors to minimize the empirical misclassification rate. For our problem, ERM is
a PAC learning algorithm with sample complexity of Opk2k

ε2
log d

δ q and with computational com-
plexity Opndk22kq (Shalev-Shwartz and Ben-David, 2014). With the computational complexity of
doubly exponential with respect to k, ERM is prohibitive even for small values of k.

L1 Polynomial Regression and SVM. Kalai et al. (2008) introduced polynomial regression as an
approach for PAC learning with the 0´1 loss function. They showed that L1-Polynomial regression
agnostically PAC learns with respect to a pk, εq-concentrated hypothesis class. Recently, Blais et al.
(2010) provided some generalizations of this class. Adopting this algorithm to our problem, with
an exhaustive search over feature subsets, requires a sample complexity OpdΘpkq{εq. With a linear
programming implementation, the computational complexity of this algorithm is Opn2dp3`ωq3kq,
where ω ă 2.4 is the matrix-multiplication exponent. A more efficient implementation is support-
vector machine (SVM) with degree-k polynomial kernel and without any regularization (Kalai et al.,
2008). This implementation PAC learns in the non-agnostic setting, that is when the target labeling
function itself belongs to the hypothesis class. However, this is not the case in the agnostic setting
and when Popt is away from zero (Blais et al., 2010).

Low Degree Algorithm. Linial et al. (1993) investigated PAC learning from an alternative per-
spective under a distributional restriction on X and introduced the well-known “Low-Degree Algo-
rithm”. They provide theoretical guarantees under the uniform and known distribution on t´1, 1ud

of the examples. As Kalai et al. (2008) showed, under the uniform distribution, the low-degree al-
gorithm agnostically learns the pk, εq-concentrated hypothesis classes with an error up to 8Popt` ε.
This algorithm is based on the Fourier expansion on the Boolean hyper-cube. Although computa-
tionally efficient, this algorithm has limited practical applications due to its distributional restric-
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tions — uniform (and known) distribution is unrealistic in many applications. Further, the factor 8
in the accuracy bound is noticeable when Popt is not close to zero (say « 0.1). Furst et al. (1991)
relaxed such a distributional restriction by adopting a low-degree algorithm for learning AC0 func-
tions under the product probability distributions. However, the second issue (factor 8) remains to be
resolved.

The Fourier estimation approach in the low-degree algorithm has interesting properties which
makes it suitable for other applications (Mossel et al., 2003, 2004; Jackson, 1997). Such works,
mainly, consider PAC learning in non-agnostic setting (in which the error probability is zero or suf-
ficiently close to zero) and the under uniform distribution. In this paper, we extend the applications
of Fourier estimation to agnostic setting involving stochastic mappings. Therefore, we significantly
relax the distributional assumptions about the features as well as the target labeling. Also, we pro-
vide a rigorous theoretical analysis guaranteeing the PAC learning capabilities of our algorithm (see
Theorem 4 and 5).

Notation: The input set of the features is denoted by X , where, unless otherwise stated, X “

t´1, 1ud. For shorthand, the random vector of the features is denoted by X “ pX1, X2, ..., Xdq.
We construct the vector space of real-valued functions on X with inner product denoted by xf,
gy “∆ ErfpXqgpXqs for any real-valued function f, g on X . For any bounded function f : X ÞÑ R
in this space, the 1-norm and 2-norm are defined as ‖f‖1 “∆ E

“

|fpXq|
‰

and ‖f‖2 “∆
b

E
“

fpXq2
‰

,
respectively. As a shorthand, in this paper, for any natural number `, the set t1, 2, ¨ ¨ ¨ , `u is denoted
by r`s. For any ordered subset J “ tj1, j2, ¨ ¨ ¨ , jmu, by XJ denote the random vector pXj1 , Xj2 ,
¨ ¨ ¨ , Xjmq. Similarly, by xJ denote the vector pxj1 , xj2 , ¨ ¨ ¨ , xjmq. For a pair of functions f, g on
X , the notation f ” g means that fpxq “ gpxq for all x P X .

2. A Fourier-Based Framework

The Fourier expansion on the Boolean cube has been a powerful tool to characterize non-linear
relations among the features and the labels. Such an expansion has been developed also on the
Boolean cube with non-uniform distribution (O’Donnell, 2014). In what follows we present an
overview of this Fourier expansion. A more detailed discussion on the properties of this Fourier
expansion is available in Appendix A.

The Fourier expansion on the Boolean cube: Let X “ pX1, X2, ..., Xdq be a vector of mutually
independent random variables on the Boolean cube t´1, 1ud. Let µj and σj be the mean and
standard-deviation of Xj , j P rds. Suppose that these random variables are non-trivial, that is
σj ą 0 for all j P rds. The Fourier expansion is defined via a set of basis functions called parities.
The parity for a subset S Ď rds is a function ψS : Rd ÞÑ R defined as

ψSpxq “
∆
ź

iPS

xi ´ µi
σi

, @x P Rd.

By construction, the above parities are orthonormal. In other words, ErψSpXq ψT pXqs “ 0 for
S ‰ T and ErψSpXq

2s “ 1.
It is known that these parity functions form an orthonormal basis for the space of bounded

functions on the Boolean cube (O’Donnell, 2014), that is when X “ t´1, 1ud. As a result, any
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bounded function f : t´1, 1ud ÞÑ R can be written as a linear combination of the form

fpxq “
ÿ

SĎrds
fS ψSpxq, @x P t´1, 1ud,

where fS P R are called the Fourier coefficients of f . Due to the orthogonality of the parities, the
Fourier coefficients can be computed as follows

fS “ ErfpXqψSpXqs, @S Ď rds. (1)

As a special case, the standard Fourier expansion on the Boolean cube is obtained when Xj’s are
uniform random variables over t´1, 1u. As a result, ψS ” xS and f ”

ř

SĎrds fS xS .

Characterization of Popt in the Fourier domain: Next, we characterize the misclassification
probability in the Fourier domain. Consider the special case in which the label Y is generated ac-
cording to an unknown, but fixed, function as Y “ fpXq. A more general case in which Y is
generated through PY |X is studied in Section 4. With the above assumption, the minimum misclas-
sification probability becomes

Popt “ min
JĂrds:|J |“k

min
g:t´1,1uk ÞÑt´1,1u

PXtfpXq ‰ gpXJ qu. (2)

Here J represents the selected feature subset and g is the k-variable predictor of the label Y “

fpXq. We provide an alternative representation of Popt in Fourier domain and characterize the
optimal predictor and subset J . As a key ingredient in our characterization, we need to define the
notion of projection onto J .

Definition 1 ( Projection onto a subset) The projection of a function f : t´1, 1ud ÞÑ R onto a
feature subset J Ď rds is defined as

fĎJ pxq “∆
ÿ

SĎJ
xf, ψSy ψSpxq, @x P t´1, 1ud.

As a special case, if J “ rds, then fĎJ ” f . Using the above notion, we provide a characterization
of Popt in the following proposition.

Proposition 2 The minimum attainable misclassification probability with deterministic labeling
Y “ fpXq, as defined in (2), equals to

Popt “
1

2

„

1´ max
JĎrds, |J |“k

‖fĎJ ‖1


. (3)

Further, an optimal k-variable predictor is given by g˚ “ signrfĎJ
˚

s, where J ˚ is an optimal
feature subset that maximizes the 1-norm expression above.

Proof The proof follows from similar steps as in (Heidari et al., 2019). For completeness, we
provide the proof. Fix a subset J Ď rds and a predictor g : t´1, 1uk ÞÑ t´1, 1u. Since the range
of f, g belongs to t´1, 1u, we can write

P
!

fpXq ‰ gpXJ q
)

“
1

2
´

1

2
ErfpXqgpXJ qs. (4)
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Let g̃ : t´1, 1ud ÞÑ t´1, 1u, with g̃pxq “ gpxJ q for all x P t´1, 1ud. The function g̃ is a
representation of g in the d-dimensional space. Note that since g̃ depends only on the coordinates
of J , its Fourier coefficients for S Ę J are zero. This give the Fourier expansion of the form
g̃ ”

ř

SĎJ g̃SψS . Therefore, the expectation in (4) can be written as

ErfpXqgpXJ qs “ ErfpXqg̃pXqs “
ÿ

SĎJ
g̃SErfpXqψSpXqs

“
ÿ

SĎJ
g̃SfS

paq
“ xfĎJ , g̃y

pbq
ď x|fĎJ |, |g̃|y, (5)

where fS’s are the Fourier coefficients of f and fĎJ is its projection onto J , as in Definition 1.
Equality paq holds because of Fact 1 in Appendix A and that fĎJ ”

ř

SĎJ fSψS . Inequality pbq
holds by taking the absolute value of fĎJ and g̃. Since the range of g̃ is t´1, 1u, then |g̃| ” 1.
Therefore, x|fĎJ |, |g̃|y “ ‖fĎJ ‖1. This together with (4) establishes the following lower bound

Popt ě
1

2
´

1

2
max

J :|J |“k
‖fĎJ ‖1.

Next, we derive an upper bound on Popt by constructing a predictor. For that fix a subset J and take
g ” signrfĎJ s. Let g̃ be the representation of g in the d-dimensional space. Then for this choice,

xfĎJ , g̃y “ Er|fĎJ pXJ q|s “ ‖fĎJ ‖1.

Therefore, from (4) and the argument above, we obtain

Popt ď P
!

fpXq ‰ gpXJ q
)

“
1

2
´

1

2
‖fĎJ ‖1.

This is an upper bound on Popt for any k-element subset J . Hence, the following is also an upper
bound:

Popt ď
1

2
´

1

2
max

J :|J |“k
‖fĎJ ‖1.

The proof is complete as the lower bound and the upper bound are matching.

The optimization in (3) is over the feature-subsets of size k and, hence, the size of the search
space is

`

d
k

˘

, significantly lower than the original search space which isOpdkq22k . Once the optimal
feature subset J ˚ is determined, the optimal k-variable predictor (k-junta) is obtained by taking
the sign of the optimal projection, which is signrfĎJ

˚

s. Consequently, there is no need for further
search in the space of k-letter functions.

Although the above formulation is characterizable only when the feature’s distribution and the
labeling function f are known, it gives intuitions about the structure of the optimal feature selection
in the agnostic settings. Our objective is to design a feature selection method that selects the optimal
feature subset (J ˚), and a learning algorithm that outputs a hypothesis close to the optimal predictor
(signrfĎJ

˚

s) in the universal setting. We present our algorithm in the next section.
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3. Fourier-Based Learning Algorithm

We build upon the characterization of optimal predictor (Proposition 2) and propose a Fourier-based
supervised learning algorithm with an embedded feature selection (see Algorithm 1). In agnostic
PAC learning, a learning algorithm achieves the minimum attainable misclassification probability
under any feature-label distribution. In this paper, our theoretical guarantees hold under the condi-
tion that the features are independent. To emphasize this, we first present a notion of agnostic PAC
learning which is restricted to a class of feature-label distributions.

Definition 3 (P-Universality) Given a class of feature-label distribution P , a learning algorithm
is said to be universal, if it agnostically learns with respect to a hypothesis classH under any feature
distribution PX,Y P P . More precisely, for every ε, δ P p0, 1q, every probability distribution
PX,Y P P , and at least npε, δq number of i.i.d. training samples generated by PX,Y , the algorithm
produces, with probability at least p1´ δq, a hypothesis g P H with misclassification probability at
most Popt ` ε.

The focus of this section is on P-universality with P being the set of all PX,Y on t´1, 1ud ˆ
t´1, 1u such that the marginal PX is a product probability distribution and Y “ fpXq for some
unknown function f . Further, the hypothesis class is the set of all functions g that depends on at
most k inputs. In section 4 we extend our result to stochastic labeling, that is when the label is
generated according to an unknown, but fixed, conditional probability distribution PY |X.

Algorithm 1 Fourier-Based Learning
Input: Training samples tpxpiq, ypiqq, i P rnsu.

1: procedure FEATURE SELECTION

2: Compute the empirical mean µ̂j and standard deviation σ̂j of each feature.
3: Compute score1pJ q, as in (8), for all subsets J Ď rds with size k.
4: Set Ĵ as the feature subset that maximizes score1pJ q.

return Ĵ
5: procedure PREDICTOR(Ĵ )
6: Compute the empirical Fourier coefficients f̂S , as in (7), for all S Ď rds.
7: Construct the empirical projection function f̂ĎĴ defined as

f̂ĎĴ pxq “∆
ÿ

SĎĴ

f̂S
ź

jPS

xj ´ µ̂j

σ̂j
.

8: Construct the predictor as ĝ “ signrf̂ĎĴ s.
return ĝ

Recall from Proposition 2 that the optimal feature subset J ˚ maximizes the 1-norm expression
‖fĎJ ‖1. Also, the optimal predictor g˚ is the sign of the projection function fĎJ

˚

. That said,
Algorithm 1 consists of two main processes: one for finding J ˚ and the other for estimating its
projection function. In the first process, the training samples are used for estimating the 1-norm
expression ‖fĎJ ‖1 for all subsets J of size k. The estimation of ‖fĎJ ‖1 is used as a measure
for selecting the feature subsets J . With that, the algorithm searches over all feature subsets with
k elements and finds the one that maximizes it. Let Ĵ denote the selected feature subset. In the
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second process, the algorithm constructs the predictor ĝ by estimating fĎĴ and taking its sign. This
is summarized in Algorithm 1.

Before explaining our estimation methods, we argue that the estimations are accurate enough
and the algorithm finds an asymptotically optimal feature subset. More precisely, we show in the
following theorem that the algorithm is universal for memoryless features. We provide the proof of
the theorem in Section 5 and appendices.

Theorem 4 Given the parameters k, d P N, Algorithm 1 is a universal learning algorithm in the
sense of Definition 3 for independent features and deterministic labeling. More precisely, if δ,
ε P p0, 1q and f is the unknown labeling function, the misclassification rate of the algorithm satisfies
PtfpXq ‰ ĝpXĴ qu ď Popt ` ε with probability at least p1´ δq, provided that the training sample
size is at least npε, δq with

npε, δq ď O
`k222kc2

k

ε2
log

d

δ

˘

, (6)

where ck is a constant bounded as ck ď
`

maxjPrdst
1`|µj |
σj

u
˘2k.

To have a better insight on the performance of the algorithm, we also characterize the misclassi-
fication probability of the algorithm averaged over all realizations of the training samples. The
asymptotic behavior of this quantity is provided in the following theorem which is proved in Ap-
pendix F.

Theorem 5 Let Dn denote the training set consisting of the instances pxpiq, ypiqq, i “ 1, 2, ..., n.
For a fixed k, the expected misclassification probability of Algorithm 1 converges to Popt as n grows.
More precisely, the following inequality

EDn
“

PX,Y tY ‰ ĝpXĴ qu
‰

ď Popt `O
`

n´γ
˘

holds for any γ P p0, 1
2q.

3.1 Estimation Processes in Algorithm 1

As discussed, the optimal feature subset and the predictor are obtained by maximizing the 1-norm
quantity ‖fĎJ ‖1. Since f and the feature’s distribution PX are unknown, only an estimate of
‖fĎJ ‖1 is possible. For that, we need to estimate fĎJ and compute its empirical 1-norm. As for
the estimation of the projections, we use the fact that fĎJ is constructed from a collection of the
Fourier coefficients of f as the summation fĎJ pxq “∆

ř

SĎJ fS ψSpxq. Using this structure, the
estimation of fĎJ is obtained by estimating the parity functions ψS , and the Fourier coefficients fS .
That said, there are three estimation processes in the algorithm which are described in the following.

Estimation of the parities. For approximation of the parity functions, first, the mean and the
standard deviation of the features are estimated. Let pµ̂j , σ̂jq denote the empirical mean and standard
deviation of the jth feature. The quantities pµ̂j , σ̂jq are computed using conventional estimation
methods. Next, the estimation of the parity function ψS is given by pψSpxq “

∆ ś

jPS
xj´µ̂j
σ̂j

.
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Estimating The Projection Functions. Using the estimated parities, the empirical Fourier coef-
ficient fS is calculated as

f̂S “
∆ 1

n

n
ÿ

i“1

ypiq pψSpxpiqq, pψSpxq “
∆
ź

jPS

xj ´ µ̂j
σ̂j

, (7)

where pxpiq, ypiqq P Dn, i “ 1, 2, ..., n are the training samples. Note that the estimated parity
functions are no longer orthonormal and, hence, amount to a level of inaccuracy in the estimation
of fS . Once f̂S are computed, the estimation of the projection function fĎJ is obtained by the
equation f̂ĎJ pxq “∆

ř

SĎJ f̂S
pψSpxq.

Estimating the 1-norm. When f̂ĎJ is obtained, the next step is to approximate ‖f̂ĎJ ‖1 which
is needed to obtain Ĵ as an approximation to J ˚. By definition, this 1-norm operation equals
‖f̂ĎJ ‖1 “∆ EXr|f̂

ĎJ pXq|s. Hence, naturally, the estimation of this quantity is obtained by the
empirical averaging

1

n

n
ÿ

i“1

ˇ

ˇf̂ĎJ pxpiqq
ˇ

ˇ.

Since we use the same training samples to obtain both f̂ĎJ and its empirical 1-norm, these two
quantities are correlated. Hence, the above estimation is possibly biased.

Making the Estimations Unbiased. That said, to ensure that the estimation is unbiased, we com-
pute the estimator as follows

score1pJ q “ {‖fĎJ ‖1 “
∆ 1

n´ 1

n
ÿ

i“1

ˇ

ˇ

ˇ

ˇ

ÿ

SĎJ
f̂S pψSpxpiqq ´

1

n
ypiq

`

pψSpxpiqq
˘2

ˇ

ˇ

ˇ

ˇ

. (8)

This correction is done by subtracting the quantity 1
nypiq

`

pψSpxpiqq
˘2. We use score1pJ q as an

estimate of ‖fĎJ ‖1. We show in the following lemma that this estimator is asymptotically unbiased;
that is

ˇ

ˇ Erscore1pJ qs ´ ‖fĎJ ‖1
ˇ

ˇ Ñ 0 as n Ñ 8. We start with the following lemma which is
proved in Appendix D.

Lemma 1 Suppose µ̂j “ µj and σ̂j “ σj for all j P rds. The measure score1pJ q “ {‖fĎJ ‖1 as in
(8) is an asymptotically unbiased estimate of ‖fĎJ ‖1. More precisely

ˇ

ˇ

ˇ
E
“

score1pJ q
‰

´ ‖fĎJ ‖1
ˇ

ˇ

ˇ
ď

2k{2
?
n´ 1

.

The idea behind the proof of the lemma is to rewrite score1 as a summation of the form score1pJ q “
1
n

ř

i |f̂
ĎJ
piq |, where f̂ĎJ

piq is the term in the bracket in (8). These quantities are estimates of fĎJ and
are identically distributed random variables depending on the training instances. This is possible
because of the additional term we added in (8) to make the estimate of ‖fĎJ ‖1 unbiased. With
this approach, we show that the expectation of score1 equals to E

“

‖f̂ĎJ
p1q ‖1

‰

. Then, we relate this

quantity to the square root of the MSE of estimating Fourier coefficients; that is
b

Erpf̂S ´ fSq2s.
Since f̂S is the empirical average of ypiq pψSpxpiqq for i P rns, then the MSE is Op1{nq. For
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convenience, in the lemma we assumed there is no error in estimating feature’s mean and variance.
A more general version of this lemma without such assumption is Lemma 9 in Appendix B.

With the above method, one can verify that the estimation of ‖fĎJ ‖1 for a subset J with
|J | “ k is computed in Opnk2kq arithmetic operations. As a result, the computational complexity
of the feature selection method in our algorithm is Opdknk2kq.

4. Extensions to Stochastic Labeling

The Fourier framework in Section 2 is developed for deterministic labeling, where Y “ fpXq
for some function f . In this section, we address this restriction and extend the Fourier framework
to stochastic mappings. We show that our results in Proposition 2, Theorem 4, and 5 still hold
when the labels are generated according to an arbitrary unknown probability distribution PY |X.
More precisely, based on Definition 3, we consider P-universal learning where P is the set of all
distributions PX,Y on t´1, 1ud ˆ t´1, 1u such that PX is a product probability distribution.

In what follows, we prove necessary statements enabling us to extend our Fourier framework to
stochastic mappings. We start with generalizing our notion of projection given in Definition 1.

Definition 6 ( Projection onto a subset) Given a joint probability distribution PX,Y on t´1, 1udˆ
t´1, 1u, the projection of Y onto a subset J Ď rds is defined as

fĎJ pxq “∆
ÿ

SĎJ
ErY ψSpXqsψSpxq, @x P t´1, 1ud.

When Y is a deterministic function of the features X, then the above notions reduces to the one in
Definition 1. In the following lemma, we show that the projection function fĎJ provides a proxy
to analyze the misclassification probability.

Lemma 2 Given any subset J Ď rds, let g : t´1, 1ud ÞÑ t´1, 1u be a function whose output
depends only on the coordinates of J . Then ErY gpXqs “ xfĎJ , gy, where fĎJ is the projection
of Y onto J as in Definition 6. Further, the resulted misclassification probability satisfies

P
!

Y ‰ gpXq
)

“
1

2
´

1

2
xfĎJ , gy “

1

4

`

‖fĎJ ´ g‖22 ` 1´ ‖fĎJ ‖22
˘

. (9)

Proof Since g depends only on xJ , then, from Fact 3, its Fourier expansion is of the form g ”
ř

SĎJ gSψS , where gS’s are the Fourier coefficients. Using this summation we have

ErY gpXqs “
ÿ

SĎJ
gS ErY ψSpXqs “

ÿ

SĎJ
ErgpXqψSpXqs ErY ψSpXqs “ xf

ĎJ , gy. (10)

where the second equality holds as gS “ xg, ψSy. Hence, the first statement of the lemma is proved.
Next, we prove the equalities in (9). Since Y and gpXq take values from t´1, 1u, then

P
!

Y ‰ gpXq
)

“
1

2
´

1

2
ErY gpXqs.

Hence, with the above equation and (10), we establish the first equality in (9). Next, we prove the
second equality. Form the definition of 2-norm, we have

‖fĎJ ´ g‖22 “ xpfĎJ ´ gq, pfĎJ ´ gqy “ ‖fĎJ ‖22 ` ‖g‖22 ´ 2 xfĎJ , gy.
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Since the range of g belongs to t´1, 1u, then ‖g‖22 “ 1. Therefore, by rewriting the above equality
we have

xfĎJ , gy “
1

2

`

1` ‖fĎJ ‖22 ´ ‖fĎJ ´ g‖22
˘

.

The proof is complete as this equation implies the second equality in the statement of the lemma.

Using this lemma, we can easily extend our results to stochastic labeling. For instance, Propo-
sition 2 extends to non-deterministic labeling. To see this, note that due to Lemma 2, equation (5)
in the proof of the proposition still holds for stochastic Y . The rest of the proof of the proposition
only depends on fĎJ , hence holds for stochastic Y .

5. Theoretical Analysis

In this section, we present an overview of our analysis for Algorithm 1 and give a road map to prove
Theorem 4. For simplicity of presenting the proof, it is assumed that µ̂j “ µj and σ̂j “ σj , j P rds,
that is the mean and standard deviation of the features are known. In Appendix B, we take into
account the effect of the estimation error in features’ mean and standard deviation. We characterize
the changes in the misclassification probability as function of the estimation error.

5.1 Steps for Proving Theorem 4

For a fixed training set with n instances Dn “ tpxpiq, ypiqquiPrns, the algorithm outputs a feature

subset Ĵ and a predictor ĝ of the form ĝ “ signrf̂ĎĴ s with f̂ĎĴ being an empirical estimate of
fĎĴ . The misclassification rate of this predictor is denoted by

Pepĝq “
∆ P

!

Y ‰ ĝpXĴ q
)

.

In our analysis, we take a probabilistic approach and treat the training samples as a realization
of random variables. Hence, the quantities Ĵ , ĝ and the misclassification rate Pepĝq are, also,
realizations of random variables. Recall from Proposition 2 that Popt is the minimum attainable
misclassification rate and, thus, Pepĝq ě Popt. Our objective is to prove that with high probability
Pepĝq ď Popt ` ε, when at least npε, δq number of training instances are available with npε, δq
satisfying (6). We show this statement and find bounds on npε, δq in three steps discussed next.

Step 1. ( Characterization of Pepĝq): We first derive an upper-bound on Pepĝq in terms of 1-
norm and 2-norm expressions. To get the desired expression, we exploit the fact that the predictor
ĝ is constructed by taking the sign of the real-valued function f̂ĎĴ (see Algorithm 1). For that, we
prove the following lemma in Appendix C.

Lemma 3 Given a subset J Ď rds, let hJ denote an arbitrary bounded real-valued function on
t´1, 1ud that depends only on the coordinates of J . Then,

P
!

Y ‰ signrhJ pXqs
)

ď
1

2
p1´ ‖fĎJ ‖1q ` Up‖fĎJ ´ hJ ‖2q,

where fĎJ is the projection of Y onto J as in Definition 6 and U is defined as Upxq “ x3` 3
2x

2`
5
4x, for all x ě 0.
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Hence, applying this lemma to hJ ” f̂ĎĴ gives

Pepĝq ď
1

2
p1´ ‖fĎĴ ‖1q ` Up‖fĎĴ ´ f̂ĎĴ ‖2q. (11)

Recall from Proposition 2 that Popt can be written as Popt “ 1
2p1´ ‖f

ĎJ ˚‖1q. Hence, we get

P
!

Pepĝq ě Popt ` ε
)

ď P
!

‖fĎJ ˚‖1 ´ ‖f̂ĎĴ ‖1 ` 2Up‖fĎĴ ´ f̂ĎĴ ‖2q ě 2ε
)

. (12)

With this inequality, we argue that the misclassification rate depends on two processes. The first
process is the feature selection in which the subset Ĵ is selected. For the selected Ĵ , the second
process involves an estimation of the projection fĎĴ . That said, using the above inequality, we
separate the effects of these processes on the misclassification rate. The performance of the feature
selection, with no estimation taken into account, is measured as ‖fĎJ ˚‖1´‖fĎĴ ‖1. This measure
is always non-negative as ‖fĎJ ˚‖1 is the maximum value. The accuracy of the estimation process,
on its own, is measured as ‖fĎĴ ´ f̂ĎĴ ‖2. In the next two steps, we show that these two measures
are sufficiently small with high probability.

Step 2 (Optimality of the Feature Selection): As for the performance of the feature selection
process in the algorithm, we provide a bound on ‖fĎJ ˚‖1 ´ ‖fĎĴ ‖1. For that, we establish the
following lemma.

Lemma 4 Suppose µ̂j “ µj and σ̂j “ σj for all j P rds. Given ε1, δ1 P p0, 1q, with probability at
least p1´ δ1q, the following inequalities on score1, as in (8),

ˇ

ˇ

ˇ
score1pJ q ´ ‖fĎJ ‖1

ˇ

ˇ

ˇ
ď ε1

hold for all subsets J Ď rds with size k, provided that the number of training samples are at least

n1pε1, δ1q “
∆ 72 22kc2k

pε1´
2k{2?
n´1

q2
logp

pdkq
2δ1
q, where ck is the same constant as in Theorem 4.

A more general version of the lemma, incorporating the mean and variance estimations, is provided
in Appendix B as Lemma 12. The argument for the proof of this lemma follows from Lemma 1 and
Azuma’s inequality which is presented here:

Lemma 5 ((Azuma, 1967)) Suppose tXiuiě1 is a sequence of i.i.d. random variables. For every
n ě 1 Zn “ fnpX1, X2, ¨ ¨ ¨ , Xnq, where fn is function such that for every i P rns, there exist
constant αi

ˇ

ˇfnpX1, X2, . . . , Xi, ..., Xnq ´ fnpX1, X2, ..., X̃i, ..., Xnq
ˇ

ˇ ď αi,

where X̃i is independent of Xi and has the same distribution as Xi. Then, for any ε ą 0,

P
!

ˇ

ˇZn ´ ErZns
ˇ

ˇ ě ε
)

ď 2 exp

ˆ

´
ε2

2
ř

i α
2
i

˙

.

Proof of Lemma 4: We apply Azuma’s inequality for score1pJ q which is a function of the random
training samples. For that we need to calculate the constants αi. This is done in the following
lemma which is proved in Appendix G.1.
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Lemma 6 The constants αi, as in Azuma’s inequality, for score1 are equal to

αi “
6 2kck
n

, ck “
∆ max

SĎrds,|S|ďk
‖ψS‖28. (13)

Therefore, from Azuma’s inequality, for a fixed subset J Ď rds with |J | “ k

P
!

ˇ

ˇ score1pJ q ´ Erscore1pJ qs
ˇ

ˇ ď ε1
)

ď 2 exp
!

´
nε12

72 22kc2
k

)

.

Hence, using the union bound, the inequalities
ˇ

ˇ score1pJ q ´ Erscore1pJ qs
ˇ

ˇ ď ε1, @J Ď rds, |J | “ k (14)

hold with probability p1´ δ1q provided that n ě ñ1pε, δq, where

ñ1pε
1, δ2q “

72 22kc2
k

ε12
log

´

`

d
k

˘

2δ1

¯

.

Next, from Lemma 1, we have that

ˇ

ˇ

ˇ
E
“

score1pJ q
‰

´ ‖fĎJ ‖1
ˇ

ˇ

ˇ
ď

2k{2
?
n´ 1

. (15)

Lastly, we combine this inequality to the one in (15). That said, from the triangle inequality, we
have that

ˇ

ˇ score1pJ q ´ ‖fĎJ ‖1
ˇ

ˇ ď ε1 `
2k{2
?
n´ 1

, @J Ď rds, |J | “ k

hold with probability p1 ´ δ1q provided that n ě ñ1pε
1, δ1q. Hence, setting ε1 “ ε1 ` 2k{2?

n´1
and

n1pε1, δ1q “ ñ1pε
1, δ1q complete the proof. �

Thus, from the lemma and the fact that Ĵ maximizes score1, we obtain

‖fĎĴ ‖1 ě score1pĴ q ´ ε1 ě score1pJ ˚q ´ ε1 ě ‖fĎJ
˚‖1 ´ 2ε1,

which implies that ‖fĎJ ˚‖1 ´ ‖fĎĴ ‖1 ď 2ε1, with probability at least p1 ´ δ1q, when at least
n1pε1, δ1q, as in Lemma 4, number of training samples are available.

Step 3 (Accuracy of the Estimations): In this step, we show that the estimation of fĎĴ is accu-
rate enough; that is ‖fĎĴ ´ f̂ĎĴ ‖2 ď ε2 with high probability. Note that Ĵ and f̂ĎĴ are correlated.
Hence, to show the desired result, we establish a stronger statement in the following lemma which
is proved in Appendix E.

Lemma 7 Suppose µ̂j “ µj and σ̂j “ σj for all j P rds. Given ε2, δ2 P p0, 1q, with probability at
least p1´ δ2q, the inequalities

‖fĎJ ´ f̂ĎJ ‖2 ď ε2

hold for all subsets J Ď rds with size k, provided that the number of training samples are at least
n2pε2, δ2q “

8 2k{2ck
ε22

log
´

2kdk

δ2

¯

, where ck is the same constant as in Theorem 4.
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A more general version of the lemma, incorporating the mean and variance estimations, is provided
in Appendix B as Lemma 13. As a result of this lemma, we have

P
!

‖fĎĴ ´ f̂ĎĴ ‖2 ě ε2

)

ď P
!

Ť

J :|J |“k
 

‖fĎJ ´ f̂ĎJ ‖2 ě ε2
(

)

ď δ2, (16)

where the first inequality holds as |Ĵ | “ k.
Putting together (12) and (16), and using the identity PpAq ď PpA

Ş

Bq`PpBcq, we can show
that

P
!

Pepĝq ě Popt ` ε
)

ď P
!

‖fĎJ ˚‖1 ´ ‖fĎĴ ‖1 ě 2ε´ 2Upε2q
)

` δ2, (17)

under the condition that n ě n2pε2, δ2q. Lastly, from Step 2 and by an appropriate choice of ε1 and
ε2, we obtain that

P
!

Pepĝq ě Popt ` ε
)

ď δ1 ` δ2,

under the condition that n ě max
 

n1pε1, δ1q, n2pε2, δ2q
(

.
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Appendices
A. Fourier Analysis in Product Probability Spaces

The following facts summarize some basic properties of the Fourier expansion. These statements
are derived from the orthogonality of the parities. Hence, we omit the proofs.

Fact 1 For any bounded pair of functions f, g : t´1, 1ud ÞÑ R, the following statements hold:

• Plancherel Identity: ErfpXqgpXqs “
ř

SĎrds fSgS .

• Parseval’s identity ‖f‖22 “
ř

SĎrds f
2
S .

• Jensen’s Inequality: ‖f‖1 ď ‖f‖2.

Fact 2 Let f : t´1, 1ud ÞÑ t´1, 1u and J Ď rds, then the following holds

• ‖f‖1 “ ‖f‖2 “ 1 and ‖fĎJ ‖2 ď 1.

• ‖fĎJ ‖22 ď ‖fĎJ ‖1 ď ‖fĎJ ‖2.

Fact 3 If g : t´1, 1ud ÞÑ t´1, 1u is a function whose output depends only on the coordinates of a
subset J Ď rds, then gS “ 0 for all S Ę J . Further, for any f : t´1, 1ud ÞÑ t´1, 1u

‖f ´ g‖22 “ 1´ ‖fĎJ ‖22 ` ‖fĎJ ´ g‖22
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Fact 4 The misclassification probability between any pair of functions f, g : X ÞÑ t´1, 1u can be
written as

P
!

fpXq ‰ gpXq
)

“
1

2
´

1

2
xf, gy “

1

4
‖f ´ g‖22.

B. The Effect of Estimating Features’ Mean and Variance

In our analysis it was assumed that mean and variance are estimated accurately, that is µ̂j “ µj
and σ̂j “ σj for all j P rds. In this section, we take into account the effect of the imperfections
in mean and variance estimation. We characterize the changes in the misclassification probability
as function of the estimation error. First, we compute the estimations errors as a function of the
number of the samples.

Mean and variance estimations: For tractability of our analysis, we use a fraction of the training
samples just for the mean and variance estimations. As a measure of accuracy of the estimations,
we require the differences |µ̂j´µj | and |1´ σ

σ̂ | to be sufficiently small with probability close to one.
This is a deviation from standard measures of estimations in which the variance of the differences
are required to be small. In the following lemma, we bound the estimation errors in terms of the
number of the samples.

Lemma 8 Given ε0, δ0 P p0, 1q the following inequalities hold with probability at least p1´ δ0q

ˇ

ˇµ̂j ´ µj
ˇ

ˇ ď ε0,
ˇ

ˇ1´
σj
σ̂j

ˇ

ˇ ď
2ε0
σ2
j

, (18)

for all j P rds, provided that atleast n0pε0, δ0q “
8
ε20

log 2d
δ0

samples are available.

Proof Form Azuma’s inequality, for each j P rds we have

Pt|µ̂j ´ µj | ě ε0u ď 2 expt´
nε20
8
u.

Therefore, applying the union bound gives

P
!

d
ď

j“1

 

|µ̂j ´ µj | ě ε0
(

)

ď 2d expt´
nε20
8
u.

Thus, the right-hand side of the above inequality is less than δ0, if n ě 8
ε20

logp2d
δ0
q. As a result we

obtain the inequalities for the estimation of µj’s. Next, we prove the inequalities for the estimation
of σj’s. For any fixed µ̂ P p´1, 1q, define the function hµ̂pxq “

?
1´x2?
1´µ̂2

. From Taylor’s theorem,

there exists ζ P p´1, 1q which is between x and µ̂ such that

hµ̂pxq “ 1´
ζpx´ µ̂q

a

p1´ ζ2qp1´ µ̂2q
.

As a result,

|hµ̂pxq ´ 1| “
|ζ||x´ µ̂|

a

p1´ ζ2qp1´ µ̂2q
ď

|x´ µ̂|
a

p1´ pmaxtx, µ̂uq2qp1´ µ̂2q
.
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Now by setting x “ µj and that |µ̂j ´ µj | ď ε0, we have

|
σj
σ̂j
´ 1| “ |hµ̂pµq ´ 1| ď

ε0
σ̂mintσ̂, σu

.

Note that, |µ̂j | ď |µj | ` ε0. Therefore,

σ̂2
j ě 1´ p|µj | ` ε0q

2 ě σ2
j ´ 2ε0|µj | ´ ε

2
0 ě σ2

j ´ 3ε0.

As a result,

|
σj
σ̂j
´ 1| ď

ε0
σ2
j ´ 3ε0

ď
2ε0
σ2
j

,

which completes the proof of the lemma.

Our technical analysis in Subsection 5.1 is under the assumption that ε0 “ 0. In what follows,
we adjust our results in Lemma 1, 4 and 7 by removing this condition. As a result we prove the
following lemmas, incorporating the error is mean and variance estimations.

Lemma 9 (Generalizing Lemma 1) The measure score1 “
{‖fĎJ ‖1 which is defined in (8) is an

asymptotically unbiased estimate of ‖fĎJ ‖1. More precisely, for any γ P p0, 1{2q
ˇ

ˇ

ˇ
E
“

score1pJ q
‰

´ ‖fĎJ ‖1
ˇ

ˇ

ˇ
ď Opn´γq

as nÑ8.

Proof Let B be the event that the inequalities in (18) hold, that is |µ̂j´µj | ď ε0 and |1´ σj
σ̂j
| ď 2ε0

σ2
j

for all j P rds. From Lemma 8, PpBq ě 1´ δ0. By conditioning on B we have

E
“

score1pJ q
‰

“ PpBqE
“

score1pJ q|B
‰

` p1´ PpBqqE
“

score1pJ q|Bc
‰

.

Therefore, from triangle inequality we obtain
ˇ

ˇ

ˇ
E
“

score1pJ q
‰

´ ‖fĎJ ‖1
ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ
PpBqE

“

score1pJ q|B
‰

´ ‖fĎJ ‖1
ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ
p1´ PpBqqE

“

score1pJ q|Bc
‰

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ
PpBqE

“

score1pJ q|B
‰

´ ‖fĎJ ‖1
ˇ

ˇ

ˇ

looooooooooooooooooooomooooooooooooooooooooon

(I)

`δ0 max
pxpiq,ypiqq

ˇ

ˇ score1pJ q
ˇ

ˇ

loooooooooooomoooooooooooon

(II)

,

where the last inequality holds from PpBq ě 1 ´ δ0 and by upper-bounding the expectation with
maximization over all realizations of the training samples.

Bounding (I): Let Ğscore1 be the score1 measure under the assumption that µ̂j “ µj and σ̂j “ σj
for all j P rds. From triangle inequality we have that

(I) ď
ˇ

ˇ

ˇ
PpBqE

“

score1pJ q|B
‰

´ E
“

Ğscore1pJ q
‰

ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ
E
“

Ğscore1pJ q
‰

´ ‖fĎJ ‖1
ˇ

ˇ

ˇ

paq
ď

ˇ

ˇ

ˇ
PpBqE

“

score1pJ q|B
‰

´ E
“

Ğscore1pJ q
‰

ˇ

ˇ

ˇ
`

2k{2
?
n´ 1

ď PpBq
ˇ

ˇ

ˇ
E
“

score1pJ q|B
‰

´ E
“

Ğscore1pJ q
‰

ˇ

ˇ

ˇ
` p1´ PpBqq

ˇ

ˇ

ˇ
E
“

Ğscore1pJ q
‰

ˇ

ˇ

ˇ
`

2k{2
?
n´ 1

ď

ˇ

ˇ

ˇ
E
“

score1pJ q|B
‰

´ E
“

Ğscore1pJ q
‰

ˇ

ˇ

ˇ
` δ0 max

pxpiq,ypiqq

ˇ

ˇ

ˇ
Ğscore1pJ q

ˇ

ˇ

ˇ
`

2k{2
?
n´ 1

,
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where paq follows from Lemma 1. Note that the conditions µ̂j “ µj and σ̂j “ σj in this lemma
are automatically satisfied for Ğscore1. We proceed with the following lemma which is proved in
Appendix G.2.

Lemma 10 Conditioned on B the inequalities
ˇ

ˇ

Ğscore1pJ q ´ score1pJ q
ˇ

ˇ ď λpε0q hold, almost
surely, for all k-element subsets J , where λ is a function satisfying λpε0q “ Opk2kckε0q as εÑ 0.

As a result of the lemma, we obtain the following bound on (I)

(I) ď λpε0q ` δ0 max
pxpiq,ypiqq

ˇ

ˇ

ˇ
Ğscore1pJ q

ˇ

ˇ

ˇ
`

2k{2
?
n´ 1

.

Bounding (II): As explained in the proof of Lemma 1, score1 can be written as

score1pJ q “
1

n

ÿ

i

ˇ

ˇ

ˇ
f̂ĎJ
piq pXpiqq

ˇ

ˇ

ˇ

where f̂ĎJ
piq is defined as in (28) which is repeated below

f̂ĎJ
piq pxq “

∆ n

n´ 1

ÿ

SĎJ

´

f̂S ´
1

n
Y piq

ź

jPS

Xjpiq ´ µ̂j
σ̂j

¯

pψSpxq.

As a result,

score1pJ q ď ‖f̂ĎJp1q ‖8 ď
n

n´ 1

ÿ

SĎJ
|f̂S |‖ pψS‖8 `

1

n
‖ pψS‖28

paq
ď

n

n´ 1

ÿ

SĎJ
‖ pψS‖28 `

1

n
‖ pψS‖28

ď
n` 1

n´ 1

ÿ

SĎJ
‖ pψS‖28,

where paq holds because f̂S “ 1
n

ř

i Y piq
pψSpXpiqq ď ‖ pψS‖8. We proceed with the following

lemma which is proved in Appendix G.3.

Lemma 11 Conditioned on B, the inequality ‖ψS ´ pψS‖8 ď γpε0q holds, almost surely, where γ
is a function satisfying γpε0q “ Opkε0

?
ckq as ε0 Ñ 0.

Therefore, from Lemma 11 and the inequality px` yq2 ď 2px2 ` y2q, we obtain

score1pJ q ď
n` 1

n´ 1
2
ÿ

SĎJ

´

‖ψS‖28 ` γ2pε0q
¯

pcq
ď 6 2k

`

ck ` γ
2pε0q

˘

“ Op2kckq, (19)

where pcq follows from the definition of ck as in (13), which implies that ‖ψS‖28 ď ck.
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Combining the bounds and tuning pε0, δ0q: Now, by combining the bound on (I) and (II), we
have that

ˇ

ˇ

ˇ
E
“

score1pJ q
‰

´ ‖fĎJ ‖1
ˇ

ˇ

ˇ
ď

2k{2
?
n´ 1

` λpε0q ` δ0 max
pxpiq,ypiqq

ˇ

ˇ

ˇ
Ğscore1pJ q

ˇ

ˇ

ˇ
` δ0Op2

kckq

ď
2k{2
?
n´ 1

` λpε0q ` δ0pOp2
kckq ` λpε0qq ` δ0Op2

kckq,

where the last inequality holds, because from Lemma 10 and inequality (19) we can write

Ğscore1pJ q ď score1pJ q ` λpε0q ď Op2kckq ` λpε0q.

Now, we tune pε0, δ0q. For γ P p0, 1{2q, set ε0 “
`

k2kckn
γ
˘´1. Hence, δ0 “ 2d expt´ n1´2γ

8k222kc2k
u.

With this choice λpε0q “ Opn´γq and plugging it into the above inequality implies

ˇ

ˇ

ˇ
E
“

score1pJ q
‰

´ ‖fĎJ ‖1
ˇ

ˇ

ˇ
ď

2k{2
?
n´ 1

`Opn´γq “ Opn´γq.

Lemma 12 (Generalizing Lemma 4) given ε1, δ1 P p0, 1q, with probability at least p1 ´ δ1q, the
inequalities

ˇ

ˇ

ˇ
score1pJ q ´ ‖fĎJ ‖1

ˇ

ˇ

ˇ
ď ε1 hold for all subsets J Ď rds with size k, provided that

the number of training samples are atleast Opk
222kc2k
ε21

log d
δ1
q.

Proof Let Ğscore1 be the score1 measure under the assumption that µ̂j “ µj and σ̂j “ σj for all
j P rds. Also, let B be the even that the inequalities in (18) hold. From triangle inequality we have
that

ˇ

ˇ score1pJ q ´ ‖fĎJ ‖1
ˇ

ˇ ď
ˇ

ˇ

Ğscore1pJ q ´ ‖fĎJ ‖1
ˇ

ˇ

looooooooooooomooooooooooooon

V

`
ˇ

ˇ score1pJ q ´ Ğscore1pJ q
ˇ

ˇ

looooooooooooooomooooooooooooooon

W

.

Let V and W denote the first and the second term above, respectively. We know that W is mea-
surable with respect to B. In particular, from Lemma 10, given B, W ď λpε0q almost surely.
Therefore, we have

P
!

ˇ

ˇ score1pJ q ´ ‖fĎJ ‖1
ˇ

ˇ ď ε1 ` λpε0q
)

ě P
!

V `W ď ε1 ` λpε0q
)

ě P
!

V ď ε1,W ď λpε0q
)

ě P
!

V ď ε1,W ď λpε0q, B
)

“ P
!

V ď ε1, B
)

paq
“ P

!

V ď ε1

)

P
!

B
)

ě p1´ δ1qp1´ δ0q,
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where paq holds as B is independent of V . Now set ε0 “ ε1
k2kck

, and δ0 “ δ1. With this choice,

n0pε0, δ0q “
8k222kc2k

ε21
log 2d

δ1
and λpε0q “ Opε1q. Hence, by appropriate choice of ε1, δ1, the follow-

ing inequality

ˇ

ˇ score1pJ q ´ ‖fĎJ ‖1
ˇ

ˇ ď ε1,

holds with probability p1´δ1q for for all k-element subsets J , provided that there are atleast n1pε1,

δ1q `Op
k222kc2k
ε21

log d
δ1
q samples. The proof is complete by noting that n1 ď Op

k222kc2k
ε21

log d
δ1
q.

Lemma 13 (Generalizing Lemma 7) Given ε2, δ2 P p0, 1q, with probability at least p1 ´ δ2q, the
inequalities

‖fĎJ ´ f̂ĎJ ‖2 ď ε2

hold for all subsets J Ď rds with size k, provided that the number of training samples are atleast

Op
k222kc2k
ε21

log d
δ1
q.

Proof Let f̄ĎJ denote the version of f̂ĎJ under the assumption that µ̂j “ µj and σ̂j “ σj for all
j P rds. Also, let B be the even that the inequalities in (18) hold. From Minkowsky’s inequality, by
adding and subtracting f̄ĎJ we have

‖fĎJ ´ f̂ĎJ ‖2 ď ‖fĎJ ´ f̄ĎJ‖2
loooooooomoooooooon

V

` ‖f̄ĎJ ´ f̂ĎJ ‖2
loooooooomoooooooon

W

.

Let V and W denote the first and the second term above, respectively. We proceed by the following
lemma which is proved in Appendix G.4.

Lemma 14 Conditioned on B, the inequalities ‖f̄ĎJ ´ f̂ĎJ ‖8 ď λpεq hold, almost surely, for all
k-element subsets J Ă rds, where λ is a function satisfying λpε0q “ Opk2kckε0q as ε0 Ñ 0.

From Lemma 14, we know that W is measurable with respect to B. In particular, conditioned
on B, W ď λpε0q. Therefore, using the inequality ‖¨‖2 ď ‖¨‖8, we have

P
!

‖fĎJ ´ f̂ĎJ ‖2 ď ε2 ` λpε0q
)

ě P
!

V `W ď ε2 ` λpε0q
)

ě P
!

V ď ε2,W ď λpε0q
)

ě P
!

V ď ε2,W ď λpε0q, B
)

“ P
!

V ď ε2, B
)

paq
“ P

!

V ď ε2

)

P
!

B
)

ě p1´ δ2qp1´ δ0q,
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where paq holds as B is independent of V . Now set ε0 “ ε2
k2kck

, and δ0 “ δ2. With this choice,

n0pε0, δ0q “
8k222kc2k

ε22
log 2d

δ2
and λpε0q “ Opε2q. Hence, by appropriate choice of ε2, δ2, the in-

equality ‖fĎJ ´ f̂ĎJ ‖2 ď ε2 holds with probability p1 ´ δ2q for for all k-element subsets J ,

provided that there are atleast n2pε2, δ2q `Op
k222kc2k
ε22

log d
δ2
q samples. Lastly, the proof is complete

by noting that n2 ď Op
k222kc2k
ε22

log d
δ2
q.

C. Proof of Lemma 3

Since the range of f belongs to t´1, 1u, then from Lemma2 the misclassification probability can be
written as

P
!

Y ‰ signrhJ pXqs
)

“
1

4

`

1´ ‖fĎJ ‖22 ` ‖fĎJ ´ signrhJ s‖22
˘

. (20)

The 2-norm quantity above is upper-bounded as follows

‖fĎJ ´ signrhJ s‖22
paq
ď

´

‖fĎJ ´ hJ ‖2 ` ‖hJ ´ signrhJ s‖2
¯2
,

“

´

‖fĎJ ´ hJ ‖22 ` ‖hJ ´ signrhJ s‖22

` 2‖fĎJ ´ hJ ‖2‖hJ ´ signrhJ s‖2
¯

,

(21)

where paq follows from the triangle inequality for 2-norm (Minkowski’s Inequality). Note that
|hJ ´ signrhJ s| “ |1´ hJ |. Therefore,

‖hJ ´ signrhJ s‖22 “ E
“

p1´ |hJ pX
J q|q2

‰

“ 1` ‖hJ ‖22 ´ 2‖hJ ‖1. (22)

From this relation and equations (20), (21), we obtain the following upper bound

4P
!

Y ‰ signrhJ pXqs
)

ď 2´ 2‖hJ ‖1 ` ‖hJ ‖22 ´ ‖fĎJ ‖22
looooooooomooooooooon

(I)

`‖fĎJ ´ hJ ‖22

` 2‖fĎJ ´ hJ ‖2 ‖hJ ´ signrhJ s‖2
loooooooooomoooooooooon

(II)

. (23)

In what follows, we bound the terms denoted by (I) and (II).

Bounding (I): From the triangle inequality for 2-norm, we have

‖hJ ‖22 ď
´

‖fĎJ ‖2 ` ‖hJ ´ fĎJ ‖2
¯2

“ ‖fĎJ ‖22 ` ‖hJ ´ fĎJ ‖22 ` 2‖fĎJ ‖2‖hJ ´ fĎJ ‖2
ď ‖fĎJ ‖22 ` ‖hJ ´ fĎJ ‖22 ` 2‖hJ ´ fĎJ ‖2
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where the second inequality is due to Fact 2 that ‖fĎJ ‖2 ď 1. Hence, the term (I) in (23) is upper
bounded as

(I) ď λ1 “
∆ ‖hJ ´ fĎJ ‖22 ` 2‖hJ ´ fĎJ ‖2. (24)

Bounding (II): From (22), we have

‖hJ ´ signrhJ s‖22 “ 1` ‖hJ ‖22 ´ 2‖hJ ‖1
paq
ď 1` 2p‖fĎJ ‖22 ` ‖fĎJ ´ hJ ‖22q ´ 2‖hJ ‖1
pbq
“ 1` 2p‖fĎJ ‖22 ` ‖fĎJ ´ hJ ‖22q ´ 2

`

‖fĎJ ‖1 ` p‖hJ ‖1 ´ ‖fĎJ ‖1q
˘

“ 1` 2p‖fĎJ ‖22 ´ ‖fĎJ ‖1q ` 2‖fĎJ ´ hJ ‖22 ´ 2
`

‖hJ ‖1 ´ ‖fĎJ ‖1
˘

pcq
ď 1` 2‖fĎJ ´ hJ ‖22 ´ 2

`

‖hJ ‖1 ´ ‖fĎJ ‖1
˘

pdq
ď 1` 2‖fĎJ ´ hJ ‖22 ` 2‖fĎJ ´ hJ ‖2 (25)

where paq follows from the triangle inequality for 2-norm and the inequality px`yq2 ď 2px2`y2q.
Equality pbq follows by adding and subtracting ‖fĎJ ‖1. Inequality pcq holds, since from Fact 2
‖fĎJ ‖22 ď ‖fĎJ ‖1. Lastly, inequality pdq holds because of the following chain of inequalities

ˇ

ˇ

ˇ
‖fĎJ ‖1 ´ ‖hJ ‖1

ˇ

ˇ

ˇ
ď ‖fĎJ ´ hJ ‖1 ď ‖fĎJ ´ hJ ‖2. (26)

where the first inequality is due to the triangle inequality for 1-norm and the second inequality is
due to Holder’s inequality.

Next, we show that the quantity
›

›hJ ´ signrhJ s
›

›

2
without the square is upper bounded by the

same term as in the right-hand side of (25). That is

(II) “
›

›hJ ´ signrhJ s
›

›

2
ď λ2 “

∆ 1` 2‖fĎJ ´ hJ ‖22 ` 2‖fĎJ ´ hJ ‖2. (27)

The argument is as follows: if
›

›hJ´signrhJ s
›

›

2
is less than one, then the upper bound holds trivially

as λ2 ě 1; otherwise, this quantity is less than its squared and, hence, the upper-bound holds.
As a result of the bounds in (23), (24), and (27) we obtain that

4P
!

Y ‰ signrhJ pXqs
)

ď 2´ 2‖hJ ‖1 ` λ1 ` ‖fĎJ ´ hJ ‖22 ` 2λ2‖fĎJ ´ hJ ‖2

“ 2´ 2‖fĎJ ‖1 `
´

‖fĎJ ‖1 ´ ‖hJ ‖1
¯

` λ1 ` ‖fĎJ ´ hJ ‖22 ` 2λ2‖fĎJ ´ hJ ‖2

ď 2´ 2‖fĎJ ‖1 ` ‖fĎJ ´ hJ ‖2 ` λ1 ` ‖fĎJ ´ hJ ‖22 ` 2λ2‖fĎJ ´ hJ ‖2,

where the last inequality is due to (26). Therefore, from the definition of λ1 and λ2, and the function
U in the statement of the lemma, we obtain

4P
!

Y ‰ signrhJ pXqs
)

ď 2´ 2‖fĎJ ‖1 ` 4Up‖fĎJ ´ hJ ‖2q.

This completes the proof.
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D. Proof of Lemma 1

Proof We start with rewriting score1. Define, the function

f̂ĎJ
piq pxq “

∆ n

n´ 1

ÿ

SĎJ

´

f̂S ´
1

n
Y piq

ź

jPS

Xjpiq ´ µ̂j
σ̂j

¯

pψSpxq, (28)

for all x P t´1, 1ud. With this definition, given any x, the quantity f̂ĎJ
piq pq is independent of pXdpiq,

Y piqq. Further, we can write score1 as the summation score1pJ q “ 1
n

ř

i |f̂
ĎJ
piq pXpiqq|. Hence, the

exception of score1 taken over the training samples gives

Erscore1pJ qs “
1

n

n
ÿ

i“1

EXp1q,...,Xpnq

” ˇ

ˇ

ˇ
f̂ĎJ
piq pXpiqq

ˇ

ˇ

ˇ

ı

“ EXp1q,...,Xpnq

” ˇ

ˇ

ˇ
f̂ĎJ
p1q pXp1qq

ˇ

ˇ

ˇ

ı

“ EXp2q,...,XpnqEXp1q

”
ˇ

ˇ

ˇ
f̂ĎJ
p1q pXp1qq

ˇ

ˇ

ˇ

ı

“ EXp2q,...,Xpnq

“

‖f̂ĎJ
p1q ‖1

‰

, (29)

where the first equality is due to the symmetry with respect to the index i of the training samples.
The last equality is due to the definition of 1-norm and the property that the function f̂ĎJ

p1q is inde-

pendent of pXp1q, Y p1qq. Note that f̂ĎJ
p1q is as an estimation of the projection fĎJ using the pn´1q

training samples pXpiq, Y piqq, i “ 2, 3, ..., n. Next, we bound the difference
ˇ

ˇ

ˇ
E‖f̂ĎJ

p1q ‖1´‖f
ĎJ ‖1

ˇ

ˇ

ˇ
.

Observe that
ˇ

ˇ

ˇ
E
“

‖f̂ĎJ
p1q ‖1

‰

´ ‖fĎJ ‖1
ˇ

ˇ

ˇ
ď E

“

‖fĎJ ´ f̂ĎJ
p1q ‖1

‰

ď E
“

‖fĎJ ´ f̂ĎJ
p1q ‖2

‰

ď

b

E
“

‖fĎJ ´ f̂ĎJ
p1q ‖

2
2

‰

where the first inequality is obtained by applying the triangle inequality twice, one for ‖f̂ĎJ
p1q ‖1 and

once for ‖fĎJ ‖1. The second inequality is from the identity ‖¨‖1 ď ‖¨‖2 as in Fact 1. The third
inequality is due to the Jensen’s inequality. Note that as µ̂j “ µj and σ̂j “ σj , then pψS ” ψS .
Therefore, by Parseval’s identity in Fact 1, we have

E
“

‖fĎJ ´ f̂ĎJ
p1q ‖

2
2

‰

“
ÿ

SĎJ

E
“

|fS ´ f̂p1q,S |
2
‰

“
ÿ

SĎJ

var
`

f̂p1q,S
˘

.

Note that f̂p1q,S is the empirical average of i.i.d. random variables Y piqψSpXpiqq for i “ 2, 3, ..., n.
Thus,

var
`

f̂p1q,S
˘

“
1

n´ 1
var

`

Y ψSpXq
˘

“
1

n´ 1
pE

“

Y 2ψ2
SpXq

‰

´ f2
Sq

“
1

n´ 1
p1´ f2

Sq,
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where the last equality holds because of of the following chain of equalities:

E
“

Y 2ψ2
SpXq

‰

“ E
“

ψ2
SpXq

‰

“ xψS , ψSy “ 1,

where the first equality holds because Y 2 “ 1 which is due to the fact that Y P t´1, 1u. The last
equality is due to orthonormality of the parities.

As a result of the above argument, we can write

E
“

‖fĎJ ´ f̂ĎJ
p1q ‖

2
2

‰

“
1

n´ 1

ÿ

SĎJ

p1´ f2
Sq “

1

n´ 1
p2|J | ´ ‖fĎJ ‖22q

ď
1

n´ 1
2k

Putting all together we get that

ˇ

ˇ

ˇ
E
“

‖f̂ĎJ
p1q ‖1

‰

´ ‖fĎJ ‖1
ˇ

ˇ

ˇ
ď

2k{2
?
n´ 1

The proof is complete by the above inequality and (29).

E. Proof of Lemma 7

Proof Assuming that µ̂j “ µj and σ̂j “ σj and from the definition of f̂ĎJ , we obtain that

f̂ĎJ pxq “
ÿ

SĎJ
f̂S ψSpxq, @x P X d.

In addition, by definition of the projection function fĎJ , we have

fĎJ pxq “
ÿ

SĎJ
fS ψSpxq, @x P X d.

Therefore, from Parseval’s identity, the 2-norm factors as

‖fĎJ ´ f̂ĎJ ‖22 “
ÿ

SĎJ

|fS ´ f̂S |
2.

In what follows, we show that |fS ´ f̂S | ď ε for all subsets S Ď rds with |S| ď k.
Note that f̂S is a function of the training random samples pXpiq, Y piqq, i “ 1, 2, ..., n. Observe

that Erf̂Ss “ fS which implies that f̂S is an unbiased estimation of fS . Since the samples are drawn
i.i.d., we apply Azuma’s inequality (Lemma 5) to bound the probability of the event |fS ´ f̂S | ě ε1.

For that, we first find the constants ci as in Lemma 5. Fix i P rds and suppose pXdpiq, Y piqq in
the training set is replaced with an i.i.d. copy pX̃dpiq, Ỹ piqq. With this replacement f̂S is changed
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to another random variable denoted by f̃S . Then

|f̂S ´ f̃S | “
1

n
|Y piqψSpX

dpiqq ´ Ỹ piqψSpX̃
dpiqq|

ď
1

n
|Y piqψSpX

dpiqq| ` |Ỹ piqψSpX̃
dpiqq|

ď
1

n
|ψSpX

dpiqq| ` |ψSpX̃
dpiqq|

ď
2

n
‖ψS‖8,

where ‖ψS‖8 “ maxxd |ψSpx
dq|. Therefore, from Azuma’s inequality, for any ε1 P p0, 1q

P
!

ˇ

ˇf̂S ´ fS
ˇ

ˇ ě ε1
)

ď 2 exp
 

´
nε12

8‖ψS‖28

(

.

Applying the union bound for all subsets S Ă rds with cardinality at most k, gives the following
upper-bound

P
!

ď

sĂrds,
|s|ďk

 ˇ

ˇf̂S ´ fS
ˇ

ˇ ě ε1
(

)

ď 2
”

k
ÿ

m“0

ˆ

d

m

˙

ı

exp
 

´
nε12

8ck

(

ď 2kdk exp
 

´
nε12

8ck

((

(30)

where ck “ maxSĎrds,|S|ďk‖ψS‖28 and the last inequality holds because for k ! d{2

k
ÿ

m“0

ˆ

d

m

˙

ď kdk.

We find n for which the right hand side of (30) is less than δ. For that we have

npε, δq ě
8ck
ε12

log

ˆ

2kdk

δ

˙

.

Next, note that

‖fĎJ ´ f̂ĎJ ‖22 “
ÿ

SĎJ

|fS ´ f̂S |
2 ď ε122k.

Therefore, ‖fĎJ ´ f̂ĎJ ‖2 ď ε12k{2, and the proof is complete by setting ε1 “ ε2´k{2.

F. Proof of Theorem 5

Note that ĝ ” signrf̂ĎĴ s and by Pepĝq denote its misclassification probability. Then, from Lemma
3, we have that

Pepĝq “
∆ PX,Y tY ‰ ĝpXĴ qu ď

1

2
p1´ ‖fĎĴ ‖1q ` Up‖fĎĴ ´ f̂ĎĴ ‖2q,
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where U is a polynomial of the form Upxq “ x3 ` 3
2x

2 ` 5
4x. Taking the expectation with respect

to the training samples Dn gives,

EDnrPepĝqs ď
1

2
p1´ EDnr‖fĎĴ ‖1sq ` EDnrUp‖fĎĴ ´ f̂ĎĴ ‖2qs.

Therefore, subtracting Popt gives

EDnrPepĝqs ´ Popt ď
1

2
p1´ EDnr‖fĎĴ ‖1sq ` EDn

“

Up‖fĎĴ ´ f̂ĎĴ ‖2q
‰

´ Popt

“
1

2
p‖fĎJ ˚‖1 ´ EDnr‖fĎĴ ‖1sq
loooooooooooooooomoooooooooooooooon

(I)

`EDn
“

Up‖fĎĴ ´ f̂ĎĴ ‖2q
‰

looooooooooooooomooooooooooooooon

(II)

. (31)

Next, we provide upper bounds for the terms (I) and (II).

Bounding (I): Note that Ĵ is a feature subset maximizing score1 as in (8). Whereas, J ˚ maxi-
mizes ‖fĎJ ‖1. Therefore, by adding and subtracting Erscore1pĴ qs and Erscore1pJ ˚qs we have:

(Iq “
`

‖fĎJ ˚‖1 ´ Erscore1pJ ˚qs
˘

`
`

Erscore1pJ ˚qs ´ Erscore1pĴ qs
˘

`
`

Erscore1pĴ qs ´ Er‖fĎĴ ‖1s
˘

paq
ď E

“

‖fĎJ ˚‖1 ´ score1pJ ˚q
‰

` E
“

score1pĴ q ´ ‖fĎĴ ‖1
‰

ď 2 max
J :|J |“k

ˇ

ˇErscore1pJ qs ´ ‖fĎJ ‖1
ˇ

ˇ

pbq
ď Opn´γq, (32)

where paq holds as score1pĴ q ě score1pJ ˚q and inequality pbq follows from Lemma 9 with γ P p0,
1{2q.

Bounding (II): We start by removing the effect of Ĵ by maximizing over all feature subsets J :

(II) ď max
J :|J |“k

EDn
“

Up‖fĎJ ´ f̂ĎJ ‖2q
‰

Fix a k-element subset J Ď rds and let Z “∆ ‖fĎJ ´ f̂ĎJ ‖2. Note that Z is a random variables
which is a function of the training samples Dn. From Lemma 7 we know that given ε2, δ2, the
inequality PtZ ą ε2u ď δ2 holds if n ě n2pε2, δ2q, where n2p¨q is defined in the lemma. Therefore,
by conditioning on the event tZ ď ε2u and its complement, we have

E
“

UpZq
‰

“ P
 

Z ď ε2
(

E
“

UpZq
ˇ

ˇZ ď ε2
‰

` P
 

Z ą ε2
(

E
“

UpZq
ˇ

ˇZ ą ε2
‰

paq
ď E

“

UpZq
ˇ

ˇZ ď ε2
‰

` δ2E
“

UpZq
ˇ

ˇZ ą ε2
‰

pbq
ď Upε2q ` δ2E

“

UpZq
ˇ

ˇZ ą ε2
‰

pcq
ď Upε2q ` δ2 max

pxpiq,ypiqq
Up‖fĎJ ´ f̂ĎJ ‖2q, (33)

where paq is due to the inequalities PtZ ď ε2u ď 1 and PtZ ą ε2u ď δ2. Inequality pbq holds due
to the conditioning Z ď ε2 and the fact that U is a monotone function. Inequality pcq follows by
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replacing the expectation with maximization over all realizations of the training samples. Next, we
upper-bound the term inside Up¨q. From the triangle inequality, we obtain that

‖fĎJ ´ f̂ĎJ ‖2 ď ‖fĎJ ‖2 ` ‖f̂ĎJ ‖2 ď 1` ‖f̂ĎJ ‖8,

where the last inequality holds due to ‖fĎJ ‖2 ď 1 and the identity ‖¨‖2 ď ‖¨‖8. Not that f̂ĎJ ”
ř

SĎJ f̂S
pψS and that the Fourier coefficients f̂S can be written as a linear combination of the

parities as in (7). Hence, from the definition of ‖¨‖8, we obtain that

‖f̂ĎJ ‖8 “ max
x

ˇ

ˇf̂ĎJ pxq
ˇ

ˇ ď
ˇ

ˇ

ÿ

SĂJ
‖ψS‖28

ˇ

ˇ ď 2kck,

where ck is the same term as in Theorem 4. As a result of the above equations and (33), we get the
upper bound ErUpZqs ď Upε2q ` δ2 p1 ` 2kckq. Since this bound is independent of the choice of
the k-element subset J , then the inequality

(II) ď Upε2q ` δ2 Up1` 2kckq.

holds as long as n ě n2pε2, δ2q.

Tuning pε2, δ2q: Now let γ P p0, 1
2q and set

ε2 “ 2k{4n´γ , δ2 “ 2kdk expt
´n1´2γ

8ck
u.

With this choice n2pε2, δ2q “ n. Further, we obtain in the following that

(II) ď Up2k{4n´γq ` 2kdkUp1` 2kckq expt
´n1´2γ

8ck
u
paq
“ Opn´γq,

where paq holds, since the exponential term on the left-hand side converges to zero faster than n´γ .
Consequently, from the above equation, (32), and the inequality (31), we get

EDnrPepĝqs ´ Popt ď Opn´γq `Opn´γq “ Opn´γq.

This completes the proof.

G. Proof of the Technical Lemmas

G.1 Proof of Lemma 6

First, as score1 is symmetric with respect to i, then αi’s are equal. Therefore, we need only to
calculate α1. Suppose pX̃p1q, Ỹ p1qq is an i.i.d. copy of the first sample in the training data set
pXp1q, Y p1qq. Let Ćscore1 be the same as score1 but with pXp1q, Y p1qq, replaced with its i.i.d. copy.

Then, we need to find α1 such that |score1pJ q ´ Ćscore1pJ q| ď α1. Note that pψS ” ψS
which follows from the assumption that µ̂j “ µj and σ̂j “ σj . From (8), and by replacing f̂S “
1
n

ř

j Y pjqψSpXpjqq we can write

score1pJ q “
1

n´ 1

n
ÿ

i“1

ˇ

ˇ

ˇ

ÿ

SĎJ

ÿ

j‰i

1

n
Y pjqψSpXpjqqψSpXpiqq

ˇ

ˇ

ˇ
.
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Depending whether i “ 1 or j “ 1, the right-hand side of the above equation is a sum of the
following three terms

1

npn´ 1q

ˇ

ˇ

ˇ

ÿ

SĎJ

ÿ

j‰1

Y pjqψSpXpjqqψSpXp1qq
ˇ

ˇ

ˇ
`

1

npn´ 1q

ÿ

i‰1

ˇ

ˇ

ˇ

ÿ

SĎJ
Y p1qψSpXp1qqψSpXpiqq

ˇ

ˇ

ˇ

`
1

npn´ 1q

ÿ

i‰1

ˇ

ˇ

ˇ

ÿ

SĎJ

ÿ

j‰i,1

Y pjqψSpXpjqqψSpXpiqq
ˇ

ˇ

ˇ
.

The third term int he above equation is the same in score1 and Ćscore1. Therefore, using the triangle
inequality, we obtain that

|score1pJ q ´ Ćscore1pJ q| ď
1

npn´ 1q

ÿ

SĎJ

ÿ

j‰1

ˇ

ˇ

ˇ
Y pjqψSpXpjqq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ψSpXp1qq ´ ψSpX̃p1qq

ˇ

ˇ

ˇ

loooooooooooooomoooooooooooooon

(I)

`
1

npn´ 1q

ÿ

SĎJ

ÿ

i‰1

ˇ

ˇ

ˇ
Y p1qψSpXp1qq ´ Ỹ p1qψSpX̃p1qq

ˇ

ˇ

ˇ

looooooooooooooooooooomooooooooooooooooooooon

(II)

ˇ

ˇ

ˇ
ψSpXpiqq

ˇ

ˇ

ˇ
. (34)

Note that
ˇ

ˇY pjqψSpXpjqq
ˇ

ˇ “
ˇ

ˇψSpXpjqq
ˇ

ˇ ď ‖ψS‖8, where we used the definition of 8-norm
and the fact that Y pjq P t´1, 1u. Thus, from the triangle inequality, the term (I) in (34) satisfies
(I) ď 2‖ψS‖8. As for (II), we add an subtract Y p1qψSpX̃p1qq and apply the triangle inequality. As
a result, we have that

(II) ď
ˇ

ˇY p1q
ˇ

ˇ

ˇ

ˇ

ˇ
ψSpXp1qq ´ ψSpX̃p1qq

ˇ

ˇ

ˇ
`
ˇ

ˇY p1q ´ Ỹ p1q
ˇ

ˇ

ˇ

ˇ

ˇ
ψSpX̃p1qq

ˇ

ˇ

ˇ
ď 4‖ψS‖8.

With the above argument and the inequality in (34), we obtain that

|score1pJ q ´ Ćscore1pJ q| ď
1

npn´ 1q

ÿ

SĎJ

ÿ

j‰1

6‖ψS‖28 ď
6 2k

n
‖ψS‖28,

where the last inequality follows since |J | ď k.

G.2 Proof of Lemma 10

Recall from the proof of Lemma 1 that score1 can be written as

score1pJ q “
1

n

ÿ

i

ˇ

ˇ

ˇ
f̂ĎJ
piq pXpiqq

ˇ

ˇ

ˇ
,

where f̂ĎJ
piq is defined as in (28) which is repeated below

f̂ĎJ
piq pxq “

∆ n

n´ 1

ÿ

SĎJ

´

f̂S ´
1

n
Y piq

ź

jPS

Xjpiq ´ µ̂j
σ̂j

¯

pψSpxq.

Further, note that Ęscore1 is the same as score1 but with µ̂j “ µj and σ̂j “ σj . Therefore, from

the above relation, Ęscore1 can also be written as Ğscore1pJ q “ 1
n

ř

i

ˇ

ˇ

ˇ
f̄ĎJ
piq pXpiqq

ˇ

ˇ

ˇ
, where

f̄ĎJ
piq pxq “

∆ n

n´ 1

ÿ

SĎJ

´

f̄S ´
1

n
Y piq

ź

jPS

Xjpiq ´ µj
σj

¯

ψSpxq,
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with f̄S “ 1
n

ř

i Y piqψSpXpiqq.
With the above definitions, from triangle inequality and the fact that ||a| ´ |b|| ď |a ´ b|, we

obtain
ˇ

ˇ

Ğscore1pJ q ´ score1pJ q
ˇ

ˇ ď
1

n

ÿ

i

ˇ

ˇf̄ĎJ
piq pXpiqq ´ f̂

ĎJ
piq pXpiqq

ˇ

ˇ ď ‖f̄ĎJ
p1q ´ f̂

ĎJ
p1q ‖8,

where the last inequality follows by maximizing over all realizations of Xpiq and the symmetricity
with respect to i. Note that, f̄ĎJ

p1q and f̂ĎJ
p1q are, respectively, equal to f̄ĎJ and f̂ĎJ when the first

sample pXp1q, Y p1qq is removed from the training samples. Hence, Lemma 14 of Appendix B
applies here and gives

‖f̄ĎJ
p1q ´ f̂

ĎJ
p1q ‖8 ď λpε0q,

where λpε0q “ Opk2kckε0q as ε0 Ñ 0. This completes the proof.

G.3 Proof of Lemma 11

We start with the triangle inequality for8-norm by adding and subtracting bSψS :

‖ψS ´ pψS‖8 ď ‖ψS ´ bSψS‖8 ` ‖bSψS ´ pψS‖8.

Note that bSψS ”
ś

jPS
xj´µj
σ̂i

. Now, using the triangle inequality on the second term above, we
have

‖bSψS ´ pψS‖8 “ ‖bSψS ˘
`

ÿ

lPS

ź

jďl

xj ´ µ̂j
σ̂i

ź

rąl

xr ´ µr
σ̂r

˘

´ pψS‖8

ď
ÿ

lPS

|µl ´ µ̂l|

σ̂l
‖
ź

jăl

pxj ´ µ̂jq

σ̂j

ź

rąl

pxr ´ µrq

σ̂r
‖8

ď
ε

σmin

ÿ

lPS
‖
ź

jăl

pxj ´ µ̂jq

σ̂j

ź

rąl

pxr ´ µrq

σ̂r
‖8

ď
ε

σmin

ÿ

lPS

ź

jăl

p1` |µ̂j |q

σ̂j

ź

rąl

p1` |µr|q

σ̂r

paq
ď

ε

σmin

ÿ

lPS

ź

jăl

p1` |µj |qp1` εq

σ̂j

ź

rąl

p1` |µr|q

σ̂r

pbq
ď

ε

σmin
bS

ÿ

lPS

ź

jPS

p1` |µj |qp1` εq

σj

pcq
ď

kε

σmin
bSp1` εq

k‖ψS‖8,

where paq follows from the inequality p1`|µ̂j |q ď p1`|µj |qp1`εq, and pbq follows from p1`|µj |q ď
p1` |µj |qp1` εq. Lastly, pcq holds as |S| ď k and because ‖ψS‖8 “

ś

jPS
1`|µj |
σj

.

‖ψS ´ pψS‖8 ď |1´ bS |‖ψS‖8 `
kε

σmin
bSp1` εq

k‖ψS‖8. (35)
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From the assumption of the lemma and the definition of bS we obtain that

1´ p1` εq|S| ď 1´ bS ď 1´ p1´ εq|S|.

Since ε P p0, 1q and |S| ď k, then p1´ εq|S| ě 1´ kε. Also, from the fact that p1` xq ď ex for all
x P R, we obtain

1´ ekε ď 1´ bS ď kε ď ekε ´ 1. (36)

Lastly, combining (35) and (36) gives the following inequality

‖ψS ´ pψS‖8 ď pekε ´ 1q‖ψS‖8 `
kε

σmin
p1` εq2k‖ψS‖8.

The proof is complete by noting that ‖ψS‖8 ď
?
ck.

G.4 Proof of Lemma 14

Recall that the function f̄ĎJ is defined as

f̄ĎJpxdq “∆
ÿ

SĎJ
f̄SψSpx

dq,

where the Fourier-estimates f̄S are defined as

f̄S “
∆ 1

n

ÿ

i

Y piqψSpXpiqq.

From triangle inequality for8-norm and the definition of f̂ĎJ and f̄ĎJ we obtain

‖f̂ĎJ ´ f̄ĎJ‖8 ď
ÿ

SĎJ

‖f̂S pψS ´ f̄S ψS‖8. (37)

Again by triangle inequality and by adding and subtracting f̄S pψS , we obtain that

‖f̂S pψS ´ f̄S ψS‖8 ď ‖f̂S pψS ´ f̄S pψS‖8 ` ‖f̄S pψS ´ f̄S ψS‖8
“ |f̂S ´ f̄S | ‖ pψS‖8 ` |f̄S | ‖ pψS ´ ψS‖8.

Next, note that from triangle inequality

|f̂S ´ f̄S | ď
1

n

ÿ

i

| pψSpxpiqq ´ ψSpxpiqq| ď ‖ψS ´ pψS‖8.

Therefore,

‖f̂S pψS ´ f̄S ψS‖8 ď
`

‖ pψS‖8 ` |f̄S |
˘

‖ pψS ´ ψS‖8. (38)

We proceed by bounding each term above. As for the first term we have, that ‖ pψS‖8 ď ‖ψS‖8 `
‖ pψS ´ ψS‖8. As for the second term, we have

f̄S “
1

n

ÿ

i

Y piqψSpXpiqq ď ‖ψS‖8.

30



Lastly, the third term is bounded using Lemma 11 of Appendix B, which is restated as follows:
Conditioned on B, ‖ψS ´ pψS‖8 ď γpε0q, almost surely, where γpε0q “ Opkε

?
ckq as ε0 Ñ 0.

Recall from (13), that ck is defined as ck “ maxS:|S|ďk‖ψS‖28. Therefore, combining these
bounds for the terms in (38) gives the following bound

‖f̂S pψS ´ f̄S ψS‖8 ď
`

2‖ψS‖8 ` ‖ pψS ´ ψS‖8
˘

‖ pψS ´ ψS‖8
ď

`

2
?
ck ` γpε0q

˘

γpε0q.

Lastly, as a result of the above bound and the inequality (37),

‖f̂ĎJ ´ f̄ĎJ‖8 ď λpε0q “
∆ 2k

`

2
?
ckγpε0q ` γ

2pε0q
˘

.

It is not difficult to check that λpε0q “ Opk2kckε0q as ε0 Ñ 0.
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