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Abstract

Lossless data compression is a facet of source coding and a well stud-

ied problem of information theory. Its goal is to find a shortest pos-

sible code that can be unambiguously recovered. Here, we focus on

rigorous analysis of code redundancy for known sources. The redun-

dancy rate problem determines by how much the actual code length

exceeds the optimal code length. We present precise analyses of three

types of lossless data compression schemes, namely fixed-to-variable

(FV) length codes, variable-to-fixed (VF) length codes, and variable-

to-variable (VV) length codes. In particular, we investigate the aver-

age redundancy of Shannon, Huffman, Tunstall, Khodak and Boncelet

codes. These codes have succinct representations as trees, either as

coding or parsing trees, and we analyze here some of their parame-

ters (e.g., the average path from the root to a leaf). Such trees are

precisely analyzed by analytic methods, known also as analytic com-

binatorics, in which complex analysis plays decisive role. These tools

include generating functions, Mellin transform, Fourier series, saddle

point method, analytic poissonization and depoissonization, Tauberian

theorems, and singularity analysis. The term analytic information the-

ory has been coined to describe problems of information theory studied

by analytic tools. This approach lies on the crossroad of information

theory, analysis of algorithms, and combinatorics.
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Communications and Information Theory, vol. XX, no. XX, pp. 1–140, 2017.
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Introduction

The basic problem of source coding better known as (lossless) data com-

pression is to find a binary code that can be unambiguously recovered

with shortest possible description either on average or for individual

sequences. Thanks to Shannon’s work we know that on average the

number of bits per source symbol cannot be smaller than the source

entropy rate. There are many codes asymptotically achieving the en-

tropy rate, therefore one turns attention to redundancy. The average

redundancy of a source code is the amount by which the expected num-

ber of binary digits per source symbol for that code exceeds entropy.

One of the goals in designing source coding algorithms is to minimize

the redundancy. In this survey, we discuss various classes of source cod-

ing and their corresponding redundancy. It turns out that such analyses

often resort to studying certain intriguing trees such as Huffman, Tun-

stall, Khodak and Boncelet trees, as well as various algorithms such

as divide-and-conquer approach. We study them using tools from the

analysis of algorithms and analytic combinatorics1 to discover precise

and minute behavior of lossless compression codes.

1Andrew Odlyzko has argued that: “analytic methods are extremely powerful
and when they apply, they often yield estimates of unparalleled precision.”
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Lossless data compression comes in three flavors: fixed-to-variable

(FV) length codes, variable-to-fixed (VF) length codes, and finally

variable-to-variable (VV) length codes. The latter includes the pre-

vious two families of codes and is the least studied among all data

compression schemes. Over years we have seen a resurgence of interest

in redundancy rate for fixed-to-variable coding (cf. [25, 28, 29, 30, 66,

90, 91, 92, 101, 103, 124, 126, 131, 133, 132, 140, 141, 152, 153, 165,

174, 181, 177, 178]). Surprisingly there are only a handful of results for

variable-to-fixed codes (cf. [77, 97, 112, 134, 132, 135, 157, 162, 186]

) and an almost non-existing literature on variable-to-variable codes

(cf. [42, 50, 80, 97]). While there is some work on universal VF codes

[157, 162, 186], to the best of our knowledge redundancy for universal

VF and VV codes were not studied with the exception of some work

of the Russian school [97, 96] (cf. also [99]).

In the fixed-to-variable code, discussed in Chapter 3, the encoder

maps fixed length blocks of source symbols into variable-length binary

code strings. Two important fixed-to-variable length coding schemes

are the Shannon code and the Huffman code. In this survey we follow

[153, 114]. We first discuss precise analyses of Shannon code redun-

dancy for memoryless and Markov sources. We show that the average

redundancy either converges to an explicitly computable constant, as

the block length increases, or it exhibits a very erratic behavior fluc-

tuating between 0 and 1. We also observe a similar behavior for the

worst case or maximal redundancy. Then we move to the Huffman code.

Despite the fact that Huffman codes have been so well known for so

long, it was only relatively recently that their redundancy was fully

understood. In [1] Abrahams summarizes much of the vast literature

on fixed-to-variable length codes. Here, we present a precise analysis

from our work [153] of the Huffman average redundancy for memory-

less sources. We show that the average redundancy either converges to

an explicitly computable constant, as the block length increases, or it

exhibits a very erratic behavior fluctuating between 0 and 1. Following

[114] we also present similar results for Markov sources.

Next, in Chapter 4 we study variable-to-fixed codes. A VF encoder

partitions the source string into variable-length phrases that belong to
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a given dictionary D. Often a dictionary is represented by a complete

tree (i.e., a tree in which every node has maximum degree), also known

as the parsing tree. The code assigns a fixed-length word to each dic-

tionary entry. An important example of a variable-to-fixed code is the

Tunstall code [158]. Savari and Gallager [132] present an analysis of

the dominant term in the asymptotic expansion of the Tunstall code

redundancy. In this survey, following [34], we describe a precise analysis

of the phrase length (i.e., path from the root to a terminal node in the

corresponding parsing tree) for such a code and its average redundancy.

We also discuss a variant of Tunstall code known as VF Khodak code.

In the next Chapter 5 we continue analyzing VF codes due to Bon-

celet [15] who used the divide-and-conquer principle to design a prac-

tical encoding. Boncelet’s algorithm is computationally fast and its

practicality stems from the divide and conquer strategy: It splits the

input (e.g., parsing tree) into several smaller subproblems, solving each

subproblem separately, and then knitting together to solve the origi-

nal problem. We use this occasion to present a careful analysis of a

divide-and conquer recurrence which is at foundation of several divide-

and-conquer algorithms such as heapsort, mergesort, discrete Fourier

transform, queues, sorting networks, compression algorithms, and so

forth [47, 86, 154].

In Chapter 6 we consider variable-to-variable codes. A variable-to-

variable (VV) code is a concatenation of variable-to-fixed and fixed-

to-variable codes. A variable-to-variable length encoder consists of a

parser and a string encoder. The parser, as in VF codes, segments the

source sequence into a concatenation of phrases from a predetermined

dictionary D. Next, the string encoder in a variable-to-variable scheme

takes the sequence of dictionary strings and maps each one into its

corresponding binary codeword of variable length. Aside from the spe-

cial cases where either the dictionary strings or the codewords have

a fixed length, very little is known about variable-to-variable length

codes, even in the case of memoryless sources. In 1972 Khodak [80]

described a VV scheme with small average redundancy that decreases

with the growth of phrase length. He did not offer, however, an explicit

VV code construction. We will remedy this situation and follow [16] to
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propose a transparent proof.

Finally, in Chapter 7 we discuss redundancy of one-to-one codes

that are not necessarily prefix or even uniquely decodable. Recall that

non-prefix codes are such codes which are not prefix free and do not

satisfy Kraft’s inequality. In particular, we analyze binary and non-

binary one-to-one codes whose average lengths are smaller than the

source entropy in defiance of the Shannon lower bound.

Throughout this survey, we study various intriguing trees describing

Huffman, Tunstall, Khodak and Boncelet codes. These trees are studied

by analytic techniques of analysis of algorithms [47, 85, 86, 87, 154].

The program of applying tools from analysis of algorithms to prob-

lems of source coding and in general to information theory lies at the

crossroad of computer science and information theory. It is also known

as analytic information theory. In fact, the interplay between informa-

tion theory and computer science dates back to the founding father

of information theory, Claude E. Shannon. His landmark paper “A

Mathematical Theory of Communication” is hailed as the foundation

for information theory. Shannon also worked on problems in computer

science such as chess-playing machines and computability of different

Turing machines. Ever since Shannon’s work on both information the-

ory and computer science, the research at the interplay between these

two fields has continued and expanded in many exciting ways. In the

late 1960s and early 1970s, there were tremendous interdisciplinary re-

search activities, exemplified by the work of Kolmogorov, Chaitin, and

Solomonoff, with the aim of establishing algorithmic information the-

ory. Motivated by approaching Kolmogorov complexity algorithmically,

A. Lempel (a computer scientist), and J. Ziv (an information theorist)

worked together in the late 1970s to develop compression algorithms

that are now widely referred to as Lempel-Ziv algorithms. Analytic

information theory is a continuation of these efforts.

Finally, we point out that this survey deals only with source coding

for known sources. The more practical universal source coding (in which

the source distribution is unknown) is left for our future book Analytic

Information Theory. However, at the end of this survey we provide

an extensive bibliography on the redundancy rate problem, including
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universal source coding.

This survey is organized as follows. In the next chapter, we present

some preliminary results such as Kraft’s inequality, Shannon’s lower

bound, and Barron’s lemma. In Section 3 we analyze Shannon and

Huffman codes. Then we turn our attention in Section 4 to the Tunstall

and VF Khodak codes. Finally, in Section 6 we discuss the VV code

of Khodak and its interesting analysis. We conclude this survey with a

chapter concerning the average redundancy for non-prefix codes such

as one-to-one codes.



2

Preliminary Results

Let us start with some definitions and preliminary results. A (binary)

source code is a one-to-one (or injective) mapping

C : A → {0, 1}+

from a finite alphabet A (the source) to the set {0, 1}+ of binary se-

quences.1 Such a mapping can be directly extended to finite sequences

of x1 . . . xk by concatenation: C̃(x1 . . . xk) = C(x1) . . . C(xk), that is,

to a mapping

C̃ : A+ → {0, 1}+.

A code C is uniquely decodable if the extension C̃ is one-to-one. In

particular if C is a prefix code (or instantaneous code), that is, if no

codeword C(x) is a prefix of another codeword, then C is uniquely

decodable.

We write L(C, x) (or simply L(x)) for the length of C(x). If A is

of the form A = Xm for some finite set X and the lengths L(x) are

not necessarily constant then C is called fixed-to-variable (FV) length

code. Similarly if A ⊂ X+ for some finite set X and C(A) ⊂ {0, 1}k
1It is immediate to extend this concept to m-ary codes C : A → {0, 1, . . . m−1}+.

However, in this survey we discuss only binary codes.

7
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for some k ≥ 1 then C is called variable-to-fixed (VF) length code.

Accordingly, variable-to-variable (VV) length codes are defined.

We denote by P a probability distribution on the alphabet A, The

elements of the source can be then interpreted as a random variable X

with probability distribution P [X = x] = P (x). Such a source is also

called probabilistic source. For example the code length L(X) is then

a random variable, too, and the expected code length E[L(X)] is an

important parameter of a probabilistic source code.

The source entropy of a probabilistic source is defined by

H(P ) = −E[log P (X)] = −
∑

x∈A
P (x) log P (x),

where shall write log for the logarithm of unspecified base, however,

throughout usually the base is equal to 2 unless specified otherwise.

Throughout, we also write x ∈ A+ for a sequence of unspecified

length, and xj
i = xi . . . xj ∈ Aj−i+1 for a consecutive subsequence of

length j − i + 1. We will also use the abbreviation xn = xn
1 . Finally,

throughout we write Z, Q and R for integer, rational, and real numbers

respectively.

2.1 Prefix Codes and Their Properties

As discussed, a prefix code is a code for which no codeword C(x) for

x ∈ A is a prefix of another codeword. For such codes there is a mapping

between a code word C(x) and a path in a tree from the root to a

terminal (external) node (e.g., for a binary prefix code move to the

left in the tree represents 0 and move to the right represents 1), as

shown in Figure 2.1. We also point out that a prefix code and the

corresponding path in a tree defines a lattice path in the first quadrant

also shown in Figure 2.1. Here left L and right R traversals in the

parsing tree corresponds to “left” or “up” movement in the lattice.

If some additional constraints are imposed on the prefix codes, this

translates into certain restrictions on the lattice path indicated as the

shaded area in Figure 2.1 (see also Figure 4.2 in Chapter 4 and [38]).

The prefix condition imposes some restrictions on the code length.

This fact is known as Kraft’s inequality discussed next.
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L R

R

L

Figure 2.1: Lattice paths and binary trees

Theorem 2.1. [Kraft’s Inequality] Let |A| = N . Then for any binary

prefix code the codeword lengths ℓ1, ℓ2, . . . , ℓN satisfy the inequality

N∑

i=1

2−ℓi ≤ 1. (2.1)

Conversely, if positive integers ℓ1, ℓ2, . . . , ℓN satisfy this inequality, then

one can build a prefix code with precisely these codeword lengths.

Proof. This is an easy exercise on trees. Let ℓmax be the maximum

codeword length. Observe that at level ℓmax some nodes are codewords,

some are descendants of codewords, and some are neither. Since the

number of descendants at level ℓmax of a codeword located at level ℓi

is 2ℓmax−ℓi , we obtain

N∑

i=1

2ℓmax−ℓi ≤ 2ℓmax ,

which is the desired inequality. The converse part can also be proved,

and is left for the reader.

Using Kraft’s inequality we can now prove the first theorem of Shan-

non (which was first established by Khinchin) that bounds from below

the average code length.

Theorem 2.2. For any prefix code the average code length E[L(C, X)]

cannot be smaller than the entropy of the source H(P ), that is,

E[L(C, X)] ≥ H(P )
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where the expectation is taken with respect to the distribution P of the

source sequence X ∈ A and the logarithms in the definition of H(P )

is the binary logarithms.

Proof. Let K =
∑

x 2−L(x) ≤ 1 and L(x) := L(C, x). Then for the

binary logarithm log = log2

E[L(C, X)] −H(P )] =
∑

x∈A
P (x)L(x) +

∑

x∈A
P (x) log P (x)

= −
∑

x∈A
P (x) log

2−L(x)/K

P (x)
− log K

≥ 1

ln 2

(
∑

x∈A
P (x)− 1

K

∑

x∈A
2−L(x)

)
− log K

= − log K ≥ 0

since − log2 x ≥ 1
ln 2 (1− x) for all x > 0 and K ≤ 1 due to Kraft’s

inequality.

Observe that Khinchin’s theorem implies the existence of at least

one element x̃ ∈ A such that

L(x̃) ≥ − log P (x̃). (2.2)

In fact this follows from an obvious contradiction that arises if (2.2)

is not true. A stronger statement is due to Barron [8] who proved the

following result.

Lemma 2.3 (Barron). Let C be a prefix code and a > 0. Then

P (L(C, X) < − log P (X)− a) ≤ 2−a.

Proof. We argue as follows (again log = log2):

P (L(X) < − log P (X)− a) =
∑

x: P (x)<2−L(x)−a

P (x)

≤
∑

x: P (x)<2−L(x)−a

2−L(x)−a

≤ 2−a
∑

x

2−L(x) ≤ 2−a,

where we have used Kraft’s inequality.
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What is the best code with respect to code length? We are now in

a position to answer this question. As long as the expected code length

is concerned, one needs to solve the following constrained optimization

problem for:

min
L

∑

x

L(x)P (x) subject to
∑

x

2−L(x) ≤ 1.

This optimization problem has an easy real valued solution through

Lagrangian multipliers, and one finds that the optimal code length

is L(x) = − log P (x) provided the integer character of the length is

ignored. If it is not ignored, then interesting things happen. First, the

excess of the code length over − log P (x) is called the redundancy and

discussed below. Furthermore, to minimize the redundancy, that is, to

make − log P (x) as close to an integer as possible, ingenious algorithms

were designed, and one of it, namely the Khodak VV code, is discussed

in Chapter 6.

2.2 Redundancy

In general, one needs to round the length to an integer, thereby incur-

ring some cost. This cost is usually known under the name redundancy.

More precisely, redundancy is the excess of real code length over its

ideal (optimal) code length which is assumed to be − log P (x). There

are several possible specification of this general definition. For known

distribution P , that we assume throughout this survey, the pointwise

redundancy RC(x) for a code C and the average redundancy R
C

are

defined as

RC(x) = L(C, x) + log P (x),

R
C

= E[L(C, X)] −H(P )].

Furthermore, Shtarkov introduced the maximal or worst case redun-

dancy R∗ defined as

R∗ = max
x

[L(C, x) + log P (x)].

The pointwise redundancy can be negative, but the average and worst

case redundancies cannot due to the Shannon theorem and (2.2), re-

spectively.
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In this survey we analyze the average redundancy and the worst

case redundancy for known sources of various prefix codes: Shannon and

Huffman fixed-to-variable codes (see Chapter 3), variable-to-fixed Tun-

stall and Khodak codes (see Chapter 4), divide-and-conquer variable-

to-fixed Boncelet code (see Chapter 5, variable-to-variable Khodak code

(see Chapter 6), and non prefix one-to-one codes (see Chapter 7).



3

Redundancy of Shannon and Huffman FV Codes

We now turn our attention to fixed-to-variable length codes, in par-

ticular to Shannon and Huffman codes. In this chapter, we assume

that a known source (i.e., a sequence of random variables) with dis-

tribution P generates a sequence xn := xn
1 = x1 . . . xn of fixed length

n, that is, the alphabet A is of the form A = X n, where we write

X = {0, 1, . . . , m − 1}. The code words C(xn
1 ) may be of a variable

length. We first analyze the average redundancy for Shannon and Huff-

man codes for memoryless sources. Then we study Shannon code redun-

dancy for Markov sources. Finally, we consider a code that optimizes

the worst case redundancy which turns out to be a generalized Shannon

code.

3.1 Average Redundancy for Memoryless Sources

We now assume that a sequence of fixed length n, denoted xn = xn
1 is

generated by a binary memoryless source with p being the probability

of emitting 0. We also write q := 1− p. This section, to a large extent,

is based on [153].

13



14 Redundancy of Shannon and Huffman FV Codes

3.1.1 Shannon Code

The Shannon code assigns to xn ∈ A = {0, 1}n a codeword with code

length

L(xn) = ⌈− log P (xn)⌉.
By Theorem 2.1 such a code always exists, since

∑

xn∈A
2−⌈− log P (xn)⌉ ≤

∑

xn∈A
P (xn) = 1.

For memoryless source, we have P (xn) = pkqn−k where k is the number

of 0s in xn and recall that q = 1− p. Hence, its average redundancy is

then

R
S
n =

n∑

k=0

(
n

k

)
pkqn−k

(
⌈− log(pkqn−k)⌉+ log pkqn−k

)
.

We rewrite it in a slightly different form. Define 〈x〉 = x − ⌊x⌋ as the

fractional part of real x. It is easy to see that

⌈−x⌉+ x = 〈x〉, x ∈ R (3.1)

for any real x. Hence we have

R
S
n =

n∑

k=0

(
n

k

)
pkqn−k〈αk + βn〉, (3.2)

where

α = log2

(
p

1− p

)
, β = log2 (1− p) . (3.3)

We are interested in the asymptotics of R
S
n given by (3.2). We start

with a Fourier series of 〈x〉, namely (cf. [190]), for x ∈ R

〈x〉 =
1

2
−

∞∑

m=1

sin 2πmx

mπ

=
1

2
+

∑

m∈Z\{0}
cme2πimx, cm =

i

2πm
. (3.4)

Hereafter, we shall write
∑

m6=0

:=
∑

m∈Z\{0}
.
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Observe that for x = 0 and x = 1 the right-hand and the left-hand

sides of (3.4) do not agree. These are the points of discontinuity of 〈x〉.
We now continue our evaluation of the average redundancy as ex-

pressed in (3.2). Observe that its asymptotic behavior depends on ra-

tionality or irrationality of α. Indeed, if α is rational, say α = 1/2 and

β = 0, then 〈αk + βn〉 takes only two values (i.e., 0 or 1/2), and hence

the average redundancy oscillates. This is not the case when α is irra-

tional. So let’s us first deal with the case when α is irrational. Using

(3.4) in (3.2) we obtain

R
S
n =

1

2
+

n∑

k=0

(
n

k

)
pkqn−k

∑

m6=0

cme2πim(αk+βn)

=
1

2
+
∑

m6=0

cme2πimβn
(
pe2πimα + q

)n
. (3.5)

Our goal now is to prove that the last sum in the above is o(1) when α

is irrational. Of course, if α is irrational then |pe2πimα + q| < 1 which

implies that
(
pe2πimα + q

)n → 0. Hence, it is very likely that R
S
n → 1

2

as n→∞. Unfortunately, it seems to be cumbersome to prove this fact

directly from the representation (3.5) since the Fourier series does not

converge absolutely. However, we can deal with the sum (3.2) directly

by applying the theory of sequences distributed modulo 1 (cf. [40, 98])

and will obtain the following result.

Theorem 3.1. Let R
S
n denote the average redundancy of the Shannon

code over a binary memoryless source A = {0, 1}n of length n with

parameter p ∈ (0, 1). If p = 1
2 , then R

S
n = 0. If p 6= 1

2 define α and β by

(3.3). Then, as n→∞

R
S
n =





1
2 + o(1) α irrational

1
2 + 1

M

(
〈Mnβ〉 − 1

2

)
+ O(ρn) α = N

M , gcd(N, M) = 1

(3.6)

where ρ < 1.

We now briefly describe elements of theory of sequences distributed

modulo 1 that fits our needs and finds other applications in information

theory (cf. [57]). We start with the following definition.
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Definition 3.1 (B-u.d. mod 1). A sequence xn ∈ R is said to be

Bernoulli uniformly distributed modulo 1 (in short: B-u.d. mod 1) if

for fixed 0 < p < 1

lim
n→∞

n∑

k=0

(
n

k

)
pk(1− p)n−kχI(〈xk〉) = λ(I) (3.7)

holds for every interval I ⊂ R, where χI(xn) is the characteristic func-

tion of I (i.e., it equals to 1 if xn ∈ I and 0 otherwise) and λ(I) is the

Lebesgue measure of I.

Remark. If we replace in (3.7) the binomial distribution by the uniform

distribution, then we define the uniform distributed sequences modulo

1, or in short u.d. mod 1. Not surprisingly, the property of 〈xk〉 does

not change when the uniform weight is replaced by the binomial weight

since 〈xk〉 stills “fills” up densely the interval (0, 1) (cf. [40] for more

details).

The following result summarizes the main property of B-u.d. mod-

ulo 1 sequences that we need in the analysis.

Theorem 3.2. Let 0 < p < 1 be a fixed real number and suppose that

the sequence xn is B-uniformly distributed modulo 1. Then for every

Riemann integrable function f : [0, 1] → R we have

lim
n→∞

n∑

k=0

(
n

k

)
pk(1− p)n−kf(〈xk + y〉) =

∫ 1

0
f(t) dt, (3.8)

where the convergence is uniform for all shifts y ∈ R.

Proof. The proof is standard and can be found in [40, 98]. Here we only

sketch the main idea. One first proves (3.8) for characteristic functions

χI(xk). This follows from Definition 3.1. Then, we approximate f by a

step function (i.e., a combination of characteristic functions) and use

the definition of the Riemann integral to bound the integral from below

and above. One shows that when n → ∞ these bounds coincide with

the left-hand side of (3.8).

To use Theorem 3.2 effectively, one needs a simple criterion to verify

whether a sequence is B-u.d. mod 1. Such a criterion, fortunately, exists
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and it is basically due to Weyl. Before we formulate it, we note that

we can relax the condition of Theorem 3.2 to functions f that are

continuous with period 1.

Theorem 3.3 (Weyl’s Criterion). A sequence xn is B-u.d. mod 1 if and

only if

lim
n→∞

n∑

k=0

(
n

k

)
pk(1− p)n−ke2πimxk = 0 (3.9)

holds for all m ∈ Z \ {0}.

Proof. Again the proof is standard and the reader is referred to text-

books such as [40, 98] (cf. Chapter 8 of [154] for a brief discussion).

Basically, it is based on the fact that by Weierstrass’s approximation

theorem every continuous function f of period 1 can be uniformly ap-

proximated by a trigonometric polynomial (i.e., a finite combination of

functions of the type e2πimx).

Now, we are in position to continue our derivation for the irrational

case. Assume α is irrational. We first prove that in this case 〈αk〉 is

B-u.d. mod 1. Indeed, by the binomial theorem we have

n∑

k=0

(
n

k

)
pkqn−ke2πim(kα) =

(
pe2πimα + q

)n
.

Since α is irrational we have |pe2πimα +q| < 1 if m 6= 0. Hence it follows

that

lim
n→∞

n∑

k=0

(
n

k

)
pkqn−ke2πim(kα) = lim

n→0

(
pe2πimα + q

)n
= 0 (3.10)

so that Weyl’s criterion can be applied. Hence, by Theorem 3.2, with

f(t) = t and y = βn, we immediately obtain

lim
n→∞

n∑

k=0

(
n

k

)
pkqn−k〈αk + βn〉 =

∫ 1

0
tdt =

1

2
. (3.11)

Now, we turn our attention to the case when α is rational. We

assume α = M/N where M, N are non-zero integers such that
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gcd(N, M) = 1. (If α = 0 — which is equivalent to p = 1
2 — we

trivially have R
S
n = 0.) Let pn,k =

(n
k

)
pkqn−k. We proceed as follows

R
S
n =

n∑

k=0

(
n

k

)
pkqn−k

〈
k

N

M
+ βn

〉
=

n∑

k=0

pn,k

〈
k

N

M
+ βn

〉

=
M−1∑

ℓ=0

∑

k≡ℓ mod M

pn,k

〈
ℓ

N

M
+ N + βn

〉

=
M−1∑

ℓ=0

∑

k≡ℓ mod M

pn,k

〈
ℓ

M
+ βn

〉

=
M−1∑

ℓ=0

〈
ℓ

M
+ βn

〉 ∑

k≡ℓ mod M

(
n

k

)
pk(1− p)n−k. (3.12)

To evaluate the last sum we need the following simple lemma. It

asserts that if one picks every Mth term of the binomial distribution,

then the total probability of this sample is “well” approximated by

1/M .

Lemma 3.4. For fixed ℓ ≤M and M , there exist ρ < 1 such that

∑

k≡ℓ mod M

(
n

k

)
pk(1− p)n−k =

1

M
+ O(ρn). (3.13)

Proof. Let ωk = e2πik/M for k = 0, 1, . . . , M − 1 be the Mth root of

unity. It is well known that (cf. [154])

1

M

M−1∑

k=0

ωn
k =

{
1 if M |n
0 otherwise.

(3.14)

where M |n means that M divides n. In view of this, we can write

∑

k≡ℓ mod M

(
n

k

)
pkqn−k =

n∑

k=0

(
n

k

)
pkqn−k 1

M

M−1∑

r=0

ωk−ℓ
r

=
1 + (pω1 + q)nω−ℓ

1 + · · ·+ (pωM−1 + q)nω−ℓ
M−1

M

=
1

M
+ O(ρn), (3.15)

since |(pωr + q)| = p2 + q2 + 2pq cos(2πr/M) < 1 for r 6= 0. This proves

the lemma.
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From now on, we deal only with the sum Sn = 1
M

∑M−1
ℓ=0

〈
ℓ

M + y
〉

of (3.12) ignoring the error term O(ρn) and setting y = βn. It is clear

that Sn is a periodic function in y with period 1/M and it is trivial to

evaluate Sn = 1/2 − 1/(2M) if y = 0. Hence, for 0 < y < 1/M we can

use again the Fourier series (3.4) and (3.14) to obtain

Sn =
1

M

M−1∑

ℓ=0


1

2
+
∑

m6=0

cme2πim(ℓ/M+y)




=
1

2
+
∑

m6=0

cme2πimy 1

M

M−1∑

ℓ=0

e2πim ℓ
M

(3.14)
=

1

2
+

1

M

∑

m=kM 6=0

ckM e2πikMy

(3.4)
=

1

2
− 1

M

(
1

2
− 〈yM〉

)
.

This leads to

Sn =
1

2
− 1

M

(
1

2
− 〈βnM〉

)
(3.16)

for all β. Combining (3.11) and (3.16) completes then the proof of

Theorem 3.1.

3.1.2 Huffman Codes

It is known that the following optimization problem over all prefix codes

C

R
H

= min
C

E[L(C, X) + log P (X)]

is solved by the Huffman code. Recall that Huffman code is a recursive

algorithm built over the associated Huffman tree, in which the two

nodes with lowest probabilities are combined into a new node whose

probability is the sum of the probabilities of its two children. Huffman

coding is still one of the most familiar topics in information theory

[1, 51, 52, 147], however, only recently a precise estimate of the average

redundancy R
H

of the Huffman code was derived in [153] that we review

below.
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We assume again that P is a memoryless source on A = {0, 1}n
with parameter p, where we also assume that p < 1

2 . We denote by

P (xn
1 ) = pkqn−k

the probability of generating a binary sequence consisting of k zeros

and n− k ones. The expected code length E[Ln] of the Huffman code

is

E[Ln] =
n∑

k=0

(
n

k

)
pkqn−kL(k),

where

L(k) =
1(n
k

)
∑

j∈Sk

lj

with Sk representing the set of all inputs having probability pkqn−k,

and lj being the length of the jth code in Sk. By Gallager’s sibling

property [52], we know that code lengths in Sk are either equal to l(k)

or l(k)+1 for some integer l(k). If nk denotes the number of code words

in Sk that are equal to l(k) + 1, then

L(k) = l(k) +
nk(n
k

) .

Clearly, l(k) = ⌊− log(pkqn−k)⌋. Stubley [147] analyzed carefully nk

and showed

R
H
n =

n∑

k=0

(
n

k

)
pkqn−k[log(pkqn−k) + ⌊− log(pkqn−k)⌋]

+ 2
n−1∑

k=0

(
n

k

)
pkqn−k(1− 2(log(pkqn−k)+⌊− log(pkqn−k)⌋)) + o(1).

As before, using 〈x〉 = x− ⌈x⌉ we find

log(pkqn−k) + ⌊− log(pkqn−k)⌋ = −〈αk + βn〉

where for convenience we restate (cf. (3.3)

α = log2

(
1− p

p

)
, β = log2

(
1

1− p

)
. (3.17)
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Figure 3.1: The average redundancy of Huffman codes (3.18) versus block size n
for: (a) irrational α = log2((1 − p)/p) with p = 1/π; (b) rational α = log2((1 − p)/p)
with p = 1/9.

Thus we arrive at the following

R
H
n = 2−

n∑

k=0

(
n

k

)
pkqn−k〈αk+βn〉−2

n∑

k=0

(
n

k

)
pkqn−k2−〈αk+βn〉 +o(1).

(3.18)

This is our starting formula for the average Huffman redundancy. Our

main result is formulated next.

Theorem 3.5 (W. Szpankowski, 2000). Consider the Huffman block

code of length n over a binary memoryless source. Suppose that 0 <

p < 1
2 and define α and β by (3.17). Then as n → ∞ the average

redundancy is given by

R
H
n =





3
2 − 1

ln 2 + o(1) ≈ 0.057304 α 6∈ Q

3
2 − 1

M

(
〈βMn〉 − 1

2

)
− 1

M(1−2−1/M )
2−〈nβM〉/M + o(1) α = N

M

where Q is the set of rational numbers, N, M are integers such that

gcd(N, M) = 1, and ρ < 1.

Before we present the proof, we plot in Figure 3.1 the average re-

dundancy R
H
n presented in (3.18) as a function of n for two values
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of α, one irrational and one rational. In Figure 3.1(a), we consider

α = log(1 − p)/p irrational, while in Figure 3.1(b), α is rational. Two

modes of behavior are clearly visible. The function in Figure 3.1(a) con-

verges to a constant (≈ 0.057) for large n as predicted by Theorem 3.5,

while the curve in Figure 3.1(b) is quite erratic.

In the rational case, we observe that the redundancy swings from

almost zero to about 0.086. To see it more precisely, and in fact to re-

cover Gallager’s upper bound [52], we set x = 〈Mnβ〉. We first observe

that M = 1 maximizes R
H
n , and then

R
H
n (x) ∼ 2− x− 2−x+1. (3.19)

This leads to

max
0≤x<1

2− x− 2−x+1 = 1− 1 + ln ln 2

ln 2
= log(2(log e)/e) = 0.08607 . . . ,

(3.20)

which is the Gallager upper bound (since the most likely probability

p1 = O(1/
√

n) in this case). We formulate it as a corollary.

Corollary 3.6. Let R
H
n denote the average redundancy of a Huffman

block code of length n over a binary memoryless source. Then

lim sup
n→∞

R
H
n ≤ 1− 1 + ln ln 2

ln 2
= log(2(log e)/e) ∼ 0.08607 . . . , (3.21)

Proof of Theorem 3.5. To establish Theorem 3.5 we must only deal

with the asymptotics of the following sum

Tn =
n∑

k=0

(
n

k

)
pkqn−k2−〈αk+βn〉. (3.22)

We need to consider the rational and irrational case. For the irrational

case, we simply use Theorem 3.2 with f(t) = 2−t and y = βn. For the

rational case, we can use the Fourier series as before, but this time we

need the following for some a > 0

2−〈x〉/a = C0(a) +
∑

m6=0

Cm(a)e2πimx, (3.23)
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where

C0(a) =
a

ln 2

(
1− 2−1/a

)
, (3.24)

Cm(a) =
a

2πima + ln 2

(
1− 2−1/a

)
, m 6= 0. (3.25)

In fact, for the rational case it is easier to formalize our approach and

codify it in the form of the next lemma from which Theorem 3.5 follows.

The proof follows the footsteps of our derivations in (3.12).

Lemma 3.7. Let 0 < p < 1 be a fixed real number and suppose that

α = N
M is a rational number with gcd(N, M) = 1. Then, for every

bounded function f : [0, 1] → R we have

n∑

k=0

(
n

k

)
pk(1− p)n−kf(〈kα + y〉) =

1

M

M−1∑

l=0

f

(
l

M
+
〈My〉

M

)
+ O(ρn)

uniformly for all y ∈ R and some ρ < 1.

3.1.3 Golomb Code

In this section we give a short account on Golomb’s code that can be

viewed as a special case of Huffman’s code adapted to infinite alphabets.

Our analysis in this section will differ from other sections since we

perform asymptotics not with regard to the block length but rather at

the limit of a code parameter.

More precisely, let

P (i) = (1− θ)θi, i ∈ Z+, (3.26)

be the probability assignment on the set of nonnegative integers where

0 < θ < 1. Golomb [54] proposed the following optimal binary code

(we follow here the description from [53]): Let ℓ be an integer such that

θℓ =
1

2
, (3.27)

which means that we restrict on θ that are roots of 1/2. In Golomb’s

code an integer i is represented as i = ℓj + r, where j = ⌊i/ℓ⌋ and

0 ≤ r < ℓ. We encode j by a unary code (i.e., j zeros followed by a
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Figure 3.2: The average redundancy of Golomb codes versus ℓ.

one) while r is encoded by a Shannon code (for a uniform distribution

on ℓ symbols).

In [53, 54] it is shown that the average Golomb’s code length E[L]

is

E[L] = ⌈log2 ℓ⌉+
θ2⌊log2 ℓ⌋+1

θℓ − 1
. (3.28)

Roughly speaking, the first term above corresponds to the Shannon

code while the second term represents the unary coding. The average

redundancy R
G
ℓ of the Golomb code becomes

R
G
ℓ = E[L]−H(θ) (3.29)

where the entropy H(θ) of the geometric distribution (3.26) can be

computed as

H(θ) = − log2(1− θ)− θ

1− θ
log2 θ. (3.30)

We will estimate R
G
ℓ as l→∞ or equivalently as θ → 1 (cf. [53, 113]).

Our main result is presented next. Observe that in this case, there

is only the oscillatory mode of R
G
ℓ behavior as illustrated in Figure 3.2.

Theorem 3.8. Consider the Golomb code over the non-negative inte-

gers generated by a geometric source Geometric(θ) such that there

exists an integer ℓ with θℓ = 1
2 . Then as ℓ→∞, so that θ → 1,

R
G
ℓ = 1− 〈log2 ℓ〉+ 4 · 2−21−〈log2 ℓ〉 − log2(log2 e)− log2 e− 1

2ℓ
+ O(ℓ−2).

(3.31)
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Furthermore, the average redundancy R
G
ℓ oscillates around 2 −

log2(log2 e)− log2 e = 0.028538562 . . . with

lim inf
ℓ→∞

R
G
ℓ = 0.0251005712 . . . , (3.32)

lim sup
ℓ→∞

R
G
ℓ = 0.0327344112 . . . . (3.33)

Proof. We assume that θℓ = 1/2 as in (3.28), and estimate the entropy

H(θ) (cf. (3.30)) as ℓ → ∞ (i.e, θ = 2−1/ℓ → 1). Using the following

Taylor’s expansion

log2(1− 2−x) = log2(ln(2) + log2(x)− 1

2
x +

ln(2)

24
x2 + O(x3), x→ 0,

(3.34)

we arrive at

H(θ) = log2 ℓ + log2(log2 e) +
1

2ℓ
+ O(ℓ−2). (3.35)

The average redundancy R
G
ℓ = E[L] − H(θ), where E[L] is given

by (3.28), follows after some simple algebra

R
G
ℓ = 1− 〈log2 ℓ〉+ 4 · 2−21−〈log2 ℓ〉 − log2(log2 e)− log2 e− 1

2ℓ
+ O(ℓ−2)

(3.36)

as ℓ→∞ or θ → 1. This proves (3.31) of Theorem 3.8. We should also

point out that using the above approach we can get a full asymptotic

expansion of R
G
ℓ as ℓ→∞.

Since 〈log2 n〉 is dense in (0, 1) it follows by (3.36) that the aver-

age redundancy R
G
ℓ asymptotically oscillates within a certain interval

without reaching a limit, as observed in Figure 3.2.

To compute the magnitude of the oscillation, let us define C =

log2(log2 e) + log2 e = 1.971461414 . . .. We set

g(x) = 1− x + 4 · 2−21−x − C (3.37)

for 0 ≤ x ≤ 1. (Observe that g(x) is asymptotically equal to RG
ℓ

when x = 〈log2 n〉.) One derives that g(x) achieves it maximum value

g(x1) := max{g(x)} = .327344112 . . . at

x1 = log2

( −2 ln(2)

W (−0.25 log2 e)

)
(3.38)
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where W (x) is the Lambert-W function defined as W (x)eW (x) = x (cf.

[21]). Similarly, the function g(x) achieves its minimum value g(x2) :=

min{g(x)} = .251005712 . . . at

x2 = log2

( −2 ln(2)

W (−1,−0.25 log2 e)

)
(3.39)

where W (−1, x) is a branch of the Lambert-W function (cf. [21]). It is

also easy to see that the average redundancy oscillates around g(0) =

g(1) = 2− C = .0285385862 . . .. This proves Theorem 3.8.

3.2 Shannon Code Redundancy for Markov Sources

In this section we study the average redundancy of the Shannon code

for Markov sources, that is the probability distribution on the alphabet

A = {0, 1}n (or more generally on A = {0, 1, . . . , m− 1}n) is given by

a Markov process. This section is mostly based on [114].

Consider a source sequence X1, X2, . . ., where for t = 1, 2, . . . the

sequence Xt ∈ X = {0, 1, . . . m − 1} is governed by a first–order

Markov chain with a given matrix P of state–transition probabili-

ties {p(j|k)}m−1
j,k=0. The initial state probabilities will be denoted by

pk = P (Xt = k) for k = 0, 1, . . . , m−1. We write πk, k = 0, 1 . . . , m−1

for the stationary state probabilities. Thus, the probability of a given

source string xn = (x1, . . . , xn) ∈ A = X n, under the given Markov

source, is

P (xn) = px1

n∏

t=2

p(xt|xt−1). (3.40)

The average redundancy of the Shannon code is then

Rn = E[⌈− log P (Xn)⌉+ log P (Xn)] = E[〈log P (Xn)〉]. (3.41)

Our main result in this section is the following theorem which is a

slight extension of a result of Merhav and W. Szpankowski [114].

Theorem 3.9. Consider the Shannon code of block length n for a

Markov source with a given vector p = (p0, . . . , pm−1) of initial state

probabilities and a positive state transition matrix P. Define

αjk = log

[
p(j|0)p(j|j)

p(k|0)p(j|k)

]
, j, k ∈ {0, 1, . . . , m− 1}. (3.42)
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Then, the redundancy Rn is characterized as follows:

(a) If not all {αjk} are rational, then

Rn =
1

2
+ o(1). (3.43)

(b) If all {αjk} are rational, then for every j, k ∈ {0, . . . , m− 1}, let

ζjk(n) = M [(n− 1) log p(0|0)− log p(j|0) + log p(k|0) + log pj], (3.44)

and

Ωn =
1

2

(
1− 1

M

)
+

1

M

m−1∑

j=0

m−1∑

k=0

pjπk〈ζjk(n)〉, (3.45)

where M is the smallest common integer multiple of the denominators

of {αjk}, when each one of these numbers is represented as a ratio

between two relatively prime integers. Then

Rn = Ωn + O(ρn) (3.46)

for some ρ < 1.

Before we prove Theorem 3.9 in the next subsection, we offer some

comments. Theorem 3.9 tells us that, as in the memoryless case, Rn has

two modes of behavior. In the convergent mode, which happens when

at least one αjk is irrational, Rn → 1/2. In the oscillatory mode, which

happens when all {αjk} are rational, Rn oscillates and it asymptotically

coincides with Ωn.

We also note that if log p(0|0) is irrational, then by Weyl’s equidis-

tribution Theorem 3.3, the sequences {ζjk(n)}n≥1 are uniformly dis-

tributed modulo 1, i.e., they fill the unit interval mod 1. If, on the

other hand, log p(0|0) is rational, then 〈ζjk(n)〉 are periodic sequences.

The expression of the oscillatory case, Ωn, is not quite intuitive at

first glance, therefore, in this paragraph, we make an attempt to give

some quick insight, which captures the essence of the main points. The

arguments here are informal and non-rigorous (see Section 3.2.1 for a

rigorous proof). The Fourier series expansion of the periodic function

〈·〉 is given by

〈u〉 =
1

2
+
∑

h 6=0

che2πihu (3.47)
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and the important fact about the coefficients ch = i/(2πh) is that they

are inversely proportional to h, so that for every two integers k and h,

ch·k = ch/k. Now, when computing Rn = E[〈log P (Xn)〉], let us take

the liberty of exchanging the order between the expectation and the

summation, i.e.,

Rn =
1

2
+
∑

h 6=0

chE[e2πih log P (Xn)]. (3.48)

It turns out that under the conditions of the oscillatory mode,

E[e2πih log P (Xn)] tends to zero as n → ∞ for all h, except for mul-

tiples of M , namely, h = ℓM , l = ±1,±2, . . .. Thus, for large n, we

have

Rn ≈ 1

2
+
∑

ℓ 6=0

cℓM E[e2πiℓM log P (Xn)]

=
1

2
+

1

M

∑

ℓ 6=0

cℓE[e2πiℓM log P (Xn)]

=
1

2
+

1

M

[
E[〈M log P (Xn)〉]− 1

2

]

=
1

2

(
1− 1

M

)
+

1

M
E[〈M log P (Xn)〉]. (3.49)

Now, consider the set of all {xn} that begin from state x1 = j and

end at state xn = k. Their total probability is about pjπk for large

n since Xn is almost independent of X1. It turns out that all these

sequences have exactly the same value of 〈M log P (xn)〉, which is ex-

actly 〈ζjk(n)〉 (or, in other words, 〈M log P (xn)〉 = 〈ζx1xn(n)〉 inde-

pendently of x2, . . . , xn−1) and this explains the expression of Ωn.

The reason for this property of 〈M log P (xn)〉 is the rationality con-

ditions 〈M · αuv〉 = 0, u, v ∈ {0, 1, . . . , m − 1}, which imply that

〈M log p(xt|xt−1)〉 = 〈M log[p(xt|1)p(0|0)/p(xt−1 |0)]〉, and so,

〈M log P (xn)〉 = 〈M log pj〉+
n∑

t=2

〈M log p(xt|xt−1)〉 mod 1

= 〈M log pj〉+
n∑

t=2

〈M log[p(xt|1)p(0|0)/p(xt−1 |0)]〉 mod 1
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which, thanks to the telescopic summation, is easily seen to coincide

with the fractional part of ζjk(n), and of course, 〈ζjk(n)〉 depends on

ζjk(n) only via its fractional part.

Consider next the following example for using Theorem 3.9.

Example 3.1. Consider a Markov source for which the rows of P are all

permutations of the first row, which is p = (p0, . . . , pm−1). Now, assum-

ing that αj := log(p1/pj) are all rational, let M be the least common

multiple of their denominators (i.e., the common denominator) when

each one of them is expressed as a ratio between two relatively prime

integers. Then,

〈ζjk(n)〉 = 〈M(n − 1) log p(0|0) −M log p(j|0) + M log p(k|0)

+M log pj〉
= 〈M(n − 1) log p0 −M log pj + M log pk + M log pj〉
= 〈M(n − 1) log p0 + M log pk〉
= 〈Mn log p0 −M log p0 + M log pk〉
= 〈Mn log p0〉,

where in the last step, we have used the fact that (M log p0−M log pk)

is integer and that 〈·〉 is a periodic function with period 1. We have

Rn =
1

2

(
1− 1

M

)
+

1

M

m−1∑

j=0

m−1∑

k=0

pjπk〈ζjk(n)〉+ o(1)

=
1

2

(
1− 1

M

)
+

1

M

m−1∑

j=0

m−1∑

k=0

pjπk〈nM log p1〉+ o(1)

=
1

2

(
1− 1

M

)
+

1

M
〈nM log p0〉+ o(1). (3.50)

If not all αj are rational, then Rn → 1/2, as predicted by Theorem 3.9.

To see why the conditions of Theorem 3.9 lead to the rationality con-

dition herein, let us denote

ujk = 〈h log[p(j|0)/p(k|0)]〉 ,

vjk = 〈h log[p(j|j)/p(j|k)]〉 .

Then, the conditions of Theorem 3.9 mean that ujk +vjk = 0 and for all

pairs j and k. Therefore, the number of constraints here is of the order
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of m2, whereas the number of degrees of freedom that generate these

variables, in this example, is m − 1, i,e., the variables 〈h log(p1/pj)〉,
j = 1, 2, . . . , m − 1. Thus, we can think of this as an overdetermined

set of homogeneous linear equations whose only solution is zero, mean-

ing that all 〈h log(p1/pj)〉, j = 1, 2, . . . , m − 1, vanish. Note that the

memoryless source is a special case of this example, where the rows of

P are all identical to the first row, (p0, . . . , pm−1). Indeed, (3.50) co-

incides with the expression of the memoryless case as discussed in the

first subsection of this chapter.

3.2.1 Proof of Theorem 3.9

The main idea behind the analysis of Rn = E[〈log P (Xn)〉] is to ap-

proximate the periodic function 〈·〉 by a sequence of trigonometric poly-

nomials, and then to commute the expectation with the summation

and analyze the various terms of the series. A sufficient condition for

making this commutation rigorous is that the convergence would be

uniform, but unfortunately, it cannot be uniform since the function

〈·〉 is discontinuous. An alternative route that we take is to sandwich

〈·〉 between two continuous periodic functions, both with period 1, and

both indexed by some parameter H, which when tending to infinity, the

bounds become tighter and tighter. Fejér’s theorem (see, e.g., [148]),

which is the trigonometric version of the Weierstrass theorem, provides

a concrete sequence of trigonometric polynomials, which converges uni-

formly to any given periodic continuous function. The following lemma

is a modern variant due to Vaaler [159] and will be used in the irrational

case.

Lemma 3.10 (Vaaler, 1985). For H ∈ N, h ∈ Z, 1 ≤ |h| ≤ H, let

0 < θH(h) := π
|h|

H + 1

(
1− |h|

H + 1

)
cot

(
π
|h|

H + 1

)
+
|h|

H + 1
< 1.

Then, the trigonometric polynomial

Ψ∗
H(x) =

1

2
− 1

2iπ

∑

1≤|h|≤H

θH(h)

h
e2πihx
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satisfies

|〈x〉 −Ψ∗
H(x)| ≤ 1

2H + 2

∑

|h|≤H

(
1− |h|

H + 1

)
e2πihx (x ∈ R)

for all H.

Define the functions ̺−
H and ̺+

H as

̺−
H(u) = Ψ∗

H(x)−∆H(u) (3.51)

and

̺+
H(u) = Ψ∗

H(x) + ∆H(u). (3.52)

where

∆H(u) =
1

2H + 2

∑

|h|≤H

(
1− |h|

H + 1

)
e2πihx. (3.53)

Obviously, ̺−
H(u), and ̺+

H(u) are continuous, periodic functions, with

period 1, and ̺−
H(u) ≤ 〈u〉 ≤ ̺+

H(u) for every u.

We now proceed to establish upper and lower bounds, however, we

only present details for the lower bound. We have

Rn = E [〈log P (Xn)〉]
≥ E

[
̺−

H(log P (Xn))
]

=
1

2
+

∑

1≤|h|≤H

θH(h)

h
E
[
e2πih log P (Xn)

]

− 1

2H + 2

∑

|h|≤H

(
1− |h|

H + 1

)
E
[
e2πih log P (Xn)

]
. (3.54)

We next show that in the irrational case we have

lim
n→∞

E
[
e2πih log P (Xn)

]
= 0 (3.55)

for all integers h 6= 0. If (3.55) holds then it follows that

lim inf
n→∞

Rn ≥
1

2
− 1

2H + 2

for all integers H ≥ 1 and thus lim infn→∞ Rn ≥ 1
2 . Similarly we get

an upper bound and consequently we have Rn = 1
2 + o(1) (as n→∞)

in the irrational case.
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In order to show (3.55), we define the m ×m complex matrix Ah

whose entries are

ajk(h) = p(k|j) exp [2πih log p(k|j)] , j, k = 0, . . . , m− 1. (3.56)

We also define the m–dimensional column vectors

ch = (p0 exp[2πih log p0)], . . . , pm−1 exp[2πih log pm−1])T , (3.57)

and 1 = (1, 1, . . . , 1)T , where the superscript T denotes vector/matrix

transposition. Then, according to (3.40) it follows that

E
[
e2πih log P (Xn)

]
= c

T
h An−1

h 1. (3.58)

Let lj,h and rj,h be, respectively, the left eigenvector and the right

eigenvector pertaining to the eigenvalue λj,h (j = 0, 1, . . . , m − 1) of

the matrix Ah. Here, we index the eigenvalues of Ah according to a

non–increasing order of their modulus, that is,

|λ1,h| ≥ |λ2,h| ≥ · · · ≥ |λm,h|. (3.59)

Since P is a stochastic matrix (so, its maximum modulus eigenvalue

is 1) and its elements are the absolute values of the corresponding

elements of Ah, it follows from [116, Theorem 8.4.5] that |λ1,h| ≤ 1 (and

hence |λj,h| ≤ 1 for all j = 0, 1, . . . , m − 1). Also, the systems of left–

and right eigenvectors form a bi-orthogonal system, i.e., lTj,hrk,h = 0,

j, k = 0, 1, . . . , m− 1, j 6= k. We scale these vectors such that lTj,hrj,h =

1 for all j = 0, 1, . . . , m − 1. Then by the spectral representation of

matrices [116], we have

An−1
h 1 =

m−1∑

j=0

λn−1
j,h · lTj,h1 · rj,m, (3.60)

and so,

c
T
h An−1

h 1 =
m−1∑

j=0

λn−1
j,h · lTj,h1 · cT

h rj,h. (3.61)

Now the following lemma, that appears in [116] (with minor modifica-

tions in its phrasing), and that has already been used in earlier related

studies [75], [72], will be useful to show that |λ1,h| < 1 in the irrational

case.

For a quadratic matrix A the spectral radius is denoted by ρ(A).
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Lemma 3.11. [116, Theorem 8.4.5, p. 509] Let F = {fkj} and G =

{gkj} be two m ×m matrices. Assume that F is a real, non–negative

and irreducible matrix, G is a complex matrix, and fkj ≥ |gkj| for

all k, j ∈ {1, 2, . . . , m}. Then, ρ(G) ≥ ρ(F ) with equality if and only if

there exist real numbers s, and w1, . . . , wm such that G = e2πisDFD−1,

where D = diag{e2πiw1 , . . . , e2πiwr}.

The proof of the necessity of the condition G = e2πisDFD−1 ap-

pears in [116] (see also [75], [72]). The sufficiency is obvious since the

matrix DFD−1 is similar to F and hence has the same set of eigenval-

ues.

We wish to apply Lemma 3.11 in order to distinguish between

the two aforementioned cases concerning the spectral radius of Ah.

Consider the state transition probability matrix P in the role of F

of Lemma 3.11 (i.e., fkj = p(j|k)) and the matrix Ah in the role of

G. Since P is assumed positive in this part, then it is obviously non–

negative and irreducible. Since it is a stochastic matrix, its spectral

radius is, of course, ρ(P ) = 1. Also, by definition of Ah, as the matrix

{p(j|k) · exp[2πih log p(j|k)]}, it is obvious that the elements of P are

the absolute values of the corresponding elements of Ah, and so, all

the conditions of Lemma 3.11 clearly apply. The lemma then tells us

that ρ(Ah) = ρ(P ) = 1 if and only if there exist real numbers s and

w0, . . . wm−1 such that for some integer h:

h log p(j|k) = (s + wk − wj) mod 1, j, k = 0, . . . , m− 1, (3.62)

where x = y mod 1 means that the fractional parts of x and y are

equal, that is, 〈x〉 = 〈y〉.
To find a vector w = (w0, . . . , wm−1) and a number s with this

property (if exists), we take the following approach: Consider first the

choice k = j in (3.62). This immediately tells us that s, if exists, must

be equal to h log p(j|j) (mod 1) for every j = 0, . . . , m − 1. In other

words, one set of conditions is that h log p(j|j) are all equal (mod 1),

or equivalently,

〈
h log

p(j|j)

p(0|0)

〉
= 0, j = 0, 1, . . . , m− 1, (3.63)
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and then s is taken to be the common value of all 〈h log p(j|j)〉. Thus,

(3.62) becomes

−h log
p(j|j)

p(j|k)
= (wk − wj) mod 1, j, k = 0, . . . , m− 1, (3.64)

and it remains to find the vector w if possible. To this end, observe

that if w satisfies (3.64), then for every constant c, w + c also satisfies

(3.64). Taking c = −w0, the first component of w, is arbitrary. It is

apparent that if (3.64) can hold for some w, then there is such a vector

whose first component vanishes, and then by setting k = 0 in (3.64),

we learn that

wj =

〈
−h log

p(j|0)

p(j|j)

〉
, j = 0, . . . , m− 1, (3.65)

is a legitimate choice. Thus, (3.64) becomes
〈
−h log

[
p(j|0)p(j|j)

p(k|0)p(j|k)

]〉
= 0 j, k = 0, . . . , m− 1. (3.66)

Note that by setting k = 0 in (3.66), we get (3.63) as a special case,

which means that (3.66), applied to all j, k ∈ {0, 1, . . . , m− 1}, are all

the necessary and sufficient conditions needed for ρ(Ah) = 1. Now, a

necessary and sufficient condition for (3.66) to hold for some integer h,

is that the numbers

αjk = log

[
p(j|0)p(j|j)

p(k|0)p(j|k)

]
(3.67)

would be all rational.

Summing up, it follows that ρ(Ah) < 1 if at least one αjk is

irrational. Hence, as explained above, it follows in this case that

Rn ∼ 1
2 + o(1). This establishes the first part of Theorem 3.9.

If all αjk are rational, then we have to argue in a different way.

We have already did some heuristic calculations indicating which kind

of result we can expect. Actually, we can use a method similarly to

the calculations of (3.12) and Lemma 3.4, properly adapted to Markov

sources, that covers the rational case.

In order to simplify the presentation, we consider just the binary

case m = 2. The general case is just notationally more involved. First,
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we split up the sum according to the initial and final states

E [〈log P (Xn)〉] =
∑

x1,...,xn

P (xn)〈log P (xn)〉

=
1∑

j=0

1∑

k=0

∑

x1=j,xn=k

P (xn)〈log P (xn)〉

Let us consider (first) the case j = k = 0 and denote by kij is the

number of pairs (ij) in xn. Clearly, k00 + k01 + k10 + k11 = n− 1. But

also k01 = k10 since the number of pairs ending at 1 must be equal to

the number of pairs starting with 1 (see [71, 61]). We then can write

P (xn) as

P (xn) = p0P (0|0)k00 P (0|1)k01 P (1|0)k10 P (1|1)k11 ,

= p0[P (0|0)]n−1
[

P (0|1)P (1|0)

P (0|0)P (0|0)

]k01 [P (1|1)

P (0|0)

]k11

.

Hence, using (3.42), we can represent log P (xn) as

log P (xn) = (n− 1) log P (0|0) + log p0 − k01α01 + k11α10.

By assumption, we can write α01 = L0/M and α10 = L1/M with

gcd(L0, L1, M) = 1. Thus, 〈log P (xn)〉 is constant if −k01L0 + k01L1 is

in a fixed residue class mod M . With the help of the following lemma,

which generalizes Lemma 3.4 to Markov sources, we will be then able

to evaluate the sum
∑

x1=xn=0 P (xn)〈log P (xn)〉 asymptotically.

Lemma 3.12. Suppose that M ≥ 1 and that L0 and L1 satisfy

gcd(L0, L1, M) = 1. Then, for every 0 ≤ ℓ < M and 0 ≤ j, k ≤ 1

there exists ρ < 1 such that

∑

x1=j, xn=k, −k01L0+k01L1≡ℓ mod M

P (xn) =
pjπk

M
+ O(ρn). (3.68)

Proof. We start with the case j = k = 0. Let G00(z) and G01(z) be the

generating function

G00(z) =
∑

n≥1

∑

x1=xn=0

P (xn)zn, G01(z) =
∑

n≥1

∑

x1=0, xn=1

P (xn)zn.
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Then these generating function satisfy the following system of linear

equations (compare also with [69, 71]):

G00(z) = G00(z)p(0|0)z + G01(z)p(1|0)z + p0z,

G01(z) = G00(z)p(0|1)z + G01(z)p(1|1)z.

In particular it follows that

G00(z) =

∣∣∣∣∣
p0z −p(1|0)z

0 1− p(1|1)z

∣∣∣∣∣
∣∣∣∣∣

1− p(0|0)z −p(1|0)z

−p(0|1)z 1− p(1|1)z

∣∣∣∣∣

=
p0z(1 − p(1|1)z)

1− (p(0|0) + p(1|1))z + (p(0|0)p(1|1) − p(0|1)p(1|0))z2
.

Note that this identity is also true if the p(j|k) are treated as formal

variables. However, if we assume that p(0|0)+p(0|1) = p(1|0)+p(1|1) =

1 then we have

G00(z) =
p0z(1 − p(1|1)z)

(1− z)(1 − (p(0|0) + p(1|1) − 1)z)

which implies that

[zn]G00(z) =
p0(1− p(1|1))

2− p(0|0) − p(1|1)
+O(|1−p(0|0)−p(1|1)|n) = p0π0+O(ρn)

for ρ = |1− p(0|0) − p(1|1)| < 1.

Furthermore, by setting ωr = e2πir/M and by using (3.14), we have

∑

x1=j, xn=k, −k01L0+k01L1≡ℓ mod M

P (xn) = [zn]
1

M

M−1∑

r=0

ω−ℓ
r ·

p0z(1− p(1|1)ωL1
r z)

1− (p(0|0) + p(1|1)ωL1
r )z + (p(0|0)p(1|1)ωL1

r − p(0|1)ωL0
r p(1|0))z2

,

that is, we replace p(0|1) by p(0|1)ωL0
r and p(1|1) by p(0|1)ωL1

r ,

r = 0, . . . , M − 1. Note that for r = 0 we already observed that

[zn](1/M)G00(z) = (1/M)p0π0 + O(ρn). Thus it remains to show that
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the corresponding contributions for r = 1, . . . , M−1 are negligible. For

this purpose we consider the matrix

A(r) =

(
p(0|0) p(0|1)ωL0

r

p(1|0) p(1|1)ωL1
r

)
.

For r = 0 we clearly have ρ(A(0)) = 1 for the spectral radius. If we

can show that ρ(A(r)) < 1 for r = 1, . . . , M − 1 then the following

polynomial
∣∣∣∣∣

1− p(0|0)z −p(0|1)ωL0
r z

−p(1|0)z 1− p(1|1)ωL1
r z

∣∣∣∣∣

= 1− (p(0|0) + p(1|1)ωL1
r )z +

+(p(0|0)p(1|1)ωL1
r − p(0|1)ωL0

r p(1|0))z2

has no zeros of modulus |z| ≤ 1. Hence both poles of the corresponding

generating function have modulus > 1 which implies that the n-th

coefficient can be bounded by O(ρn) for some ρ < 1.

In order to show that ρ(A(r)) < 1 we just have to apply (again)

Lemma 3.11 and directly observe that ρ(A(r)) = 1 would imply that

ωL0
r = ωL1

r = 1 which can only occur for r = 0 (here we have to use

the assumption gcd(L0, L1, M) = 1).

The other cases (where j = 1 or k = 1) can be handled in completely

the same way.

Summing up this shows that

Rn =
1∑

j=0

1∑

k=0

pjπk
1

M

M−1∑

ℓ=0

〈
ℓ + ζjk(n)

M

〉
+ O(ρn).

We should observe that the term pjπk is approximately the probabil-

ity of X1 = j and Xn = k since for large n X1 and Xn are almost

independent.

Finally by applying (3.16) we immediately obtain (3.46) Thus we

have completed the proof of Theorem 3.9.

3.2.2 Extension to Irreducible Aperiodic Markov Sources

We now discuss some extensions of Theorem 3.9. In particular, we

drop the assumption that all transition probabilities must be strictly
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positive and assume that P corresponds to an irreducible aperiodic

Markov source.

When some of the entries of the matrix P vanish, then obviously,

Theorem 3.9 cannot be used as the corresponding parameters αjk are

no longer well defined. Lemma 3.11, which stands at the heart of the

proof of Theorem 3.9, can still be used as long as P is irreducible, but

more caution should be exercised. The key issue is still to determine

whether there exist parameters s and w that satisfy

h log p(j|k) = (s + wk − wj) mod 1, (3.69)

but now these equations are imposed only for the pairs (j, k) for which

p(j|k) > 0 (as for the other pairs ajk(h) = p(j|k) = 0 satisfy the

conditions of Lemma 3.11 automatically anyway).

For example, if one or more diagonal element of P is positive, and for

all positive p(j|j), the numbers 〈h log p(j|j)〉 are equal, then s can still

be taken to be the common value of all these numbers. If, in addition,

at least one row of P is strictly positive, say, row number l, then wj can

be taken to be 〈−h log[p(l|l)/p(j|l)]〉, and then the rationality condition

of Theorem 3.9 is replaced by the condition that

α′
jk = log

[
p(j|0)p(0|0)

p(k|0)p(j|k)

]
(3.70)

must be rational for all (j, k) with p(j|k) > 0.

For a general non-negative matrix P, however, it may not be a

trivial task to determine whether equations (3.69) have a solution, and

if so, what this solution is. In fact, it may be simpler and more explicit

to check directly if Ah has an eigenvalue on the unit circle (which

thereby dictates s) and then to find w using Lemma 3.11. This would

lead to the following generalized version of Theorem 3.9.

Theorem 3.13. Consider the Shannon code of block length n for an

irreducible aperiodic Markov source. Let M be defined as the smallest

positive integer h such that

ρ(Ah) ≡ |λ1,h| = 1 (3.71)

and set M =∞ if (3.71) does not hold for any positive integer h. Then,

Rn is characterized as follows:
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(a) If M =∞, then

Rn =
1

2
+ o(1). (3.72)

(b) If M < ∞, then the asymptotic representation of Theorem 3.9,

part (b), holds with ζjk(n) being redefined according to

ζjk(n) = −M [(n − 1)s + wj − wk − log pj], (3.73)

where

s =
arg(λ1,M )

2π
(3.74)

and

wj =
arg(xj)

2π
, j = 0, 1, . . . , m− 1, (3.75)

xj being the j–th component of the right eigenvector x of AM , which

is associated with the dominant eigenvalue λ1,M .

The proof of Theorem 3.13 is very similar to that of Theorem 3.9

and hence we will not provide it here. In a nutshell, we observe that

the Perron–Frobenius Theorem and Lemma 3.11 are still applicable.

Then, we use the necessity of the condition Ah = e2πisDPD−1 and the

fact that once this condition holds, the vector

x = D · 1 = (e2πiw1 , . . . , e2πiwr )T

is the right eigenvector associated with the dominant eigenvalue λ1,m =

e2πis. We again have to prove a corresponding analogue of Lemma 3.12.

Finally, we present an example with a reducible Markov source for

which our results do not apply. In particular, in this case there is only

one convergent mode of behavior.

Example 3.2. Consider the case m = 2, where p(0|1) = 0 and α :=

p(1|0) ∈ (0, 1), i.e.,

P =

(
1− α α

0 1

)
. (3.76)

Assume also that p0 = 1 and p1 = 0. Since this is a reducible Markov

source (once in state 1, there is no way back to state 1), we cannot use

Theorems 3.9 and 3.13, but we can still find an asymptotic expression

of the redundancy in a direct manner: Note that the chain starts at
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state ‘0’ and remains there for a random duration, which is a geomet-

rically distributed random variable with parameter (1− α). Thus, the

probability of k 0’s (followed by n−k 1’s) is about (1−α)k ·α (for large

n) and so the argument of the function 〈·〉 should be the logarithm of

this probability. Taking the expectation w.r.t. the randomness of k, we

readily have

Rn =
∞∑

k=0

α(1 − α)k〈log α + k log(1− α)〉+ o(1). (3.77)

We see then that there is no oscillatory mode in this case, as Rn always

tends to a constant that depends on α, in contrast to the convergent

mode of Theorems 3.9 and 3.13, where the limit is always 1/2, inde-

pendently of the source statistics. To summarize, it is observed that

the behavior here is very different from that of the irreducible case,

characterized by Theorems 3.9 and 3.13.

3.3 Maximal Redundancy for a Generalized Shannon Code

In this section we switch from the average redundancy to the worst

case or maximal redundancy. For a given probability distribution P on

an alphabet A, we are looking for a prefix code that minimizes the

maximal redundancy R∗(P ), that is,

R∗(P ) = min
C

max
x∈A

[L(C, x) + log P (x)]. (3.78)

To solve this optimization problem we introduce a generalized Shan-

non code denoted as CGS. We write the code length of a generalized

Shannon code as

L(x, CGS) =

{
⌊log 1/P (x)⌋ if x ∈ L
⌈log 1/P (x)⌉ if x ∈ U ,

where L∪U = A is a partition of the alphabet A. In addition, we shall

postulate Kraft’s inequality is to hold, that is, for the binary case we

have ∑

x∈L
P (x)2〈− log P (x)〉 +

1

2

∑

x∈U
P (x)2〈− log P (x)〉 ≤ 1.
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Our main result of this section is to prove that there exists a gen-

eralized Shannon code that is optimal with respect to the maximal

redundancy as formulated in (3.78).

Theorem 3.14 (M. Drmota and W. Szpankowski, 2004). If the proba-

bility distribution P is dyadic, i.e. log P (x) ∈ Z for all x ∈ A, then

R∗
n(P ) = 0. Otherwise, let t0 ∈ T = {〈− log P (x)〉 : x ∈ A} be the

largest t such that

∑

x∈Lt

P (x)2〈− log P (x)〉 +
1

2

∑

x∈Ut

P (x)2〈− log P (x)〉 ≤ 1, (3.79)

where

Lt := {x ∈ A : 〈− log P (x)〉 < t}
and

Ut := {x ∈ A : 〈− log P (x)〉 ≥ t}.
Then

R∗(P ) = 1− t0 (3.80)

and the optimum is obtained for a generalized Shannon code with L =

Lt0 and U = Ut0 .

Proof. If P is dyadic then the numbers l(x) := − log P (x) are positive

integers satisfying ∑

x

2−l(x) = 1.

Kraft’s inequality holds and consequently there exists a (prefix) code

C with L(C, x) = l(x) = − log P (x) for all x ∈ A, and this R∗(P ) = 0.

Now assume that P is not dyadic and let C∗ denote the set of

optimal codes, i.e.

C∗ = {C ∈ C : R∗(C, P ) = R∗(P )}.

The idea of the proof is to establish several properties of an optimal

code. In particular, we will show that there exists an optimal code

C∗ ∈ C∗ with the following two properties:

(i) For all x

⌊− log P (x)⌋ ≤ L(C∗, x) ≤ ⌈− log P (x)⌉ (3.81)
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(ii) There exists s0 ∈ (0, 1] such that

L(C∗, x) = ⌊log 1/P (x)⌋ if 〈log 1/P (x)〉 < s0 (3.82)

and

L(C∗, x) = ⌈log 1/P (x)⌉ if 〈log 1/P (x)〉 ≥ s0. (3.83)

Observe that without losing generality we may assume that s0 = 1 −
R∗(P ). Thus, in order to compute R∗(P ) we just have to consider codes

satisfying (3.82) and (3.83). As already mentioned, (3.79) is just Kraft’s

inequality for codes of that kind. The optimal choice is t = t0 which

also equals s0. Consequently R∗(P ) = 1− t0.

In view of the above, it suffices to prove properties (i) and (ii).

Assume that C∗ is an optimal code. First of all, the upper bound in

(3.81) is obviously satisfied for C∗. Otherwise we would have

max
x

[L(C∗, x) + log P (x)] > 1

which contradicts a simple bound applied to a regular Shannon code.

Second, if there exists x such that L(C∗, x) < ⌊log 1/P (x)⌋, then (in

view of Kraft’s inequality) we can modify this code to a code C̃∗ with

L(C̃∗, x) = ⌈log 1/P (x)⌉ if L(C∗, x) = ⌈log 1/P (x)⌉,
L(C̃∗, x) = ⌊log 1/P (x)⌋ if L(C∗, x) ≤ ⌊log 1/P (x)⌋.

By construction, R∗(C̃∗, P ) = R∗(C∗, P ). Thus, C̃∗ is optimal, too.

This proves (i).

Now consider an optimal code C∗ satisfying (3.81) and let x̃ ∈ A
with R∗(P ) = 1 − 〈− log P (x̃)〉. Thus, L(C∗, x) = ⌊log 1/P (x)⌋ for

all x with 〈− log P (x)〉 < 〈− log P (x̃)〉. This proves (3.82) with s0 =

〈− log P (x̃)〉. Finally, if (3.83) is not satisfied, then (in view of Kraft’s

inequality) we can modify this code to a code C̃∗ with

L(C̃∗, x) = ⌈log 1/P (x)⌉ if 〈log 1/P (x)〉 ≥ s0,

L(C̃∗, x) = ⌊log 1/P (x)⌋ if 〈log 1/P (x)〉 < s0.

By construction, R∗(C̃∗, P ) = R∗(C∗, P ). Thus, C̃∗ is optimal, too.

This proves (ii) and the lemma.
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We apply the above now to a binary Bernoulli source on the alpha-

bet A = {0, 1}n with parameter p.

Theorem 3.15. Let P be a binary Bernoulli source on the alphabet

A = {0, 1}n with parameter p and let R∗
n(p) denote the corresponding

maximal redundancy.

(i) If log 1−p
p is irrational then, as n→∞,

R∗
n(p) = − log log 2

log 2
+ o(1) = 0.5287 . . . + o(1). (3.84)

(ii) If log 1−p
p = N

M (for some coprime integers M, N ∈ Z) is rational

and non-zero, then as n→∞

R∗
n(p) =

−⌊M log(M(21/M − 1))− 〈Mn log 1/(1 − p)〉⌋+ 〈Mn log 1/(1 − p)〉
M

+o(1).

Finally, if log 1−p
p = 0 then p = 1

2 and R∗
n(1/2) = 0.

Proof. As before we set

α = log
1− p

p
, β = log

1

1− p
.

Then

− log(pk(1− p)n−k) = αk + βn.

Since α is irrational, we know from from previous section that 〈αn〉
is a Bernoulli-u.d modulo 1 sequence, and therefore for any Riemann

integrable function f

lim
n→∞

n∑

k=0

(
n

k

)
pk(1− p)n−kf(〈αk + βn〉) =

∫ 1

0
f(x) dx. (3.85)

Now set fs0(x) = 2x for 0 ≤ x < s0 and fs0(x) = 2x−1 for s0 ≤ x ≤ 1.

We find

lim
n→∞

n∑

k=0

(
n

k

)
pk(1− p)n−kfs0(〈αk + βn〉) =

2s0−1

log 2
.
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In particular, for

s0 = 1 +
log log 2

log 2
= 0.4712 . . .

we obtain
∫ 1

0 f(x) dx = 1, so that the Kraft’s inequality becomes equal-

ity. This implies that

lim
n→∞

R∗
n(p) = 1− s0 = 0.5287 . . .

which proves (3.84).

Now we establish the second part of Theorem 3.15, that is, if

log 1−p
p = N

M is rational and non-zero (with coprime integers N, M)

then, as n→∞
R∗

n(p) =

−⌊M log(M(21/M − 1))− 〈Mn log 1/(1 − p)〉⌋+ 〈Mn log 1/(1 − p)〉
M

+o(1).

We now apply Lemma 3.7 to arrive at

n∑

k=0

(
n

k

)
pk(1− p)n−kf(〈αk + βn〉) =

1

M

M−1∑

m=0

f

(〈
mN

M
+ βn

〉)
+ o(1)

=
1

M

M−1∑

m=0

f

(
m + 〈Mβn〉

M

)
+ o(1).

As before, we use fs0(x), where s0 is of the form

s0 =
m0 + 〈Mβn〉

M

and choose m0 maximal such that

1

M

M−1∑

m=0

fs0

(
m + 〈Mβn〉

M

)
=

2〈Mβn〉/M

M

(
m0−1∑

m=0

2m/M +
M−1∑

m=m0

2m/M−1

)

=
2(〈Mβn〉+m0)/M−1

M(21/M − 1)

≤ 1.

Thus

m0 = M + ⌊M log(M(21/M − 1))− 〈Mn log 1/(1− p)〉⌋,
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and consequently

R∗
n(p) = 1− s0 + o(1)

= 1− m0 + 〈Mβn〉
M

+ o(1)

= −⌊M log(M(21/M − 1))− 〈Mn log 1/(1 − p)〉⌋+ 〈Mnβ〉
M

+ o(1).

This completes the proof of Theorem 3.15.



4

Redundancy of Tunstall and Khodak VF Codes

This chapter is devoted to the analysis of the average redundancy for

variable-to-fixed codes such as Khodak and Tunstall codes.

Tunstall’s algorithm [158] for the construction of a VF code has

been studied extensively (cf. the survey article [1]). Simple bounds for

its redundancy were obtained independently by Khodak [79] and by

Jelinek and Schneider [77]. Tjalkens and Willems [157] were the first

to look at extensions of this code to sources with memory. Savari and

Gallager [132] proposed a generalization of Tunstall’s algorithm for

Markov sources and used renewal theory for an asymptotic analysis of

the average code word length and for the redundancy for memoryless

and Markov sources. In this chapter, we restrict our analysis to memo-

ryless sources. Our presentation here is based on an analytic approach

discussed in [34, 35].

4.1 Variable-to-Fixed Codes

We now study variable-to-fixed (VF) length codes. Recall that in the

VF scenario, the source string x, say over m-ary alphabet {0, 1, . . . , m−
1}, is partitioned into non-overlapping (unique) phrases, each belonging

46
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0.16 0.24

0.2160.144

0.24 0.36

0.6

1.000

0.4

0.4 0.6

p = 0.6        q = 0.4

Tunstall’s construction

M = 5

Khodak’s construction

r = 0.25

Figure 4.1: Tunstall’s and Khodak’s Codes for M = 5, v = 4, binary source with
p = 0.6 (and q = 1 − p). Here the resulting dictionary is D = {00, 01, 10, 110, 111}.

to a given dictionary D represented by a complete parsing tree T . The

dictionary entries d ∈ D correspond to the leaves of the associated

parsing tree. The encoder represents each parsed string by the fixed

length binary code word corresponding to its dictionary entry. If the

dictionary D has M entries, then the code word for each phrase has

⌈log2 M⌉ bits. The code C is, thus, a mapping C : D → {0, 1}⌈log2 M⌉.
(It is convenient to use the notation D instead ofA, since in this context

the letter A is also used to denote the source alphabet {0, 1, . . . , m−1}.)
The best known variable-to-fixed length code is the Tunstall code

[158] that is (almost) that same as the independently discovered Kho-

dak code [79].

We first describe the Tunstall code. In such a code, edges in the pars-

ing tree correspond to letters from the source alphabet {0, 1, . . . , m−1}
and are labeled by the alphabet probabilities, say p0, . . . , pm−1. Every

vertex in such a tree is assigned the probability of the path leading

to it from the root, as shown in Figure 4.1. For memoryless sources,

studied here, the probability of a vertex is the product of probabilities

of vertices leading to it. More precisely, the root node has m leaves

corresponding to all of the symbols in {0, 1, . . . , m − 1} and labeled

by p0, . . . , pm−1. The algorithms starts with the trivial tree that con-



48 Redundancy of Tunstall and Khodak VF Codes

tains just the root that (corresponding to the empty word and) is la-

beled by the probability 1. At each iteration one selects the current

leaf corresponding to a string of the highest probability, say Pmax, and

grows m children out of it with probabilities p0Pmax, . . . , pm−1Pmax.

After J iterations, the parsing tree has J non-root internal nodes and

M = (m − 1)J + m leaves, each corresponding to a distinct dictio-

nary entry. The idea behind this algorithm is to generate a parsing

tree, where all leaves have approximately the same probability, that is,

distribution on D is close to uniform.

Another algorithm was proposed by Khodak [79] who independently

discovered the Tunstall code using a rather different approach. Let

pmin = min{p0, . . . , pm−1}. Khodak suggested choosing a real number

v > 1/pmin and growing a complete parsing tree until all leaves d ∈ D
satisfy

pmin/v ≤ P (d) < 1/v. (4.1)

Khodak’s and Tunstall’s algorithms are illustrated in Figure 4.1 with

the dictionary D = {00, 01, 10, 110, 111} corresponding to strings rep-

resented by the paths from the root to all terminal nodes.

It is known (see, e.g., [132, Lemma 2]) that the parsing trees for

Tunstall and Khodak algorithms are – in some instances — exactly

the same, however, they react differently to the probability tie when

expanding a leaf. More precisely, when there are several leaves with the

same probability, the Tunstall algorithm selects one leaf and expands

it, then selects another leaf of the same probability, and continues doing

it until all leaves of the same probability are expanded. The Khodak

algorithm expands all leaves with the same probability simultaneously,

in parallel; thus there are “jumps” in the number of dictionary en-

tries M when the parsing tree grows. For example, in Figure 4.1 two

nodes marked “0.24” will be expanded simultaneously in the Khodak

algorithm, and one after another by the Tunstall algorithm. We shall

analyze M in this chapter.

Our goal is to present a precise analysis of the Khodak and Tunstall

redundancy as well as to provide some insights into the behavior of the

parsing tree (i.e., the path length distribution). In particular, we derive
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average redundancy rate r which is defined as

r =
log M

E[D]
− h, (4.2)

where E[D] =
∑

d∈D |d|PD(d) is the average phrase length, D, of the

dictionary D and h := hS =
∑m−1

i=0 pi log(1/pi) is the entropy of the

source. We note that E[D] is also known as the average delay, which is

actually the average path length from the root to a terminal node in

the corresponding parsing tree.

In passing we should observe that by the Conservation of Entropy

Property [78, 134] the entropy of the dictionary hD is related to the

source entropy hS as follows

hD = hSE[D]. (4.3)

4.2 Redundancy of the Khodak VF Code

For Khodak’s code, it follows from (4.1) that if y is a proper prefix of

one or more entries of D (that is, y corresponds to an internal node of

the parsing tree T ), then

P (y) ≥ 1/v. (4.4)

It is therefore easier to describe the internal nodes of the parsing tree

T rather than its leaves. We shall follow this approach when analyzing

the phrase length D of Khodak’s code.

In what follows we always fix some v > 0 and will denote by Dv the

dictionary of the corresponding Khodak code, by Mv the cardinality of

Dv, and by Dv the phrase lengths |d| of d ∈ Dv, considered as a random

variable with probability distribution P on Dv.

As mentioned above, our goal is to understand the behavior of the

dictionary size Mv and the probabilistic behavior of the phrase length

Dv (when the source is memoryless). Our approach throughout is ana-

lytic and we use such tools as the Mellin transform and the Tauberian

theorems [47, 154]. We present our results for a general source alpha-

bet {0, 1, . . . , m − 1} of size m with probability pi for 0 ≤ i < m;

however, most proofs are for a binary source alphabet with p0 = p and

p1 = q = 1− p.
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We first deal with Mv and provide a simple relation between it and

parameter v. To find an expression for Mv we introduce a new function

A(v) defined as the number of source strings with probability at least

1/v, that is,

A(v) =
∑

y:P (y)≥1/v

1. (4.5)

Observe that A(v) represents the number of internal nodes in Khodak’s

construction with parameter v of a Tunstall tree. Equivalently, A(v)

counts the number of strings y with the self-information − log P (y) ≤
log v. The function A(v) satisfies the following recurrence

A(v) =

{
0 v < 1,

1 + A(vp0) + · · · + A(vpm−1) v ≥ 1.
(4.6)

Indeed, by definition we have A(v) = 0 for v < 1. Now suppose that

v ≥ 1. Since every m-ary string is either the empty string or a string

starting with a source letter j with 0 ≤ j < m, we directly find the

recurrence A(v) = 1 + A(vp0) + · · ·+ A(vpm−1).

Since A(v) represents the number of internal nodes in Khodak’s

construction with parameter v it follows that the dictionary size is

given by

Mv = |Dv| = (m− 1)A(v) + 1.

Therefore, it is sufficient to obtain asymptotic expansions for A(v) for

v →∞.

To present these results succinctly, we need to introduce the

following concept. We say that log(1/p0), . . . , log(1/pm−1) are ra-

tionally related if there exists a positive real number L such that

log(1/p0), . . . , log(1/pm−1) are integer multiples of L, that is,

log(1/pj) = njL, nj ∈ Z, (0 ≤ j < m).

Without loss of generality we can assume that L is as large as

possible which is equivalent to gcd(n0, . . . , nm−1) = 1. For exam-

ple, in the binary case m = 2 this is equivalent to the statement

that the ratio log(1/p0)/ log(1/p1) is rational. Similarly we say that

log(1/p0), . . . , log(1/pm−1) are irrationally related if they are not ratio-

nally related.

Now are we ready to present our first result.
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Theorem 4.1. We consider Khodak’s VF code construction with pa-

rameter v. If log(1/p0), . . . , log(1/pm−1) are irrationally related, then

Mv = (m− 1)
v

h ln 2
+ o(v). (4.7)

Otherwise, when log(1/p0), . . . , log(1/pm−1) are rationally related, let

L > 0 be the largest real number for which log(1/p1), . . . , log(1/pm)

are integer multiples of L. Then

Mv = (m− 1)
Q1(ln v)

h ln 2
v + O(v1−η) (4.8)

for some η > 0 where

Q1(x) =
L

1− e−L
e−L〈 x

L
〉, (4.9)

and, recall, 〈x〉 = x− ⌊x⌋ is the fractional part of the real number x.

Proof. We present a proof that is based on the Mellin transform. Fur-

thermore, for simplicity we only present it for the binary case.

The Mellin transform F ∗(s) of a function F (v) for complex s is

defined as (see [46, 154]),

F ∗(s) =

∫ ∞

0
F (v)vs−1dv,

if it exists. Using the fact that the Mellin transform of F (ax) is

a−sF ∗(s), a simple analysis of recurrence (4.6) reveals that the Mellin

transform A∗(s) of A(v) is given by

A∗(s) =
−1

s(1− p−s
0 − p−s

1 )
, ℜ(s) < −1.

In order to find asymptotics of A(v) as v →∞ one can directly use the

Tauberian theorem (for the Mellin transform) by Wiener-Ikehara [94,

Theorem 4.1] (see also Theorem 5.6 of Chapter 5), which says that

if F (v) = 0 for v < 1, F (v) ≥ 0 for v ≥ 1, and if 1
s F ∗(s) can be

represented as
1

s
F ∗(s) = G(s) +

A0

s− s0
,
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where G(s) is analytic for ℜ(s) < s0 and has a continuous extension to

the half plane ℜ(s) ≤ s0, then it follows that

F (v) ∼ A0v−s0 .

In the present context we observe that s0 = −1 is the only (polar)

singularity on the line ℜ(s) = −1 and that (s+1)A∗(s) can be analyti-

cally extended to a region that contains the line ℜ(s) = −1. Namely, if

log(p0)/ log(p1) is irrational this follows from a lemma of Schachinger

and Jacquet [154] (see also Lemma 4.5 below). In particular, in the

irrational case one finds

A(v) ∼ v

h ln 2
, (v →∞).

This proves the first part of Theorem 4.1.

In the rational case, that is, log(1/p0) = n0L and log(1/p1) = n1L

for coprime integers n0, n1 we just have to analyze the recurrence

Gn = 1 + Gn−n0 + Gn−n1,

where Gn abbreviates A(eLn). Equivalently we have A(v) =

G(⌊log v⌋/L). Thus, from

G(n) =
1

(1− e−L)(de−dL + be−bL)
eLn + O(eLn(1−η))

for some η > 0, we directly obtain

A(v) =
Le−L〈log v/L〉

(1− e−L)

v

h ln 2
+ O(v(1−η))

where, as above, 〈x〉 is the fractional part of x.

We add that we could have also used a Laplace transform approach

presented in Choi and Golin [18].

Next we deal with our main goal, namely the analysis of the phrase

length and Khodak’s code redundancy. We start with deriving the mo-

ment generating function of the phrase length Dv and then its moments.

Let us define the probability generating function D(v, z) of the phrase

length D := Dv for the Khodak code with parameter v as

D(v, z) := E[zDv ] =
∑

d∈Dv

P (d)z|d|.
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However, it is better to work with another transform describing the

probabilities of strings which correspond to internal nodes in the pars-

ing tree Tv. Therefore, we also define

S(v, z) =
∑

y: P (y)≥1/v

P (y)z|y|. (4.10)

Lemma 4.2. The function S(v, z) satisfies the following recurrence

S(v, z) =

{
0 v < 1,

1 + p1S(vp0, z) + · · · + pm−1S(vpm−1, z) v ≥ 1.
(4.11)

Furthermore,

D(v, z) = 1 + (z − 1)S(v, z) (4.12)

for all complex z.

Proof. The recurrence (4.11) can be derived in the same way as for

A(v). The relation (4.12) follows from the following general fact on

trees. Let D̃ be a uniquely parsable dictionary (e.g., leaves in the cor-

responding parsing tree) and Ỹ be the collection of strings which are

proper prefixes of one or more dictionary entries (e.g., internal nodes).

Then for all complex z (see [35])
∑

d∈D̃

P (d)
(
1 + z + · · · z|d|−1

)
=
∑

y∈Ỹ

P (y)z|y|, (4.13)

This can be deduced directly by induction and implies (4.12).

Alternatively we can use a result of [109], where it is shown that

for every real-valued function G defined on strings over A
∑

d∈D
P (d)G(d) = G(∅) +

∑

y∈Y
P (y)

∑

s∈A

P (ys)

P (y)
(G(ys)−G(y))

where ∅ denotes an empty string, D the set of external nodes and Y
the set of internal nodes. By choosing G(x) = z|x| we directly find

∑

d∈D
P (d)z|d| = z0 +

∑

y∈Y
P (y)

∑

s∈A
P (s)

(
z z|y| − z|y|

)

= 1 + (z − 1)
∑

y∈Y
P (y),

which again proves (4.13).
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In view of Lemma 4.2 we conclude that

E[D] =
∑

y∈Y
P (y) = S(v, 1), E[D(D−1)] = 2

∑

y∈Y
P (y)|y| = S′(v, 1)

This allows us to formulate our next main result.

Theorem 4.3. We consider Khodak’s VF code construction with pa-

rameter v.

(i) If log(1/p0), . . . , log(1/pm−1) are irrationally related, then

E[Dv] = S(v, 1) =
log v

h
+

h2

2h2
+ o(1), (4.14)

where h2 =
∑m−1

i=0 pi log2 pi, while in the rational case

E[Dv ] = S(v, 1) =
log v

h
+

h2

2h2
+

Q2(ln v)

h ln 2
+ O(v−η) (4.15)

for some η > 0, where

Q2(x) = L ·
(

1

2
−
〈

x

L

〉)
(4.16)

for L as defined above.

(ii) The phrase length Dv in Khodak’s construction with parameter v of

the Tunstall code with a dictionary of size Mv over a biased memoryless

source (i.e., not all symbol probabilities are equal) satisfies the Central

Limit Law, that is, as Mv →∞

Dv − 1
h log Mv√(

h2
h3 − 1

h

)
log Mv

→ N(0, 1)

where N(0, 1) denotes the standard normal distribution. Furthermore,

we have

E[Dv ] =
log Mv

h
+ O(1)

Var[Dv ] ∼
(

h2

h3
− 1

h

)
log Mv,

where Mv is give in Theorem 4.1.



4.2. Redundancy of the Khodak VF Code 55

Remark 4.1. Before we discuss any further Khodak code, we should de-

scribe another useful representation of the Khodak code using a random

walk in the first quadrant. As already observed in Chapter 2, a path in

the parsing tree from the root to a leaf corresponds to a random walk

on a lattice in the first quadrant of the plane (see Figure 2.1). Indeed,

observe that our analysis of the Khodak code boils down to studying

the following sum

A(v) =
∑

y:P (y)≥1/v

f(v)

for some function f(v). Since P (y) = pk1qk2 for some nonnegative in-

tegers k1, k2 ≥ 0, we conclude that the summation set of A(v) can be

expressed, after setting v = 2V , as

k1 log(1/p) + k2 log(1/q) ≤ V. (4.17)

This corresponds to a random walk in the first quadrant with the linear

boundary condition ax + by = V , where a = log(1/p) and b = log(1/q)

as shown in Figure 4.2. The phrase length Dv of the Khodak code

coincides with the exit time of such a random walk (i.e., the last step

before the random walk hits the linear boundary). This correspondence

is further explored in [38, 76]. In particular, in [38] we analyze the

Khodak code with additional constraint on the length of the phrase

length.

Finally, before presenting a proof of Theorem 4.3, let us discuss its

consequences for the redundancy rate of the Khodak code. By com-

bining (4.7) and (4.14) resp. (4.8) and (4.15) we find for the irrational

case

E[Dv] =
log Mv

h
+

log(h ln 2)

h
+

h2

2h2
+ o(1)

and in the rational case we have

E[Dv ] =
log Mv

h
+

log(h ln 2)

h
+

h2

2h2
+

− log L + log(1− e−L) + L log(e)/2

h
+ O(M−η

v ).

Recall that L > 0 is the largest real number for which

log(1/p0), . . . , log(1/pm−1) are integer multiples of L. As a direct con-

sequence, we can derive a precise asymptotic formula for the average
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k

l

a plog–= 1/vlog
plog

-----------

1/vlog
qlog

-----------

qlog– b=

Figure 4.2: A random walk with a linear barrier; the exit time is equivalent to the
phrase length in the Khodak algorithm (e.g., the exit time = 7).

redundancy of the Khodak code, that is,

rK
M =

log M

E[D]
− h .

The following result is a consequence of the above derivations.

Corollary 4.4. Let Dv denote the dictionary in Khodak’s construction

of the Tunstall code of size Mv. If log(1/p0), . . . , log(1/pm−1) are irra-

tionally related, then

rK
Mv

=
h

log Mv

(
−h2 ln 2

2h
− log(h ln 2)

)
+ o

(
1

log Mv

)
.

In the rational case we have

rK
Mv

=
h

log Mv

(
− h2 ln 2

2h
− log(h ln 2)− log

(
sinh(L/2)

L/2

))

+O

(
1

log2 Mv

)
.

Proof of Theorem 4.3. Again we only present the proof of the binary

case. In order to prove Theorem 4.3(i), we consider

E[Dv ] =
∑

y:P (y)≥1/v

P (y) = S(v, 1).
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Here the Mellin transform is given by

D∗(s) =

∫ ∞

0
E[Dv ]vs−1 dv =

−1

s(1− p1−s
0 − p1−s

1 )
(ℜ(s) < 0)

and it leads (in the irrational case) after applying a proper extension

of the Wiener-Ikehara theorem (see Theorem 5.6) to the asymptotic

equivalent

E[Dv] ∼ log(v)

h
.

Note that the double pole at s = 0 is responsible for the log-factor

Actually a more careful analysis that is based on the inverse Mellin

transform – that we will develop below – determines also the second

order term:

E[Dv ] =
log(v)

h
+

h2

2h2
+ o(1).

In the rational case, it is easy to see (similarly to the proof of Theo-

rem 4.1) that

E[Dv ] =
log(v)

h
+

h2

2h2
+

L

h e

(
1

2
−
〈

log(v)

L

〉)
+ O(rη)

for some η > 0.

The analysis of D(v, z) is more involved. Here we do not give a

full proof but restrict ourselves to the irrational case and give (only)

a heuristic argument bases on the Wiener-Ikehara Tauberian theorem

(for rigorous proof see [35]).

We assume that z is a real number close to 1, say |z − 1| ≤ δ. The

Mellin transform D∗(s, z) of D(v, z) with respect to v is

D∗(s, z) =
1− z

s(1− zp1−s − zq1−s)
− 1

s
, (4.18)

for ℜ(s) < s0(z), where s0(z) denotes the real solution of the charac-

teristic equation:

zp1−s + zq1−s = 1, (4.19)

where now we write p := p0 and q := p1. It is easy to see that

s0(z) = −z − 1

he
+

(
1

he
− p ln2 p + q ln2 q

2h3
e

)
(z − 1)2 + O((z − 1)3)
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as z → 1 where he = p ln(1/p) + q ln(1/q) is the natural entropy.

The next step is to determine the polar singularities of the mero-

morphic continuation of D∗(s, z) right to the line ℜ(s) = s0(z), that is,

we have to analyze the set

Z(z) = {s ∈ C : zp1−s + zq1−s = 1} (4.20)

of all complex roots of the characteristic equation (5.12). Actually there

is a result due to Jacquet and Schachinger that summarizes all needed

properties of the set Z(z). Its proof can be found in [35].

Lemma 4.5. Suppose that 0 < p < q < 1 and that z is a real number

with |z − 1| ≤ δ for some 0 < δ < 1. Let

Z(z) = {s ∈ C : p1−s + q1−s = 1/z}.

(i) All s ∈ Z(z) satisfy

s0(z) ≤ ℜ(s) ≤ σ0(z),

where s0(z) < 1 is the (unique) real solution of p1−s + q1−s = 1/z

and σ0(z) > 1 is the (unique) real solution of 1/z + q1−s = p1−s.

Furthermore, for every integer k there uniquely exists sk(z) ∈ Z(z)

with

(2k − 1)π/ log p < ℑ(sk(z)) < (2k + 1)π/ log p

and consequently Z(z) = {sk(z) : k ∈ Z}.
(ii) If log q/ log p is irrational, then ℜ(sk(z)) > ℜ(s0(z)) for all k 6= 0

and also

min
|z−1|≤δ

(ℜ(sk(z))−ℜ(s0(z))) > 0. (4.21)

(iii) If log q/ log p = r/d is rational, where gcd(r, d) = 1 for integers

r, d > 0, then we have ℜ(sk(z)) = ℜ(s0(z)) if and only if k ≡ 0 mod d.

In particular ℜ(s1(z)), . . . ,ℜ(sd−1(z)) > ℜ(s0(z)) and

sk(z) = sk mod d(z) +
2(k − k mod d)πi

log p
,

that is, all s ∈ Z(z) are uniquely determined by s0(z) and by

s1(z), s2(z), . . . , sd−1(z), and their imaginary parts constitute an arith-

metic progression.
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In particular it follows that we can apply Wiener-Ikehara’s Taube-

rian theorem in the irrational case and we obtain for every fixed (real)

z (with |z − 1| ≤ δ)

D(v, z) =
1− z

zs0(z)H(s0(z)− 1)
v−s0(z)(1 + o(1)), (v →∞), (4.22)

where H(s) abbreviates

H(s) = p−s
1 log(1/p1) + p−s

2 log(1/p2).

Now if we assume that the error term in (4.22) is uniform in z then we

can use the local expansion

s0(z) = −z − 1

he
+

(
1

he
− h2

2h3

)
(z − 1)2 + O(|z − 1|3) (4.23)

to obtain uniformly for |z − 1| ≤ δ as v →∞, and then

D(v, z) = v−s0(z)(1 + O(s0(z) + o(1))

= v
z−1
he

+
(

1
he

− h2
2h3

)
(z−1)2+O(|z−1|3) (1 + O(|z − 1|) + o(1)) .

Recall that D(v, z) = E[zDv ] is the probability generating function

of the dictionary length Dv and, therefore, it can be used to derive

the limiting behavior. We can use the local expansion (4.23) with z =

et/(log v)1/2
to obtain

v−s0(z) = exp

(
log v

(
z − 1

h e
−
(

1

he
− h2

2h3

)
(z − 1)2 + O(|z − 1|3)

))

= exp

(
1

he
t
√

log v +
1

he

t2

2
−
(

1

he
− h2

2h3

)
t2 + O(t3/

√
log v)

)

= exp

(
1

he
t
√

log v +

(
h2

h3
− 1

he

)
t2

2
+ O(t3/

√
log v)

)

Hence, we arrive at

E
[
et(Dv− 1

h e
log v)/

√
log v

]
= e−(t/he)

√
log vE

[
eDvt/

√
log v

]
∼ e

t2

2

(
h2
h3 − 1

h e

)
.

(4.24)

By Laplace’s theorem this would prove the normal limiting distribution

as v → ∞ (and also convergence of all (centralized) moments as well

as exponential tail estimates).
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The actual proof of Theorem 4.3 in the irrational case requires a

more precise analysis that is based on the inverse Mellin transform

D(v, z) =
1

2πi
lim

T →∞

∫ σ+iT

σ−iT
D∗(s, z)v−s ds, (4.25)

where σ < s0(z). In fact it turns out that the appearing integral is

not absolutely convergent. To circumvent this problem, we resort to

analyze another integral (see [160]), namely

D1(v, z) =

∫ v

0
D(w, z) dw.

Clearly, the Mellin transform D∗
1(s, z) = −D∗(s + 1, z)/s, and there-

fore it is of order O(1/s2). Then one can estimate its inverse Mellin

by shifting the integral to the right and by taking into account the

appearing residues corresponding to the zeros Z(z) that are described

in Lemma 4.5. This finally leads to an asymptotic representation of

D1(v, z) of the form

D1(v, z) =
1− z

zs0(z)(−s0(z) + 1)H(s0(z) − 1)
v−s0(z)+1(1 + o(1)),

that is uniform in z (for |z− 1| ≤ δ). Since D(v, z) is non-negative it is

an easy exercise to recover from this relation (4.22), now uniformly in

z and so the proof (in the irrational case) can be finished as above.

In the rational case we reduce the recurrence for D(v, z) to a discrete

recurrence (as is the proof of Theorem 4.1) which can be asymptotically

solved uniformly in z and provides as central limit theorem by Laplace’s

theorem.

4.3 Analysis of the Tunstall Code

Let us now return to the Tunstall code. Recall that the parsing tree is

the same as for the Khodak code, but in the case of a tie, the Tunstall

code adds a phrase one at a time, while the Khodak code all at once.

Nevertheless, one should expect similar results. Indeed, in the next

theorem we present our findings for the Tunstall code.
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Theorem 4.6. Let D̃M denote the phrase length of the Tunstall code

when the dictionary size is M ≥ 1. Then for a biased source (i.e., when

the probabilities pi are not equal)

D̃M − 1
h log M

√(
h2
h3 − 1

h

)
log M

→ N(0, 1),

where N(0, 1) denotes the standard normal distribution, and

E[D̃M ] =
log M

h
+ O(1),

Var[D̃M ] ∼
(

h2

h3
− 1

h

)
log M

for M →∞.

Proof. We shall show that Theorem 4.6 can be deduced from Theo-

rem 4.3. (The converse is obviously true.) This follows, informally, from

the fact that Tunstall’s code and Khodak’s code are “almost equiva-

lent” as discussed above.

Let’s be more precise. Suppose that v is chosen in a way that

there exists a word x with P (x) = 1/v. In particular the dictionary

Dv contains all external nodes d that are adjacent to internals x with

P (x) = 1/v. Now let D̃M be the dictionary (of size M) of any Tunstall

code where only some of these internal nodes x with P (x) = 1/v have

been expanded. Then Dv is the Tunstall code where all nodes x with

P (x) = 1/v have been expanded. Hence, by this coupling of the dictio-

naries we certainly have for the dictionary lengths |D̃M −Dv| ≤ 1. This

also implies that E[D̃M ] = E[Dv ] + O(1) and Var[D̃M −Dv] = O(1).

We observe that the central limit theorem is not affected by this

variation. Since Dv satisfies a central limit theorem (see Theorem 4.3)

we find
D̃M − 1

H log M
√(

H2
H3 − 1

H

)
log M

→ N(0, 1).

For the expected value and variance we have E[D̃M ] = log M
H + O(1)

and

Var[D̃M ] = Var[Dv ] + O

(√
Var[Dv ]

)
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∼
(

H2

H3
− 1

H

)
log M.

Indeed, more generally, let Yn = Xn +Zn and we know that Xn satisfies

a central limit theorem of the form

Xn −E[Xn]√
Var[Xn]

→ N(0, 1)

such that Var[Xn] → ∞ as well as Var[Zn]/Var[Xn] → 0 as n → ∞.

Then also Yn satisfies a central limit theorem, i.e.

Yn −E[Yn]√
Var[Yn]

→ N(0, 1),

and we have

Var[Yn] = Var[Xn] + Var[Zn] + O(
√

Var[Xn]Var[Zn]) ∼ Var[Xn]·

which follows from Cauchy-Schwarz’s inequality

E[(Xn −E[Xn])(Zn −E[Zn])] ≤ (Var[Xn])1/2(Var[Zn])1/2.

This completes the proof of Theorem 4.6.

Let us offer some final remarks. We already observed that the pars-

ing trees for the Tunstall and Khodak algorithms are the same except

when there is a “tie”. This situation can occur both, for the rational

case and for the irrational case, and somewhat surprisingly leads to the

cancelation of oscillation in the redundancy of the Khodak code for the

rational case. As shown in [132] tiny oscillations remain in the Tunstall

code redundancy for the rational case.



5

Redundancy of Divide-and-Conquer VF

Arithmetic Coding

In this chapter, we consider again a variable-to-fixed code due to Bon-

celet [15] who used the divide-and-conquer principle to design a prac-

tical arithmetic encoding. Boncelet’s algorithm is computationally fast

and its practicality stems from the divide and conquer strategy to build

a parsing tree: It splits the input (e.g., parsing tree) into several smaller

subproblems, solving each subproblem separately, and then knitting

together to solve the original problem. Other examples of divide-and-

conquer design include heapsort, mergesort, discrete Fourier trans-

form, queues, sorting networks, compression algorithms, and so forth

[47, 86, 154].

We first describe in some details Boncelet’s algorithm and present

its redundancy analysis. To prove these results we need precise results

about a discrete divide-and-conquer recurrence for some T (n) which

can be written as follows:

T (n) = an +
m∑

j=1

bjT (⌊pjn + δj⌋) +
m∑

j=1

bjT
(⌈

pjn + δj

⌉)
(5.1)

for some known sequence an and given bj, bj, pj and δj , δj . The discrete

nature of this recurrence (represented by the floor and ceiling functions)

introduces certain oscillations not captured by traditional analysis (see

63
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Akra and Bazzi [2] who primary studied the continuous version of the

recurrence). In the second part of this chapter we present a rigorous

and precise analysis of the discrete divide-and-conquer recurrence that

goes beyond data compression. This chapter is based on [39].

5.1 Redundancy of Boncelet’s Code

We now describe the Boncelet VF algorithm. To recall, a variable-to-

fixed length encoder partitions the source string, say over a binary

(or more generally over an m-ary) alphabet, into a concatenation of

variable-length phrases. Each phrase belongs to a given dictionary D
of source strings which constitutes a complete prefix free set. Such a

uniquely parsable dictionary is represented by a complete parsing tree,

i.e., a tree in which every internal node has all 2 (or more generally m)

children nodes. The dictionary entries correspond to the leaves of the

associated parsing tree. The encoder represents each parsed string by

the fixed length binary code word corresponding to its dictionary entry

by the code mapping C : D → {0, 1}⌈log2 |D|⌉. Boncelet’s algorithm,

described next, is a practical algorithm to generate a parsing tree for

a VF code, and therefore should be compared to the (asymptotically)

optimal Tunstall and Khodak algorithms discussed in Chapter 4.

The main idea of Boncelet’s VF code is to construct a parsing tree

using a simple divide-and-conquer strategy. More precisely, let n = |D|
denote the number of leaves in the corresponding parsing tree, hence

also the size of the dictionary1 We construct the parsing tree as follows:

to build a tree with n leaves, we split n into n = n0 + n1 so that there

are n0 leaves in the left subtree and n1 leaves in the right subtree. We

accomplish it using a divide-and-conquer strategy, that is, we set

n0 = ⌊p0n + δ⌋ , n1 = ⌈p1n− δ⌉

for some δ ∈ (0, 1) (that satisfies 2p0 + δ < 2, of course we assume that

p0 + p1 = 1). Then the procedure is recursively applied until only 1 or

2 leaves are left. For example, if we are to build a tree with n = 10

1We should mention that in this chapter we use n to denote the number of leaves
and the number of dictionary entries. Notice that in the previous chapters we used
M for n which is more convenient in the context of divide-and-conquer recurrences.
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leaves and p0 = 1/3, we assure that there are ⌊10/3⌋ = 3 leaves in the

left subtree and 7 in the right subtree. Recursively, 7 leaves of the root

right subtree we split 7 = 2 + 5 so that the left subtree of the root

right subtree will end up with two leaves, the right subtree of the root

right subtree will have 5 leaves, and so on. At the end we will build a

complete pursing tree on 10 leaves.

Let D = {v1, . . . vn} denote the set of phrases of the Boncelet code

that are constructed in this way, that is, they correspond to the paths

from the root to leaves of the Boncelet’s parsing tree, and let ℓ(v1), . . . ,

ℓ(vn) be the corresponding phrase lengths. Clearly the probabilities

p0, p1 induce a probability distribution P (v1), . . . , P (vn) on the leaves

of the parsing tree and, thus, on the phrases. This fits naturally to

a Bernoulli source with probabilities p0, p1 when the input string is

partitioned according to D. (We recall that we restrict the analysis to

a binary alphabet.)

Our aim at is to understand the probabilistic behavior of the phrase

length that we denote as Dn and the average redundancy. By definition

the probability generating function of Dn is defined as

C(n, y) = E[yDn ] =
n∑

j=1

P (vj)yℓ(vj).

Boncelet’s splitting procedure leads to the following recurrence on

C(n, y) for n ≥ 2

C(n, y) = p0 y C (⌊p0n + δ⌋ , y) + p1 y C (⌈p1n− δ⌉ , y) (5.2)

with initial conditions C(0, y) = 0 and C(1, y) = 1. We shall use this

representation again in the last section of this chapter when we sketch

a proof of a central limit law for the phrase length.

For now let us focus on the average phrase length and code redun-

dancy. Let Dn denote the average phrase length

Dn = E[Dn] =
n∑

j=1

P (vj) ℓ(vj)

which is also given by Dn = C ′(n, 1) (where the derivative is taken

with respect to y) and satisfies the recurrence

Dn = 1 + p0D⌊p0n+δ⌋ + p0D⌈p1n−δ⌉ (5.3)
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with D0 = D1 = 0. This recurrence falls exactly under our divide and

conquer recurrence (5.1).

We will discuss a more general recurrence in the next section where

in Theorem 5.4 we give a general solution of (5.1), and in particular re-

currence (5.3) discussed in Example 5.4 below. In Section 5.2 we present

a sketch of the proof our our main result regarding the performance of

the Boncelet algorithm.

Theorem 5.1. Consider a binary memoryless source with positive prob-

abilities p0 = p and p1 = q and entropy h = p log(1/p)+ q log(1/q). Let

Dn = E[Dn] denote the expected phrase length of the binary Boncelet

code with n phrases.

(i) If the ratio (log p)/(log q) is irrational, then

Dn =
1

h
log n− α

h
+ o(1), (5.4)

where

α = Ẽ′(0) − G̃′(0) − h− h2

2h
, (5.5)

h2 = p log2 p+q log2 q, and Ẽ′(0) and G̃′(0) are the derivatives at s = 0

of the Dirichlet series defined in (5.23) below.

(ii) If (log p)/(log q) is rational, then

Dn =
1

h
log n− α + Ψ(log n)

h
+ O(n−η), (5.6)

where Ψ(t) is a periodic function and η > 0.

Recall from Chapter 4 that for variable-to-fixed codes, the average

(normalized) redundancy is expressed as

rn =
log n

E[Dn]
− h =

log n

Dn
− h

since every phrase of average length Dn requires log n bits to point to a

dictionary entry. Our previous results imply immediately the following

corollary.

Corollary 5.2. Let rn denote the (normalized) average redundancy of

the binary Boncelet code (with positive probabilities p0 = p and p1 = q

and n phrases).
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(i) If the ratio (log p)/(log q) is irrational, then

rn =
hα

log n
+ o

(
1

log n

)
(5.7)

with α defined in (5.5).

(ii) If (log p)/(log q) is rational, then

rn =
h(α + Ψ(log n))

log n
+ o

(
1

log n

)
(5.8)

where Ψ(t) is a periodic function.

Let us now compare the redundancy of Boncelet’s algorithm to

the asymptotically optimal Tunstall algorithm. From Corollary 4.4 we

know that the redundancy of the Tunstall/Khodak code is2

rK
n =

h

log n

(
− log(h ln 2)− h2 ln 2

2h

)
+ o

(
1

log n

)

(provided that (log p)/(log q) is irrational; in the rational case there is

also a periodic term in the leading asymptotics).

Example 5.1. Consider p = 1/3 and q = 2/3. Then the recurrence for

Dn is precisely the same as that of Example 5.4 below. Consequently

α ≈ 0.0518 while for the Tunstall code the corresponding constant in

front of h/ log n is equal to − log h− h2
2h ≈ 0.0496.

It is also interesting to study the asymptotic behavior of the dis-

tribution of the phrase length Dn. Actually a precise analysis of the

recurrence (5.2), proved in Section 5.3, leads to the following result.

Theorem 5.3. Consider a binary memoryless source with p 6= q. Then

the phrase length distribution Dn of the corresponding Boncelet code

with n phrases satisfies the central limit law, that is,

Dn − 1
h log n

√(
h2
h3 − 1

h

)
log n

→ N(0, 1),

where N(0, 1) denotes the standard normal distribution, and

E[Dn] =
log n

h
+ O(1), Var[Dn] ∼

(
h2

h3
− 1

h

)
log n

for n→∞.
2Recall that we now write n for the dictionary size M .
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5.2 Divide-and-Conquer Recurrence

To prove Theorem 5.1 we will rely quite heavily on a solution of the

divide-and-conquer recurrence which we describe next in some gener-

ality. We shall assume that a problem of size n is split into m sub-

problems. It is natural to assume that there is a cost associated with

combining subproblems together to find the solution. We denote such a

cost by an. In addition, each subproblem may contribute in a different

way to the final solution; we represent this by coefficients bj and bj for

1 ≤ j ≤ m. Finally, we postulate that the original input n is divided

into subproblems of size ⌊hj(n)⌋ and ⌈hj(n)⌉, 1 ≤ j ≤ m, where hj(x)

and hj(x) are functions that satisfy hj(x) ∼ hj(x) ∼ pjx for x → ∞
and for some 0 < pj < 1. We aim at presenting precise asymptotic so-

lutions of discrete divide and conquer recurrences of the following form

for n ≥ 2

T (n) = an +
m∑

j=1

bjT (⌊hj(n)⌋) +
m∑

j=1

bjT
(⌈

hj(n)
⌉)

. (5.9)

A popular approach to solve this recurrence is to relax it to a con-

tinuous version of the following form (hereafter we assume bj = 0 for

simplicity)

T (x) = a(x) +
m∑

j=1

bjT (hj(x)), x > 1, (5.10)

where hj(x) ∼ pjx with 0 < pj < 1, and solve it using a Master The-

orem of a divide-and-conquer recurrence. The most general solution of

(5.10) is due to Akra and Bazzi [2] who proved (under certain regular-

ity assumptions, namely that a′(x) is of polynomial growth and that

hj(x)− pjx = O(x/(log x)2))

T (x) = Θ

(
xs0

(
1 +

∫ x

1

a(u)

us0+1
du

))
,

where s0 is a unique real root of

∑

j

bjps
j = 1. (5.11)
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Actually this also leads directly to

T (n) = Θ



ns0



1 +
n∑

j=1

aj

js0+1









in the discrete version provided that an+1−an is at most of polynomial

growth.

Discrete versions of the divide and conquer recurrence, given by

(5.9) are more subtle and require a different approach. We will use

Dirichlet series [5] (closely related to the Mellin transform) that better

captures the discrete nature of the recurrence, and then apply Taube-

rian theorems [94] (and also the Mellin-Perron formula presented in

Theorem 5.5) to obtain asymptotics for T (n). Precise results are pre-

sented in Theorem 5.4 for a particular case of sequences an of the form

an = Cna(log n)b (with C > 0 and a, b ≥ 0). For more details see [39].

Theorem 5.4 (M. Drmota and W. Szpankowski, 2013). Let T (n) be the

divide and conquer recurrence defined in (5.9) with an = Cna(log n)b

(C > 0, a, b ≥ 0) such that:

(A1) bj and bj are non-negative with bj + bj > 0,

(A2) hj(x) and hj(x) are increasing and non-negative functions such

that hj(x) = pjx+O(x1−δ) and hj(x) = pjx+O(x1−δ) for positive

pj < 1 and δ > 0, with hj(n) < n and hj(n) ≤ n−1 for all n ≥ 2.

Furthermore, let s0 be the unique real solution of the equation

m∑

j=1

(bj + bj)ps0
j = 1. (5.12)

Then the sequence T (n) has the following asymptotic behavior:

(i) If a > s0, then

T (n) =

{
C ′na(log n)b + O

(
na(log n)b−1

)
if b > 0,

C ′na + O(na−δ′
) if b = 0,

where δ′ = min{a− s0, δ} and

C ′ =
C

1−∑m
j=1(bj + bj)pa

j

.
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(ii) If a = s0, then

T (n) = C ′′na(log n)b+1 + O
(
na(log n)b

)

with

C ′′ =
C

(b + 1)
∑m

j=1(bj + bj)pa
j log(1/pj)

.

(iii) If a < s0 (or if we just assume that an = O(na) for some a < s0 as

long as an is a non-negative and non-decreasing sequence), then

for log p1, . . . , log pm irrationally related (see Chapter 4)

T (n) ∼ C ′′′ns0,

where C ′′′ is a positive constant. If log p1, . . . , log pm are rationally

related and if we also assume that (the so called small growth

property)

T (n + 1)− T (n) = O
(
ns0−η) (5.13)

holds for some η > 1− δ, then

T (n) = Ψ(log n) ns0 + O
(
ns0−η′

)

where Ψ(t) is a positive and periodic continuous function with

period L and η′ > 0.

Remark 5.1. It should be remarked that the order of magnitude of

T (n) can be checked easily by the Akra-Bazzi theorem [2]. In particular,

if we just know an upper bound for an which is of the form an =

O(na(log n)b) – even if an is not necessarily increasing – the Akra-Bazzi

theorem provides an upper bound for T (n) which is of form stated in

Theorem 5.4. Hence the theorem can be easily adapted to cover an of

the form

an = Cna(log n)b + O((na1(log n)b1)

with a1 < a or with a1 = a but b1 < b. We split up the solu-

tion T (n) into T (n) = T1(n) + T2(n), where T1(n) corresponds to

a
(1)
n = Cna(log n)b, for which we can apply Theorem 5.4, and T2(n)

corresponds to the error term a
(2)
n = O((na1(log n)b1), for which we

apply the Akra-Bazzi theorem.
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The same idea can be used for a bootstrapping procedure. The-

orem 5.4 provides the asymptotic leading term for T (n) that is (for

example, in case (i)) of the form C ′na(log n)b. Hence, by setting

T (n) = C ′na(log n)b + S(n) we obtain a recurrence for S(n) that is

precisely of the form (5.9) with a new sequence an that is of smaller or-

der than the previous one. At this step we can either apply Theorem 5.4

a second time or the Akra-Bazzi theorem.

Remark 5.2. Theorem 5.4 can be extended to the case

an = Cna(log n)b,

where a > 0 and b is an arbitrary real number. The same result holds

with the only exception a = s0 and b = −1. In this case we obtain

T (n) = C ′′na log log n + O
(
na(log n)−1

)

with

C ′′ =
C

∑m
j=1 bjpa

j log(1/pj)
.

Remark 5.3. The third case (iii): a < s0, is of particular interest. Let

us consider first the irrationally related case. Even in this case it is not

immediate to describe the constant C ′′′ explicitly. It depends heavily

on an and also on T (n) and can be written as (see [39])

C ′′′ =
Ã(s0) +

∑m
j=1 bj(Gj(s0)− Ej(s0)) +

∑m
j=1 bj(Gj(s0)− Ej(s0))

s0
∑m

j=1(bj + bj)ps0
j log(1/pj)

(5.14)

with

Ã(s) =
∞∑

n=1

an+2 − an+1

ns
,

and

Gj(s) =
∑

n<nj(1)

T (⌊hj(n + 2)⌋)− T (⌊hj(n + 1)⌋)
ns

(5.15)

+
T (2)− T (⌊hj(nj(1) + 1)⌋)

nj(1)
,

Ej(s) =
∞∑

k=1

(T (k + 2)− T (k + 1))

(
1

(k/pj)s
− 1

nj(k)s

)
,(5.16)
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where nj(k) = max{n ≥ 1 : hj(n + 1) < k + 2}, and

Gj(s) =
∑

n<nj(1)

T
(⌈

hj(n + 2)
⌉)
− T

(⌈
hj(n + 1)

⌉)

ns

+
T (2)− T

(⌈
hj(nj(1) + 1)

⌉)

nj(1)
,

Ej(s) =
∞∑

k=1

(T (k + 2)− T (k + 1))

(
1

(k/pj)s
− 1

nj(k)s

)
,

where nj(k) = min{n ≥ 1 : hj(n + 2) > k + 1}. We will show in the

proof of Section 5.2.2 that the series Ã(s0), Ej(s0) and Ej(s0) actually

converge. It should be also mentioned that there is no general error

term in the asymptotic relation T (n) ∼ C ′′′ns0.

In the rationally related case the periodic function Ψ(t) has a con-

vergent Fourier series Ψ(t) =
∑

k cke2kπix/L, where the Fourier coeffi-

cients are given by

ck =
Ã(sk) +

∑m
j=1 bj(Gj(sk)− Ej(sk)) +

∑m
j=1 bj(Gj(sk)− Ej(sk))

sk
∑m

j=1(bj + bj)p
s0
j log(1/pj)

,

(5.17)

where sk = s0 +2kπi/L. In particular the constant coefficient c0 equals

C ′′′. Note that it cannot be deduced from this representation that the

Fourier series is convergent. This makes the problem really subtle as

discussed in details in [39].

We next present some applications of our main Theorem 5.4 before

presenting a sketch of its proof.

5.2.1 Examples

We first illustrate our theorem on a few simple divide and conquer

recurrences. Note that we only consider examples for the case (iii) and

(ii), since they are more interesting.

Example 5.2. The recurrence

T (n) = T (⌊n/2⌋) + 2 T (⌈n/2⌉) + n
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is related to the Karatsuba algorithm [86]. Here we have

s0 = log(1/3)/ log(1/2) = 1.5849 . . .

and s0 > a = 1. Furthermore, since m = 1, we are in the rationally

related case. Here the small growth condition (5.13) is satisfied so that

we can apply Theorem 5.4 to obtain

T (n) = Ψ(log n) n
log 3
log 2 · (1 + o(1)) (n→∞)

with some continuous periodic function Ψ(t).

In a similar manner, the Strassen algorithm [86] for matrix multi-

plications results in the following recurrence

T (n) = T (⌊n/2⌋) + 6 T (⌈n/2⌉) + n2.

Here we have m = 1, s0 = log 7/ log 2 ≈ 2.81 and a = 2, and again we

get an representation of the form

T (n) = Ψ(log n) n
log 7
log 2 · (1 + o(1)) (n→∞)

with some periodic function Ψ(t).

Example 5.3. The next two examples show that a small change in the

recurrence might change the asymptotic behavior significantly. First let

T (n) = T (⌊n/2⌋) + T (⌈n/4⌉)
with T (1) = 1. Here we have s0 = log((1 +

√
5)/2) log 2 ≈ 0.6942 and

we are in the rationally related case. Furthermore it follows easily that

T (n+1)−T (n) ≤ 1. Hence the small growth condition (5.13) is satisfied

and we obtain

T (n) ∼ ns0Ψ(log2 n)

for a continuous periodic function Ψ(t); see Figure 5.1(a).

However, if we just replace the appearing ceiling function by the

floor function, that is,

T̃ (n) = T̃ (⌊n/2⌋) + T̃ (⌊n/4⌋) for n ≥ 4

and T̃ (1) = T̃ (2) = T̃ (3) = 1, then the small growth condition (5.13) is

not satisfied . We get T̃ (n) = Fk for 2k−1 ≤ n < 2k, where Fk denotes

the k-th Fibonacci number. This leads to

T̃ (n) ∼ ns0Ψ̃(log2 n),
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(a) (b)

Figure 5.1: Illustration to Example 5.3: (a) recurrence T (n) = T (⌊n/2⌋)+T (⌈n/4⌉),
(b) recurrence T (n) = T (⌊n/2⌋) + T (⌊n/2⌋).

where Ψ̃(t) = ((1 +
√

5)/2)1−〈t〉/
√

5 is discontinuous for t = 0; see also

Figure 5.1(b).

Example 5.4. Finally we consider a recurrence for the Boncelet’s algo-

rithm. Let

T (n) =
1

3
T

(⌊
n

3
+

1

2

⌋)
+

2

3
T

(⌈
2n

3
− 1

2

⌉)
+ 1

with initial value T (1) = 0. Its asymptotic solution is given by

T (n) =
1

h
log n + C + o(1),

with h = 1
3 log 3 + 2

3 log 3
2 ≈ 0.6365 and some constant C. We can

compute C ≈ −0.0813. Its precise form is C = −α/h, where

α =
∑

m≥1

T (m + 2)− T (m + 1)

3

(
log

⌈
3m +

5

2

⌉
− log(3m)

)

+ 2
∑

m≥1

T (m + 2)− T (m + 1)

3

(
log

⌊
3

2
m +

5

4

⌋
− log(

3m

2
)

)

+
log 3

3
− h−

1
3 log2 3 + 2

3 log2 3
2

2h
≈ 0.0518.
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We have used this example for computing the redundancy of the binary

Boncelet code with p = 1/3 in Example 5.1.

5.2.2 Sketch of Proof of Theorem 5.4

We present here only a part of the proof of Theorem 5.4. A complete

detailed proof can be found in [39] to which we refer the interested

reader.

Let us start with defining some appropriate Dirichlet series whose

analysis will lead to asymptotic behavior of T (n). We set

T̃ (s) =
∞∑

n=1

T (n + 2)− T (n + 1)

ns
,

provided the series is convergent. By partial summation and using a-

priori upper bounds for the sequence T (n), it follows that T̃ (s) con-

verges (absolutely) for s ∈ C with ℜ(s) > max{s0, σa, 0}, where s0

is the real solution of the equation (5.12), and σa is the abscissa of

absolute convergence of Ã(s) defined as

Ã(s) =
∞∑

n=1

an+2 − an+1

ns
. (5.18)

To find a formula for T̃ (s) we apply the recurrence relation (5.9).

To simplify our presentation, we first assume that bj = 0, that is, we

consider only the floor function on the right hand side of the recurrence

(5.9); those parts that contain the ceiling function can be handled in

the same way. We thus obtain

T̃ (s) = Ã(s) +
m∑

j=1

bj

∞∑

n=1

T (⌊hj(n + 2)⌋)− T (⌊hj(n + 1)⌋)
ns

.

For k ≥ 1 set

nj(k) := max{n ≥ 1 : hj(n + 1) < k + 2}.

By definition it is clear that nj(k + 1) ≥ nj(k) and

nj(k) =
n

pj
+ O

(
k1−δ

)
. (5.19)
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Furthermore, by setting Gj(s) we obtain

∞∑

n=1

T (⌊hj(n + 2)⌋)− T (⌊hj(n + 1)⌋)
ns

= Gj(s) +
∞∑

k=1

T (k + 2)− T (k + 1)

nj(k)s
.

We now compare the last sum to ps
j T̃ (s):

∞∑

k=1

T (k + 2)− T (k + 1)

nj(k)s
=

∞∑

k=1

T (k + 2)− T (k + 1)

(k/pj)s

−
∞∑

k=1

(T (k + 2)− T (k + 1))

(
1

(k/pj)s
− 1

nj(k)s

)
= ps

j T̃ (s)− Ej(s),

where Ej(s) is

Gj(s) =
∑

n<nj(1)

T (⌊hj(n + 2)⌋)− T (⌊hj(n + 1)⌋)
ns

+
T (2)− T (⌊hj(nj(1) + 1)⌋)

nj(1)
, (5.20)

Ej(s) =
∞∑

k=1

(T (k + 2)− T (k + 1))

(
1

(k/pj)s
− 1

nj(k)s

)
.(5.21)

Defining

E(s) =
m∑

j=1

bjEj(s) and G(s) =
m∑

j=1

bjGj(s)

we finally obtain the relation

T̃ (s) =
Ã(s) + G(s)− E(s)

1−∑m
j=1 bj ps

j

. (5.22)

As mentioned above, (almost) the same procedure applies if some

of the bj are positive, that is, the ceiling function also appear in the

recurrence equation. The only difference to (5.22) is that we arrive at

a representation of the form

T̃ (s) =
Ã(s) + G̃(s)− Ẽ(s)

1−∑m
j=1(bj + bj) ps

j

, (5.23)
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with a properly modified functions G̃(s) and Ẽ(s), however, they have

the same analyticity properties as in (5.22).

For the asymptotic analysis we will only consider the irrational case

for which we apply Tauberian theory (the analysis of the rational case

is based on the Mellin-Perron formula and quite involved calculations;

for details see [39]).

We recall that we have a representation (5.22) of the Dirichlet series

T̃ (s) =
∑

n≥1(T (n + 2) − T (n + 1))n−s, where T (n + 2) ≥ T (n + 1),

and that we are interested in the asymptotic behavior of

T (n) = T (2) +
n−2∑

k=1

(T (k + 2)− T (k + 1)) (5.24)

it is sufficient to get some information on the partial sums of the coef-

ficient of the Dirichlet series T̃ (s).

For the asymptotic analysis, we appeal to the Tauberian theorem

by Wiener-Ikehara (see Theorem 5.6 below) and an analysis based on

the Mellin-Perron formula which is presented next. Below we shall use

Iverson’s notation [[P ]] which is 1 if P is a true proposition and 0 else.

Theorem 5.5 (see [5]). For a sequence c(n) define the Dirichlet series

C(s) =
∞∑

n=1

c(n)

ns

and assume that the abscissa of absolute convergence σa is finite or

−∞. Then for all σ > σa and all x > 0

∑

n<x

c(n) +
c(⌊x⌋)

2
[[x ∈ Z]] = lim

T →∞
1

2πi

∫ σ+iT

σ−iT
C(s)

xs

s
ds (5.25)

which is called the Mellin-Perron formula.

Now, by (5.25) and using (5.24) we find in our case

T (n) = T (2) +
1

2πi

∫ c+i∞

c−i∞
T̃ (s)

(n− 3
2)s

s
ds (5.26)

= T (2) +
1

2πi

∫ c+i∞

c−i∞

Ã(s) + G̃(s)− Ẽ(s)

1−∑m
j=1(bj + bj) ps

j

(n− 3
2)s

s
ds.
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Hence, the asymptotic behavior of T (n) depends on the singular be-

havior of Ã(s), on the singularity at s = 0, and on the roots of the

denominator in (5.23), that is, roots of the characteristic equation

m∑

j=1

(bj + bj) ps
j = 1. (5.27)

We denote by s0 the unique real solution of this equation.

In summary, a master theorem for the divide-and-conquer recur-

rence has three major parts. In the first case the (asymptotic) behavior

of an dominates the asymptotics of T (n), in the second case, there

is an interaction between the internal structure of the recurrence and

the sequence an (resonance), and in the third case the behavior of the

solution is driven by the recurrence and does not depend on an; see

the three cases of Theorem 5.4. This also corresponds to an interplay

between the poles s = 0, s = σa and s0 that determines the asymptotic

behavior of the integral in (5.26) as illustrated in Figure 5.2. In fact, the

pole of the largest value dictates asymptotics and determines the lead-

ing term. The oscillations will occur in the leading term in the rational

case when s0 is the dominant singularity since in this case singularities

are placed periodically on the line ℜ(s) = s0 as shown in Figure 5.2.

Actually Dirichlet series and the partial sums of their coefficients

are related via the Mellin transform. Suppose that

C(s) =
∑

n≥1

c(n)n−s

is a Dirichlet series and let

c(v) =
∑

n≤v

c(n)

denote the partial sums of the coefficients c(n). Then we have

C(s) =
∑

n≥1

c(n)n−s = s

∫ ∞

1
c(v)v−s−1 dv.

Thus we can use Tauberian theorem like the Wiener-Ikehara theorem

to recover the asymptotic behavior of c(v). We present here a general

version of the Wiener-Ikehara theorem (see [39]) that is adapted to our

situation.
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Figure 5.2: Illustration to the asymptotic analysis of the divide and conquer re-
currence

Theorem 5.6. Let c(v) be non-negative and non-decreasing on [1,∞)

such that transform

c∗(s) =

∫ ∞

1
c(v)v−s−1 dv,

exists for ℜ(s) > s0 for some s0 ≥ 0 and suppose that there exist real

constants A0, . . . , AK (with AK > 0) such that

F̃ (s) = c∗(s)−
K∑

j=0

Aj

(s − s0)j+1
(5.28)

has a continuous extension to the closed half-plane ℜ(s) ≥ s0. Then we

have

c(v) ∼ AK

K!
(log v)Kvs0 (v →∞). (5.29)

>From the representation (5.23) we observe that either Ã(s) or

the factor 1/
(

1−∑m
j=1 bj ps

j

)
might be responsible for the abscissa of

convergence of T̃ (s). The functions G(s) and E(s) have an abscissa of
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convergence that is smaller that that of T̃ (s). Thus, we do not have to

take care of them.

Let us suppose first that an = O(na) for some a < s0 which implies

that the abscissa of convergence of Ã(s) is smaller than s0. Thus T̃ (s)

has a simple polar singularity at s = s0 that comes from the factor

1/
(

1−∑m
j=1 bj ps

j

)
. Note that we have assumed that we are in the

irrationally related case. Thus it follows from a direct extension of

Lemma 4.5 that there is no other singularity on the line ℜ(s) = s0.

Consequently the assumptions of Theorem 5.6 are satisfies (with K =

0) are it directly follows that

T (n) ∼ C ′′′ns0

for some positive constant C ′′′. Note that we do not require the precise

behavior of an. We just have to assume that an is non-decreasing and

that an = O(na) for some a < s0.

However, if an is of larger order then the abscissa of convergence

of Ã(s), then in order to apply Theorem 5.6 we need some information

on the analytic behavior of Ã(s) if an is of the form an = Cnb(log n)b

which is given in [39]) (see also [56]).

Theorem 5.7. Suppose that an = na(log n)b, where a and b are real

numbers, and let Ã(s) be the Dirichlet series

Ã(s) =
∑

n≥1

an+2 − an+1

ns
.

(i) If b is not a negative integer, then Ã(s) can be represented as

Ã(s) = b
Γ(b + 1)

(s − a)b+1
+

Γ(b + 1)

(s − a)b
+ G(s),

where G(s) is analytic for ℜ(s) > a− 1.

(ii) If b = −k is a negative integer, then we have

Ã(s) = σ
(−1)k

(k − 1)!
(s− a)k−1 log(s− a)

+
k(−1)k

(k − 1)!
(s− a)k log(s− a) + G(s),

where G(s) is analytic for ℜ(s) > a− 1.
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This theorem shows that Ã(s) is always of the form where the

Tauberian theorem 5.6 is applicable. Actually the analytic behavior

does not change if Ã(x) is multiplied by a function that is analytic at

s = a. For example, if an = Cna for some a > s0. Then Ã(s) can be

represented as

Ã(s) =
Ca

(s− a)
+ 1 + G(s),

where G(s) is analytic for ℜ(s) > a − 1. Consequently 1
s T̃ (s) can be

represented as
1

s
T̃ (s) =

C ′

s− a
+ H(s),

where C ′ = C/
(
1−∑m

j=1(bj + bj)pa
j

)
and H(s) is analytic for ℜ(s) >

min(a− 1, s0). Hence, we can apply Theorem 5.6 and obtain

T (n) ∼ C ′na.

If an = Cna(log n)b then we can argue in a similar way.

Finally the case a = s0 needs some care since Ã(s) and the factor

1/
(

1−∑m
j=1 bj ps

j

)
contribute to the singular behavior of T̃ (s) but even

here we can apply Theorem 5.6 (in the irrationally related case).

5.3 Central Limit Law for Boncelet’s Algorithms

We next provide a sketch of the proof of the the central limit theorem

for the phrase length Dn of the Boncelet algorithm that is stated in

Theorem 5.3. Again we only consider the irrationally related case for a

binary alphabet.

To deal with C(n, y), we consider the Dirichlet series

C(s, y) =
∞∑

n=1

C(n + 2, y)− C(n + 1, y)

ns
.

For simplicity we just consider here the case y > 1. (The case y ≤ 1 can

be handled in a similar way.) Then C(s, y) converges for ℜ(s) > s0(y),

where s0(y) denotes the real zero of the equation (for a binary alphabet)

y(ps+1 + qs+1) = 1
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discussed in Lemma 4.5. We find

C(s, y) =
(y − 1)− Ẽ(s, y)

1− y(ps+1 + qs+1)
,

where

Ẽ(s, y) = py
∞∑

k=1

(C(k+2, y))−C(k+1, y))


 1

(k/p)s
− 1(⌈

k+2−δ
p

⌉
− 2

)s




+qy
∞∑

k=1

(C(k + 2, y))− C(k + 1, y))


 1

(k/q)s
− 1(⌊

k+1+δ
q

⌋
− 1

)s




converges for ℜ(s) > s0(y)−1 and satisfies Ẽ(0, y) = 0 and Ẽ(s, 1) = 0.

Then by the Wiener-Ikehara theorem only the residue at s0(y) con-

tributes to the main asymptotic leading term. (Recall that we consider

the case y > 1). We thus have

C(n, y) ∼ Res

(
((y − 1)− Ẽ(s, y))(n − 3/2)s

s(1− y(ps+1 + qs+1))
; s = s0(y)

)

=
((y − 1)− Ẽ(s0(y), y))(n − 3/2)s0(y)

−s0(y)(log(p)ps0(y)+1 + log(q)qs0(y)+1))
(1 + o(1)).

The essential but non-trivial observation is that this asymptotic rela-

tion holds uniform for y in an interval around 1. Let us assume that

this uniformity holds. Then we are precisely in the same situation as in

the case of the Tunstall code (see Chapter 4) and we obtain a central

limit theorem.

In order to make the uniformity in y we have to use the Mellin-

Perron formula (which is a proper reformulation of the inverse Mellin

transform) and do the asymptotic treatment directly on this level. It

turns out that we have to distinguish between the rationally related

case and the irrationally related case which makes the analysis even

more subtle (for details see [39]).
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Redundancy of VV Khodak Codes

In the last three chapters, we discussed fixed-to-variables FV codes

such as Shannon and Huffman codes (see Chapter 3), and variable-

to-fixed VF codes such as Tunstall, Khodak, and Boncelet codes (see

Chapters 4 and 5). We show in Theorems 3.1 and 3.5 that the normal-

ized redundancy is inversely proportional to the block length n, which

represents a delay and in this chapter we will denote it as D. Thus for

FV codes r = Θ(D
−1

). In Theorems 4.3 and 4.6, we analyzed Kho-

dak and Tunstall VF codes and proved that the average redundancy

(see in particular Corollary 4.4) decays like Θ(1/E[Dv ]), where E[Dv]

is the average phrase length that we again denote in this chapter as

D := E[D]. In summary, for both FV and VF codes the normalized re-

dundancy (rate) r decays inversely proportional to the average phrase

length or delay D.

However, it is an intriguing question whether one can construct a

code with r = o(1/D). This quest was accomplished by Khodak [80] in

1972, who proved that one can find a variable-to-variable VV code with

r = O(D
−5/3

). The proof presented in [80] is rather sketchy and com-

plicated. Here we present a transparent proof and an explicit algorithm

to achieve this bound. We also will show that the maximal redundancy

83
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becomes O(D
−4/3

). Finally, in a major extension of Khodak’s results

we present stronger results for almost all sources. This chapter is based

on [16].

6.1 Variable-to-Variable Codes and Redundancy Rate

Recall that a variable-to-variable (VV) length code partitions a source

sequence into variable length phrases that are encoded into strings of

variable lengths. While it is well known that every VV (prefix) code is

a concatenation of a variable-to-fixed length code (e.g., Tunstall code)

and a fixed-to-variable length encoding (e.g., Huffman code), an opti-

mal VV code for a given dictionary size has not yet been found. Fabris

[42] proved that greedy, step by step, optimization (that is, a concate-

nation of Tunstall and Huffman codes) does not lead to an optimal VV

code.

Let us first briefly describe a VV encoder. A VV encoder has two

components, a parser and a string encoder. The parser partitions the

source sequence x into phrases from a predetermined dictionary D. We

shall write d or di for a dictionary entry, and by D we denote the av-

erage dictionary (phrase) length also known as the average delay. As

argued in previous chapters, a convenient way of representing the dic-

tionary D is by a complete tree also know as the parsing tree. Next, the

string encoder in a VV scheme maps each dictionary phrase into its cor-

responding binary codeword C(d) of length |C(d)| = ℓ(d). Throughout

this chapter, we assume that the string encoder is a slightly modified

Shannon code1 and we concentrate on building a parsing tree for which

− log P (d) (d ∈ D) is close to an integer. This allows us to construct a

VV code with redundancy rates (per symbol) approaching zero as the

average delay increases.

In (4.2) of Chapter 4 we define the average redundancy rate as

r =

∑
d∈D P (d)ℓ(d) − hD

E[D]
=

∑
d∈D P (d)(ℓ(d) + log P (d))

E[D]
, (6.1)

1A variant of Shannon code that is used here assigns to d ∈ D a binary word of
length ℓ(d) close to − log P (d) when log P (d) is slightly larger or smaller than an
integer. Naturally, Kraft’s inequality will not be automatically satisfied but this is
handled in Lemma 6.4.
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where P is the probability law of the dictionary phrases and E[D] =∑
d∈D |d|P (d) =: D. By analogy we define the maximal redundancy

rate r∗ for VV codes as follows

r∗ =
maxd∈D[ℓ(d) + log P (d)]

D
. (6.2)

In this chapter we shall study both, the average redundancy rate and

the maximal redundancy rate for VV codes.

6.2 Redundancy of the Khodak VV Code

In this section we present our main results regarding the average and

maximal redundancy rates for a VV Khodak code. We also construct

an explicit algorithm to achieve these bound.

We start with our main theorem of this section.

Theorem 6.1. Let m ≥ 2 and S be a memoryless source over an m-ary

alphabet. Then for every D0 ≥ 1, there exists a VV code with average

dictionary length E[D] =: D ≥ D0 such that its average redundancy

rate satisfies

r = O(D
−5/3

), (6.3)

and the maximal code length is O(D log D).

The rest of this section is devoted to present a proof of Theorem 6.1.

We assume an m-ary source alphabet X = {0, . . . , m−1} with probabil-

ity of symbols p0, . . . , pm−1. Let us first give some intuition. For every

d ∈ D, we can represent P (d) as P (d) = pk0
0 · · · p

km−1

m−1 , where ki = ki(d)

is the number of times symbol i appears in d. In what follows we write

type(d) = (k0, k1, . . . , km−1) for all strings with the same probability

P (d) = pk0
0 · · · p

km−1

m−1 . Furthermore, the string encoder of our VV code

uses a slightly modified Shannon code that assigns to d ∈ D a binary

word of length ℓ(d) close to − log P (d) when log P (d) is slightly larger

or smaller than an integer. (Kraft’s inequality will not be automati-

cally satisfied but Lemma 6.4 below takes care of it.) Observe that the

average redundancy of the Shannon code is (see Chapter 3)
∑

d∈D
P (d)[⌈− log P (d)⌉+ log P (d)] =

∑

d∈D
P (d)〈log P (d)〉



86 Redundancy of VV Khodak Codes

=
∑

d∈D
P (d) · 〈k0(d)γ0 + k1(d)γ1 + · · · + km−1(d)γm−1〉

where γi = log pi. In order to build a VV code with r = o(1/D), we

are to find integers k0 = k0(d), . . . km−1 = km−1(d) such that the linear

form k0γ0 + k1γ1 + · · ·+ km−1γm−1 is close to but slightly larger than

an integer. In the sequel, we discuss some properties of the distribution

of 〈k0γ0 + k1γ1 + · · ·+ km−1γm−1〉 when at least one of γi is irrational

(see [40]).

We need some additional concepts and preliminary results that we

discuss next. Let ‖x‖ = min(〈x〉, 〈−x〉) = min(〈x〉, 1 − 〈x〉) be the

distance to the nearest integer. The dispersion δ(X) of the set X ⊆
[0, 1) is defined as

δ(X) = sup
0≤y<1

inf
x∈X
‖y − x‖,

that is, for every y ∈ [0, 1), there exists x ∈ X with ‖y − x‖ ≤ δ(X).

Since ‖y + 1‖ = ‖y‖, the same assertion holds for all real y. Dispersion

tells us that points of X are at most 2δ(X) apart in [0, 1]. Therefore,

there exist distinct points x1, x2 ∈ X with 〈y − x1〉 ≤ 2δ(X) and

〈y − x2〉 ≤ 2δ(X).

The following property will be used throughout this chapter. This

is a standard result following from Dirichlet’s approximation theorem

which proof can be found in [40].

Lemma 6.2. (i) Suppose that θ is an irrational number. Then there

exist infinitely many integers N such that

δ ({〈kθ〉 : 0 ≤ k < N}) ≤ 2

N
.

(ii) In general, let (γ0, . . . , γm−1) be an m-vector of real numbers such

that at least one of its coordinates is irrational. Then there exist in-

finitely many integers N such that the dispersion of the set

X = {〈k0γ + · · ·+ km−1γm−1〉 : 0 ≤ kj < N (0 ≤ j < m)}

is bounded by

δ(X) ≤ 2

N
.
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The central step of all existence results is the observation that a

bound on the dispersion of linear forms of log pj implies the existence of

a VV code with small redundancy. Indeed, Theorem 6.1 follows directly

from the following lemma.

Lemma 6.3. Let pj > 0 (0 ≤ j < m) with p0 + · · ·+ pm−1 = 1 be given

and suppose that for some N ≥ 1 and η ≥ 1 the set

X = {〈k0 log p0 + · · ·+ km−1 log pm−1〉 : 0 ≤ kj < N (0 ≤ j < m)},

has dispersion

δ(X) ≤ 2

Nη
. (6.4)

Then there exists a VV code with average phrase length D = Θ(N3),

with maximal length of order Θ(N3 log N), and with average redun-

dancy rate

r ≤ cm ·D− 4+η
3

where cm is a constant that may depend on m.

Clearly, Lemma 6.2 and Lemma 6.3 directly imply Theorem 6.1 by

setting η = 1 if one of the log pj is irrational. (If all log pj are rational,

then the construction is even simpler.)

We now concentrate on proving Lemma 6.3. The main thrust of

the proof is to construct a complete prefix free set D of words (i.e., a

dictionary) on m symbols such that log P (d) is very close to an integer

ℓ(d) with high probability. This is accomplished by growing an m-ary

tree T in which paths from the root to terminal nodes have log P (d)

close to an integer.

In the first step, we set k0
i := ⌊piN

2⌋ (0 ≤ i < m) and define

x = k0
0 log p0 + · · ·+ k0

m−1 log pm−1.

By our assumption (6.4) of Lemma 6.3, there exist integers 0 ≤ k1
j < N

such that 〈
x + k1

0 log p0 + · · · + k1
m−1 log pm−1

〉
=

〈
(k0

0 + k1
0) log p0 + · · ·+ (k0

m−1 + k1
m−1) log pm−1

〉
<

4

Nη
.
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Now consider all paths in a (potentially) infinite m-ary tree starting at

the root with k0
0 + k1

0 edges of type 0, k0
1 + k1

1 edges of type 1,. . ., and

k0
m−1 +k1

m−1 edges of type m−1 (cf. Figure 6.1). Let D1 denote the set

of such words. (These are the first words of our prefix free dictionary

set we are going to construct.) By an application of Stirling’s formula

it follows that there are two positive constants c′, c′′ such that the

probability

P (D1) =

(
(k0

0 + k1
0) + · · ·+ (k0

m + k1
m)

k0
0 + k1

0 , . . . , k0
m−1 + k1

m−1

)
p

k0
0+k1

0
0 · · · pk0

m−1+k1
m−1

m−1

satisfies
c′

N
≤ P (D1) =≤ c′′

N
(6.5)

uniformly for all k1
j with 0 ≤ k1

j < N . In summary, by construction all

words d ∈ D1 have the property that

〈log P (d)〉 <
4

Nη
,

that is, log P (d) is very close to an integer. Note further that all words

in d ∈ D1 have about the same length

n1 = (k0
0 + k′

0) + · · ·+ (k0
m−1 + k′

m−1) = N2 + O(N),

and words in D1 constitute the first crop of “good words”. Finally, let

B1 = X n1 \D1 denote all words of length n1 not in D1 (cf. Figure 6.1).

Then

1− c′′

N
≤ P (B1) ≤ 1− c′

N
.

In the second step, we consider all words r ∈ B1 and concatenate

them with appropriately chosen words d2 of length ∼ N2 such that

log2 P (rd2) is close to an integer with high probability. The construction

is almost the same as in the first step. For every word r ∈ B1 we set

x(r) = log2 P (r) + k0
0 log p0 + · · ·+ k0

m−1 log pm−1.

By (6.4) there exist integers 0 ≤ k2
j (r) < N (0 ≤ j < m) such that

〈
x(r) + k2

0(r) log p0 + · · ·+ k2
m−1(r) log pm−1

〉
<

4

Nη
.
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dr

r

“good” word inDj

“bad” word in Bj

N2

N2 + O(N)

2N2 + O(2N)

3N2 + O(3N)

KN2 + O(KN)
K = N log N

.

.

.

P D1( ) c
N
----=

P D2( ) 1 c
N
----– 

 =
c
N
----

P D3( ) 1 c
N
----– 

  2
=

c
N
----

P DK( ) 1 c
N
----– 

  k 1–
=

c
N
----

Figure 6.1: Illustration to the construction of the VV code.
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Now consider all paths (in the infinite tree T ) starting at r ∈ B1 with

k0
0 + k2

0(r) edges of type 0, k0
1 + k2

1(r) edges of type 1, . . ., and k0
m−1 +

k2
m−1(r) edges of type m− 1 (that is, we concatenated r with properly

chosen words d2) and denote this set by D+
2 (r). We again have that the

total probability

P (D2(r)) = P (r)·
(

(k0
0 + k2

0(r)) + · · ·+ (k0
m−1 + k2

m−1(r))

k0
0 + k2

0(r), . . . , k0
m−1 + k2

m−1(r)

)
p

k0
0+k2

0(r)
0 · · · pk0

m−1+k2
m−1(r)

m−1

of these words is bounded from below and above by

P (r)
c′

N
≤ P (D2(r)) ≤ P (r)

c′′

N
.

Furthermore, by construction we have 〈log2 P (d)〉 < 4
Nη for all d ∈

D+
2 (r).

Similarly, we can construct a set D−
2 (r) instead of D+

2 (r) for which

we have 1−〈log2 P (d)〉 < 4/Nη . We will indicate in the sequel whether

we will use D+
2 (r) or D−

2 (r).

Let D2 =
⋃

(D+
2 (r) : r ∈ B1) (or D2 =

⋃
(D−

2 (r) : r ∈ B1)). Then all

words d ∈ D2 have almost the same length |d| = 2N2 + O(2N), their

probabilities satisfy

〈log P (d)〉 <
4

Nη
or 1− 〈log P (d)〉 <

4

Nη

and the total probability is bounded by

c′

N

(
1− c′′

N

)
≤ P (D2) ≤ c′′

N

(
1− c′

N

)
.

For every r ∈ B1, let B+(r) (or B−(r)) denote the set of paths (resp.

words) starting with r of length 2(k0
0 + · · ·+ k0

m−1)+ (k1
1 + k2

1(r)+ · · ·+
k1

m−1 + k2
m−1(r)) that are not contained in D+

2 (r) (or D−
2 (r)) and set

B2 =
⋃

(B+
2 (r) : r ∈ B1) (or B2 =

⋃
(B−

2 (r) : r ∈ B1)). Observe that the

probability of B2 is bounded by

(
1− c′′

N

)2

≤ P (B2) ≤
(

1− c′

N

)2

.

We continue this construction, as illustrated in Figure 6.1, and in

step j we define sets of words Dj and Bj such that all words d ∈ Dj
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satisfy

〈log P (d)〉 <
4

Nη
or 1− 〈log P (d)〉 <

4

Nη

and the length of d ∈ Dj ∪ Bj is then given by |d| = jN2 + O (jN).

The probabilities of Dj and Bj are bounded by

c′

N

(
1− c′′

N

)j−1

≤ P (Dj) ≤ c′′

N

(
1− c′

N

)j−1

,

and (
1− c′′

N

)j

≤ P (Bj) ≤
(

1− c′

N

)j

.

This construction is terminated after K = O(N log N) steps so that

P (BK) ≤ c′′
(

1− c′

N

)K

≤ 1

Nβ

for some β > 0. This also ensures that

P (D1 ∪ · · · ∪ DK) > 1− 1

Nβ
.

The complete prefix free set D on the m symbols is given by

D = D1 ∪ · · · ∪ DK ∪ BK .

By the above construction, it is also clear that the average dictio-

nary phrase length is bounded by

c1N3 ≤ D =
∑

d∈D
P (d) |d| ≤ c2N3

for certain constants c1, c2 > 0. Notice further that the maximal code

length satisfies

max
d∈D
|d| = O(N3 log N) = O(D log D).

Now we construct a variant of the Shannon code with r = o(1/D).

For every d ∈ D1 ∪ · · · ∪ DK we can choose a non-negative integer ℓ(d)

with

|ℓ(d) + log P (d)| < 2

Nη
.
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In particular, we have

0 ≤ ℓ(d) + log P (d) <
2

Nη

if 〈log P (d)〉 < 2/Nη and

− 2

Nη
< ℓ(d) + log P (d) ≤ 0

if 1−〈log P (d)〉 < 2/Nη . For d ∈ BK we simply set ℓ(d) = ⌈− log P (d)⌉.
The final problem is now to adjust the choices of “+” resp. “−” in

the above construction so that Kraft’s inequality is satisfied. For this

purpose we use the following easy property (that we adopt from Khodak

[80]).

Lemma 6.4 (Khodak, 1972). Let D be a finite set with probability

distribution P and suppose that for every d ∈ D we have |ℓ(d) +

log2 P (d)| ≤ 1 for a nonnegative integer ℓ(d). If

∑

d∈D
P (d)(ℓ(d) + log P (d)) ≥ 2

∑

d∈D
P (d)(ℓ(d) + log P (d))2, (6.6)

then there exists an injective mapping C : D → {0, 1}∗ such that C is

a prefix free set and |C(d)| = ℓ(d) for all d ∈ D.

Proof. We use the local expansion 2−x = 1 − x ln 2 + η(x) for |x| ≤ 1,

where ((log 4)/4)x2 ≤ η(x) ≤ (log 4)x2. Hence

∑

d∈D
2−ℓ(d) =

∑

d∈D|
P (d)2−(ℓ(d)+log2 P (d))

= 1− ln 2
∑

d∈D
P (d)(ℓ(d) + log P (d))

+
∑

d∈D
P (d)η (ℓ(d) + log P (d))

≤ 1− ln 2
∑

d∈D
P (d)(ℓ(d) + log P (d))

+2 ln 2
∑

d∈D
P (d)(ℓ(d) + log P (d))2

(6.6)

≤ 1
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If (6.6) is satisfied, then Kraft’s inequality follows, and there exists an

injective mapping C : D → {0, 1}∗ such that C is a prefix free set and

|C(d)| = ℓ(d) for all d ∈ D.

We set

Ej =
∑

d∈Dj

P (d)(ℓ(d) + log P (d)).

Then Ej > 0 if we have chosen “+” in the above construction and

Ej < 0 if we have chosen “−”. In any case we have

|Ej | ≤ P (Dj)
2

Nη
≤ 2c′′

N1+η

(
1− c′

N

)j−1

≤ 2c′′

N1+η
.

Suppose for a moment that we have always chosen “+”, that is Ej > 0

for all j ≥ 1, and that

K∑

j=1

Ej ≤
8 + 2c′′

N1+η
. (6.7)

We can assume that N is large enough that 2/Nη ≤ 1/2. Hence,

the assumptions of Lemma 6.4 are trivially satisfied since 0 ≤ ℓ(d) +

log2 P (d) < 1/2 implies 2(ℓ(d) + log2 P (d))2 < ℓ(d) + log2 P (d) for all

d ∈ D. If (6.7) does not hold (if we have chosen always “+”), then one

can select “+” and “−” so that

8

N1+η
≤

K∑

j=1

Ej ≤
8 + 4c′′

N1+η
.

Indeed, if the partial sum
∑K

j=i Ei ≤ (8 + 2c′′)N−1−η, then the sign of

Ej is chosen to be “+” and if
∑K

j=i Ei > (8 + 2c′′)N−1−η then the sign

of Ej is chosen to be “−”. Since

∑

d∈D
P (d)(ℓ(d)+log2 P (d))2 ≤ 4

N2η
≤ 4

N1+η
≤
∑

d∈D
P (d)(ℓ(d)+log2 P (d))

the assumption of Lemma 6.4 is satisfied. Thus, there exists a prefix

free coding map C : D → {0, 1}∗ with |C(d)| = ℓ(d) for all d ∈ D.

Applying the above lemma, after some tedious algebra, we arrive at

the following bound on the average redundancy rate

r ≤ 1

D

∑

d∈D
P (d)(ℓ(d) + log P (d)) ≤ C

1

DN1+η
.
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Since the average dictionary phrase length D is of order N3 we have

r = O

(
D

−1− 1+η
3

)
= O

(
D

− 4+η
3

)
.

This proves the upper bound for r of Lemma 6.3 and Theorem 6.1

follows.

6.3 Explicit Construction of a Khodak VV Code

In what follows we present an algorithm for designing a VV-code with

arbitrarily large average dictionary length D for memoryless sources.

More precisely, we construct a code with redundancy r ≤ ε/D, where

ε > 0 is given and D ≥ c/ε3 (for some constant c). In fact, for some large

integer N we find that D = N3 and ε = 1/N , so that r = O(D
−4/3

)

which does not employ the full strength of Theorem 6.1 that guaran-

tees the existence of a code with the average redundancy smaller than

cD
−5/3

. This allows, however, for some simplification of the algorithm,

in particular we just use a standard Shannon code.

Before we proceed, we need some facts about continued fractions.

A finite continued fraction expansion is a rational number of the form

c0 +
1

c1 + 1
c2+ 1

c3+
.. .+ 1

cn

,

where c0 is an integer and cj are positive integers for j ≥ 1 (see

[3]). We denote this rational number as [c0, c1, . . . , cn]. With help of

the Euclidean algorithm, it is easy to see that every rational num-

ber has a finite continued fraction expansion. Furthermore, if cj is a

given sequence of integers (that are positive for j > 0), then the limit

θ = limn→∞[c0, c1, . . . , cn] exists and is denoted by the infinite con-

tinued fraction expansion θ = [c0, c1, c2 . . .]. Conversely, if θ is a real

irrational number and if we recursively set

θ0 = θ, cj = ⌊θj⌋, θj+1 = 1/(θj − cj),

then θ = [c0, c1, c2 . . .]. In particular, every irrational number has a

unique infinite continued fraction expansion.
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The convergents of an irrational number θ with infinite continued

fraction expansion θ = [c0, c1, c2 . . .] are defined as

Pn

Qn
= [c0, c1, . . . , cn],

where integers Pn, Qn are coprime. These integers can be recursively

determined by

Pn = cnPn−1 + Pn−2, Qn = cnQn−1 + Qn−2.

In particular, Pn and Qn are growing exponentially quickly. Further-

more, the convergents Pn
Qn

are the best rational approximations of θ in

the sense that

|Qnθ − Pn| < min
0<Q<Qn, P ∈Z

|Qθ − P |.

In particular one has [17]
∣∣∣∣θ −

Pn

Qn

∣∣∣∣ <
1

Q2
n

. (6.8)

The denominators Qn are called best approximation denominators.

Now we are ready to construct a VV code with redundancy o(1/D).

We will also make the assumption that all symbol probabilities pj are

rational numbers; otherwise we would have to assume that pj is known

to an arbitrary precision. We then know that log pj is either irrational

or an integer (which means that pj = 2−k). Thus, we can immediately

decide whether all log2 pj are rational or not. If all pj are negative

powers of 2, then we can use a perfect code with zero redundancy.

Thus, we only have to treat the case where pm−1 is not a negative

powers of 2. We also assume that the continued fraction expansion of

log pm−1 = [c0, c1, c2, . . .] is given and one determines a convergent

[c0, c1, c2, . . . , cn] = M/N

for which the denominator N satisfies N > 4/ε. The main goal of

the algorithms is to construct a prefix free set of words d with the

property that for most words 〈log2 P (d)〉 is small. The reason for this

philosophy is that if one uses the Shannon code as the string encoder,
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that is, ℓ(d) = ⌈− log2 P (d)⌉, then the difference ℓ(d)− log(1/P (d)) =

〈log2 P (d)〉 is small and contributes negligibly to the redundancy.

The main step of the algorithm is a loop of the same subroutine.

The input is a pair D, B of sets of words with the property that D∪B
is a prefix free set. Words d in D are already good in the sense that

〈log P (d)〉 ≤ 3
4ε, whereas words r in B are bad because they do not

satisfy this condition. In the first step of the subroutine, one chooses a

word r ∈ B of minimal length and computes an integer k with 0 ≤ k <

N that satisfies

1

N
≤ 〈kM/N + x + log P (r)〉 ≤ 2

N
.

Here x is an abbreviation of

x =
m−1∑

j=0

k0
j log pj,

where k0
j = ⌊pjN2⌋, 0 ≤ j < m. The computation of k can be done by

solving the congruence

kM ≡ 1− ⌊(x + log2 P (r))N⌋ mod N

(e.g., with help of the Euclidean algorithm). This choice of k ensures

that

0 ≤ 〈k log pm + x + log2 P (r)〉 ≤ 3/N ≤ 3

4
ε.

For this k we determine the set D′ of all words d of type(d) =

(k0
0 , . . . , k0

m−2, k0
m−1 + k). By construction all d′ ∈ D′ satisfy

〈log P (r · d′)〉 = 〈k log pm−1 + x + log P (r)〉 ≤ 3

4
ε.

We now replace D by D∪ r · D′ and B by (B \ {r})∪ r · (X n \D′). This

construction ensures that (again) all word in d ∈ D satisfy

〈log P (d)〉 ≤ 3

4
ε.

The algorithm terminates when P (D) > 1−ε/4; that is, most words

in D ∪ B are good. The proof of Theorem 6.1 shows that this actually

occurs when the average dictionary length D is of order O(N3). In
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particular, the special choice of integers k0
j = ⌊pjN2⌋ ensures that the

probability P (D) increases step by step as quickly as possible, compare

with (6.5).

As already mentioned, we finally use the Shannon code C : D∪B →
{0, 1}∗, that is ℓ(d) = ⌈− log2 P (d)⌉ for all d ∈ D ∪B. The redundancy

can be estimated by

r =
1

D

∑

d∈D∪B
P (d)

(
ℓ(d)− log

1

P (d)

)

=
1

D

∑

d∈D∪B
P (d) 〈log P (d)〉

=
1

D



∑

d∈D
P (d)〈log2 P (d)〉+

∑

d∈B
P (d)〈log P (d)〉




≤ 1

D

(
P (D)

3

4
ε + P (B)

)

≤ 1

D

(
3

4
ε +

1

4
ε

)
=

ε

D
.

Thus this algorithm constructs a parsing tree and a VV code with

a small redundancy rate. A more formal description of the algorithm

follows.

Algorithm KhodCode:

Input: (i) m, an integer ≥ 2; (ii) positive rational numbers p0, . . . , pm−1

with p0 + · · · + pm−1 = 1, pm−1 is not a power of 2; (iii) ε, a positive

real number < 1.

Output: A VV-code, that is, a complete prefix free set D on m symbols

and a prefix code C : D → {0, 1}∗, with redundancy r ≤ ε/D, where the

average dictionary code length D satisfies D ≥ c(m, p0, . . . , pm−1)/ε3

(for some constant c(m, p0, . . . , pm−1)).

Notation: For a word w ∈ {0, . . . , m − 1}∗ that consists of kj copies

of j (0 ≤ j < m) we set P (w) = pk0
0 · · · p

km−1

m−1 for the probability of w

and type(w) = (k0, . . . , km−1). By ω we denote the empty word and set

P (ω) = 1.
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1. Calculate the convergent M
N = [c0, c1, . . . , cn] of the irrational

number log pm−1 for which N > 4/ε.

2. Set k0
j = ⌊pjN

2⌋ (0 ≤ j < m), x =
∑m

j=1 k0
j log2 pj, and n0 =∑m

j=1 k0
j .

3. Set D = ∅, B = {ω}, and p = 0

while p < 1− ε/4 do

Choose r ∈ B of minimal length

b← log P (r)

Find 0 ≤ k < N that solves the congruence

kM ≡ 1− ⌊(x + b)N⌋ mod N

n← n0 + k

D′ ← {d ∈ An : type(d) = (k0
0 , . . . , k0

m−2, k0
m−1 + k)}

D ← D ∪ r · D′

B ← (B \ {r}) ∪ r · ({0, . . . , m− 1}n \ D′)
p← p + P (r)P (D′), where

P (D′) =
n!

k0
0 ! · · · k0

m−2!(k0
m−1 + k)!

p
k0

0
0 · · · p

k0
m−2

m−2 p
k0

m−1+k

m−1 .

end while.

4. D ← D ∪ B.

5. Construct a Shannon code C : D → {0, 1}∗ with ℓ(d) =

⌈− log P (d)⌉ for all d ∈ D.

6. End.

Example 6.1. Assume m = 2 with p0 = 2/3 and p1 = 1/3. In the first

iteration of the algorithm we assume that both B and C are empty.

Easy computations show that

log(1/3) = [−2, 2, 2, 2, 3, . . .], and [−2, 2, 2, 2] = −19

12
,

hence M = −19 and N = 12. Let us set ε = 0.4 so 4/ε = 10 < 12 = N .

Therefore, k0
0 = 96, k0

1 = 48 so that n0 = 144 = N2. Solving the

congruence

−19k = 1 + 1587 mod 12
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gives k = 8 and therefore

C′ = {d ∈ {0, 1}152 : type(d) = (96, 56)}

with P (C′) ≈ 0.04425103411. Observe that B = {0, 1}152 \ C.
In the second iteration we can pick up any string from B, say the

string r = 00 . . . 0 with 152 zeros. We find, solving the congruence

with b = 152 log(2/3) ≈ −88.91430011, that k = 5. Hence C′ = {d ∈
{0, 1}149 : type(d) = (96, 53)} and C = {d ∈ {0, 1}152 : type(d) =

(96, 56)}∪ r · C′. We continue along the same path until the total prob-

ability of all “good” strings in C reaches the value 3/4 · ε = 0.3, which

may take some time.

6.4 Khodak’s Redundancy for Almost All Sources

In this section we present better estimates for the redundancy rates

but valid only for almost all memoryless sources. This means that the

set of exceptional pj, those pj with
∑m

j=1 pj = 1 and pj > 0 for all 0 ≤
j ≤ m− 1 that do not satisfy the proposed property, has zero Lebesgue

measure on the (m − 1)-dimensional hyperplane x0 + · · · + xm−1 = 1.

From a mathematical point of view, these results are more challenging.

While Lemma 6.2 and 6.3 laid foundation for Theorem 6.1, the next

lemma is fundamental for our current considerations.

Lemma 6.5. Suppose that ε > 0. Then for almost all pj (0 ≤ j < m)

with pj > 0 and p0 + p1 + · · ·+ pm−1 = 1 the set

X = {〈k0 log p0 + · · · + km−1 log pm−1〉 : 0 ≤ kj < N (0 ≤ j < m)}

has dispersion

δ(X) ≤ 1

Nm−ε
(6.9)

for sufficiently large N . In addition, for almost all pj > 0 there exists

a constant C > 0 such that

‖k0 log p0 + · · ·+ km−1 log pm−1‖ ≥ C

(
max

0≤j<m
|kj |

)−m−ε

(6.10)

for all non-zero integer vectors (k0, . . . , km−1).
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We should point out that for m = 2 we can slightly improve the

estimate of the lemma. Indeed, we will show that for almost all p0 >

0, p1 > 0 with p0 + p1 = 1 there exists a constant κ and infinitely many

N such that the set X = {〈k0 log p0 + k1 log p1〉 : 0 ≤ k0, k1 < N} has

dispersion

δ(X) ≤ κ

N2
. (6.11)

The estimate (6.11) is a little bit sharper than (6.9). However, it is only

valid for infinitely many N and not for all but finitely many.2

By combining Lemma 6.3 and Lemma 6.5 we directly obtain our

second main result valid for almost all sources.

Theorem 6.6 (Y. Bugeaud, M. Drmota, and W. Szpankowski, 2008).

Let m ≥ 2 and consider a memoryless source on m symbols. Then

for almost all source parameters, and for every sufficiently large D0,

there exists a VV code with the average dictionary size D satisfying

D0 ≤ D ≤ 2D0 such that its average redundancy rate is bounded by

r ≤ D
− 4

3
− m

3
+ε

, (6.12)

where ε > 0 and maximal length is O(D log D).

This theorem shows that the typical best possible average redun-

dancy r can be measured in terms of negative powers of D that are

linearly decreasing in the alphabet size m. However, it seems to be a

very difficult problem to obtain the optimal exponent (almost surely).

Nevertheless, these bounds are best possible through the methods we

applied.

Before we present a proof of Lemma 6.5 and hence prove of our

second main result Theorem 6.6, we complete our analysis with a lower

bound for all sources. We start with a simple lemma that follows di-

rectly from our proof of Lemma 6.4

Lemma 6.7. Let D be a complete prefix free set with probability dis-

tribution P . Then for any code C : D → {0, 1}∗ we have

r ≥ 1

2

1

D

∑

d∈D

P (d)‖ log2 P (d)‖2.

2We point out that (6.9) and (6.11) are optimal. Since the set X consists of Nm

points the dispersion must satisfy δ(X) ≥ 1
2
N−m.
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Proof. Suppose that |x| ≤ 1. Then we have 2−x = 1−x log 2+η(x) with

((log 4)/4)x2 ≤ η(x) ≤ (log 4)x2. Actually we can represent 2−x also

for |x| > 1 and still have some positive error term η(x) that satisfies

η(x) ≥ min (η(〈x〉), η(1 − 〈x〉)) ≥ log 4

4
‖x‖2.

Hence by using the representation

x = (1− 2−x + η(x))/ ln 2

we find

r =
1

D

∑

d∈D
P (d)(ℓ(d) + log P (d))

=
1

D ln 2

∑

d∈D
P (d)

(
1− 2−ℓ(d)−log P (d) + η(ℓ(d) + log P (d))

)

=
1

D ln 2



1−
∑

d∈D
2−ℓ(d)



+
1

D log 2

∑

d∈D
P (d)η(ℓ(d) + log P (d)).

Hence, by Kraft’s inequality and the above observation the result fol-

lows immediately.

We are now in a position to present our finding regarding a lower

bound on the redundancy rates for almost all sources.

Theorem 6.8. Consider a memoryless source on an alphabet of size

m ≥ 2. Then for almost all source parameters, and for every VV code

with average dictionary length D ≥ D0 (where D0 is sufficiently large)

we have

r∗ ≥ r ≥ D
−2m−1−ε

, (6.13)

where ε > 0.

Proof. By Lemma 6.7 we have

r ≥ 1

2D

∑

d∈D

P (d)‖ log2 P (d)‖2.

Suppose that P (d) = pk0
0 · · · p

km−1

m−1 holds, that is

log P (d) = k0 log p0 + · · ·+ km−1 log pm−1.
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By Lemma 6.5, we conclude from (6.10) that for all pj and for all

non-zero integer vectors (k0, . . . , km−1)

‖k0 log p0 + · · ·+ km−1 log pm−1‖ ≥ C

(
max

0≤j<m
|kj |

)−m−ε

,

and therefore

‖ log P (d)‖ ≥ C

(
max

0≤j<m
|kj |

)−m−ε

≥ C




∑

0≤j<m

kj




−m−ε

= C|d|−m−ε.

Consequently, by Jensen’s inequality, we obtain

r ≥ C

2D

∑

d∈D
P (d)|d|−2m−2ε

≥ C

2D



∑

d∈D
P (d)|d|




−2m−2ε

≥ D
−2m−1−3ε

.

This completes the proof of Theorem 6.8.

6.4.1 Proof of Lemma 6.5

Lemma 6.5 states that for almost all pj > 0 (with p1 + · · ·+ pm−1 = 1)

the set

X = {〈k0 log p0 + · · ·+ km−1 log2 pm−1〉 : 0 ≤ kj < N (0 ≤ j < m)}

has dispersion

δ(X) ≤ N−m+ε (6.14)

for all sufficiently large N and for all non-zero integer vectors

(k1, . . . , km) we have

‖k0 log p0 + · · · + km−1 log2 pm−1‖ ≥ C

(
max

0≤j<m
|kj |

)−m−ε

(6.15)

for some constant C > 0.

In view of the above, we just have to show (6.14) and (6.15) for

almost all pj . These kind of problems fall into the field of metric Dio-

phantine approximation that is well established in number theory (see
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[11, 17, 136, 143]). One of the problems in this field is to obtain some

information about the following linear forms

L = k0γ0 + · · ·+ km−1γm−1 + km,

where kj are integers and γj are randomly chosen real numbers. In fact,

one is usually interested in lower bounds for |L| in terms of max |kj |.
In our context, we have γj = log2 pj so that the γj’s are related by

2γ0 + · · · + 2γm−1 = 1.

This means that they cannot be chosen independently. They are situ-

ated on a proper submanifold of the m-dimensional space. It has turned

out that metric Diophantine approximation in this case is much more

complicated than in the independent case. Fortunately, there exist now

proper results that we can use for our purpose.

Theorem 6.9 (Dickinson and Dodson [31]). Suppose that m ≥ 2 and

1 ≤ k < m. Let U be an open set in Rk and, for 1 ≤ j ≤ m, let

Ψj : U → R be C1 real functions. Let η > 0 be real. Then for almost

all u = (u1, . . . , uk) ∈ U , there exists N0(u) such that for all N ≥ N0(u)

we have

|k0 + k1Ψ1(u) + · · ·+ kmΨm(u)| ≥ N−m+(m−k)η(log N)m−k

for all non-zero integer vectors (k0, k1, . . . , km) with

max
1≤j≤k

|kj | ≤ N and max
k<j≤m

|kj | ≤ N1−η/(log N).

Remark 6.1. More precisely, let us define a convex body consisting of

all real vectors (y1, . . . , ym) with

|y0 + y1Ψ1(u) + . . . + ymΨm(u)| ≤ N−m+(m−k)η(log N)m−k,

|yj| ≤ N, (j = 1, . . . , k), (6.16)

|yj| ≤ N1−η (log N)−1, (j > k).

Dickinson and Dodson [31, p. 278] showed in the course of the proof of

their Theorem 2 that the set

S(N) :=
{

u ∈ U : ∃ (k0, k1, . . . , km) ∈ Zm+1
}
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with 0 < max
1≤j≤m

|kj | < N1−η satisfying (6.16) also has the property that

the set

lim sup
N→∞

S(N) =
⋂

N≥1

⋃

M≥N

S(M)

has zero Lebesgue measure. This means that almost no u belongs to

infinitely many sets S(N). In other words, for almost every u, there

exists N0(u) such that u /∈ S(N) for every N ≥ N0(u). And this is

stated in Theorem 6.9.

For m = 2, Theorem 6.9 can be improved as shown by Baker [7].

Theorem 6.10 (R.C. Baker [7]). Let Ψ1 and Ψ2 be C3 real functions

defined on an interval [a, b]. For x in [a, b], set

k(x) = Ψ′
1(x)Ψ′′

2(x)−Ψ′′
1(x)Ψ′

2(x).

Assume that k(x) is non-zero almost everywhere and that |k(x)| ≤M

for all x in [a, b] and set κ = min{10−3, 10−8M−1/3}. Then for almost

all x in [a, b], there are infinitely many positive integers N such that

|k0 + k1Ψ1(x) + k2Ψ2(x)| ≥ κN−2

for all integers k0, k1, k2 with 0 < max{|k1|, |k2|} ≤ N .

Using Theorem 6.9 and Theorem 6.10 we are now in a position to

prove (6.14) and (6.15).

Proof of (6.15). For this purpose we can directly apply Theorem 6.9,

where k = m− 1 and U is an open set contained in

∆ = {u = (u1, . . . , um−1) : u1 ≥ 0, . . . , um−1 ≥ 0, u1 + · · ·+ um−1 ≤ 1}

and Ψj(u) = log2(uj) (1 ≤ j ≤ m − 1), resp. Ψm(u) = log2(1 −
u1 − · · · − um−1). We also know that, for almost all u, the numbers

1, Ψ1(u), . . . , Ψm(u) are linearly independent over the rationals, hence,

L := k0 + k1Ψ1(u) + · · · + kmΨm(u) 6= 0

for all non-zero integer vectors (k0, k1, . . . , km).



6.4. Khodak’s Redundancy for Almost All Sources 105

Set J = max1≤j≤m |kj | and define N by N1−η = J log N . Assume

that J is large enough to give N ≥ N0(u). We then have (for suitable

constants c1, c2 > 0)

|L| ≥ N−m+η(log N) ≥ c1J−m−(m−1)η/(1−η)(log J)(1−m)/(1−η)

≥ c2J−m−ε

for ε = 2(m−1)η/(1−η) and J large enough. This completes the proof

of (6.15).

Proof of (6.14). To simplify our presentation, we first apply Theorem

6.10 in the case of m = 2 and then briefly indicate how it generalizes.

First of all we want to point out that Theorems 6.9 and 6.10 are lower

bounds for the homogeneous linear form

L = k0 + k1Ψ1(u) + · · ·+ kmΨm(u)

in terms of max |kj |. Using techniques from “geometry of numbers” (see

below) these lower bounds can be transformed into upper bounds for

the dispersion of the set

X = {〈k1Ψ1(u) + · · ·+ kmΨm(u)〉 : 0 ≤ k1, . . . , km < N}.

In particular we will use the notion of successive minima of convex

bodies. Let B ⊆ Rd be a 0-symmetric convex body. Then the successive

minima λj are defined by

λj = inf{λ > 0 : λB contains j linearly independent integer vectors}.

One of the first main results of “geometry of numbers” is Minkowski’s

Second Theorem [17, 136] stating that

2d/d! ≤ λ1 · · · λdVold(B) ≤ 2d.

Let x and N be the same as Theorem 6.10 and consider the convex

body B ⊆ R3 that is defined by the inequalities

|y0 + y1Ψ1(x) + y2Ψ2(x)| ≤ κN−2,

|y1| ≤ N,

|y2| ≤ N.
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By Theorem 6.10 the set B does not contain a non-zero integer point.

Thus, the first minimum λ1 of B is ≥ 1. Note that Vol3(B) = 8κ. Then

from Minkowski’s Second Theorem we conclude that the three minima

of this convex body satisfy λ1λ2λ3 ≤ 1/κ. Since 1 ≤ λ1 ≤ λ2 we thus

get λ3 ≤ λ1λ2λ3 ≤ 1/κ and consequently λ1 ≤ λ2 ≤ λ3 ≤ 1/κ. In other

words, there exist constants κ2 and κ3, and three linearly independent

integer vectors (a0, a1, a2), (b0, b1, b2) and (c0, c1, c2) such that

|a0 + a1Ψ1(x) + a2Ψ2(x)| ≤ κ2N−2,

|b0 + b1Ψ1(x) + b2Ψ2(x)| ≤ κ2N−2,

|c0 + c1Ψ1(x) + c2Ψ2(x)| ≤ κ2N−2,

max{|ai|, |bi|, |ci|} ≤ κ3N.

Using these linearly independent integer vectors, we can show that the

dispersion of

X = {〈k1Ψ1(x) + k2 log2 Ψ2(x)〉 : 0 ≤ k1, k2 ≤ 7κ3N}

is small.

Let ξ be a real number (that we want to approximate by an element

of X) and consider the (regular) system of linear equations

−ξ + θa(a0 + a1Ψ1(x) + a2Ψ2(x)) +

+θb(b0 + b1Ψ1(x) + b2Ψ2(x)) + θc(c0 + c1Ψ1(x) + c2Ψ2(x)) = 4κ2N−2,

θaa1 + θbb1 + θcc1 = 4κ3N, (6.17)

θaa2 + θbb2 + θcc2 = 4κ3N.

Denote by (θa, θb, θc) its unique solution and set

ta = ⌊θa⌋, tb = ⌊θb⌋, tc = ⌊θc⌋,

and

kj = taaj + tbbj + tccj (j = 0, 1, 2).

Of course, k0, k1, k2 are integers and from the second and third equation

of (6.17) combined with max{|ai|, |bi|, |ci|} ≤ κ3N it follow s that

κ3N ≤ min{k1, k2} ≤ max{k1, k2} ≤ 7κ3N,
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in particular, k1 and k2 are positive integers. Moreover, by considering

the first equation of (6.17) we see that

κ2N−2 ≤ −ξ + k0 + k1Ψ1(x) + k2Ψ2(x) ≤ 7κ2N−2.

Since this estimate is independent of the choice of ξ this implies

δ(X) ≤ 7κ2N−2.

Clearly, we can apply this procedure for the functions

Ψ1(x) = log2 x

and

Ψ2(x) = log2(1− x)

and for any interval [a, b] with 0 < a < b < 1.

This also shows that we can choose ε = 0 in the case m = 2 for in-

finitely many N in Lemma 3, provided that we introduce an (absolute)

numerical constant.

Finally, we discuss the general case m ≥ 2 (and prove Lemma 6.5).

We consider the convex body B ⊆ Rm+1 that has volume 2m+1 and is

defined by (6.16):

|y0 + y1Ψ1(u) + . . . + ymΨm(u)| ≤ N−m+(m−k)η(log N)m−k,

|yj| ≤ N, (j = 1, . . . , k),

|yj| ≤ N1−η (log N)−1,

for j = k+1, . . . , m. By assumption, the first minimum λ1 of B satisfies

λ1 ≥ N−η, thus, by Minkowski’s Second Theorem, its last minimum

λm is bounded by λm ≤ Nnη. Consequently, we have n + 1 linearly

independent vectors q(i), i = 0, . . . , m, such that

‖q(i) ·Ψ(u)‖ ≤ N−m+(m−k)η+mη(log N)k, ‖q(i)‖∞ ≤ N1+mη.

We now argue as above, and consider a system of linear equations

analogous to (6.17). Hence, for any real number ξ, there are positive

integers k1, . . . , km such that

‖ − ξ + k1Ψ1(u) + . . . + kmΨm(u)‖ <
1

Nm−ε
, max kj ≤ N,
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where ε > 0 can be made arbitrarily small by taking sufficiently small

values of η. Applied to the functions

Ψj(u) = log2(uj), 1 ≤ j ≤ m− 1

and

Ψm(u) = log2(1− u1 − · · · − um−1),

this proves (6.14). This completes the proof of Lemma 6.5.



7

Redundancy of Non Prefix One-to-One Codes

In this concluding chapter, we discuss non-prefix codes, that is, codes

which are not prefix free and do not satisfy Kraft’s inequality. In par-

ticular, we construct a one-to-one code whose average length is smaller

than the source entropy in defiance of the Shannon lower bound. To

focus, we only consider fixed-to-variable codes over known memoryless

sources with block size equal to n. We first present a very precise analy-

sis of one-to-one codes for a binary source alphabet, and then extend it

to a general finite source alphabet. This chapter is based on [155, 156]

(see also [4, 93]).

7.1 Binary One-to-One Code

In this section we discuss codes known as one-to-one codes which are

“one-shot” codes that assign a distinct codeword to source symbols and

are not necessarily prefix codes (more generally, uniquely decodable).

Therefore these codes do not satisfy the Kraft’s inequality, for for such

codes the Shannon lower bound doesn’t apply. We quantify precisely

the difference between the code length and the entropy.

We first consider a memoryless source X over the binary alphabet

109
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X = {0, 1} generating a sequence xn
1 = x1, . . . , xn ∈ A = X n with

probability P (xn
1 ) = pkqn−k, where k is the number of 0’s in xn

1 and p

is known. We shall assume that p ≤ q. We first list all 2n probabilities

in a nonincreasing order and assign the code length ⌊log(j)⌋ to the j-th

binary string on this list, as shown below:

probabilities qn
(

p
q

)0
≥ qn

(
p
q

)1
≥ . . . ≥ qn

(
p
q

)n

code lengths ⌊log2(1)⌋ ⌊log2(2)⌋ . . . ⌊log2(2n)⌋.

Observe that there are
(n

k

)
equal probabilities pkqn−k. Set

Ak =

(
n

0

)
+

(
n

1

)
+ · · ·+

(
n

k

)
, A−1 = 0.

Starting from the position Ak−1 + 1 of the above list , the next
(n

k

)

probabilities are the same and equal to pkqn−k. The one-to-one code

assigns to xn
1 the shortest (possibly empty) binary string (ties broken

with the ordering 0 < 1) not assigned to any element yn
1 with P (yn

1 ) >

P (xn
1 ). Thus, for each j = Ak−1 + i, 1 ≤ i ≤ (nk

)
, we assign the code

length

⌊log2(j)⌋ = ⌊log2(Ak−1 + i)⌋

to the jth binary string. Hence the average code length is

E[Ln] =
n∑

k=0

pkqn−k
Ak∑

j=Ak−1+1

⌊log2(j)⌋ (7.1)

=
n∑

k=0

pkqn−k
(n

k)∑

i=1

⌊log2(Ak−1 + i)⌋.

Our goal is to estimate E[Ln] asymptotically for large n and the average

unnormalized redundancy

Rn = E[Ln]− nh(p)

where h(p) = −p log p− q log q is the binary entropy.
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Let us first simplify the formula for E[Ln]. We need to handle the

inner sum that contains the floor function. To evaluate this sum we

apply partial summation: (cf. Knuth [85] Ex. 1.2.4-42)

N∑

j=1

aj = NaN −
N−1∑

j=1

j(aj+1 − aj). (7.2)

Using this, we easily find an explicit formula for the inner sum of (7.1),

namely

Sn,k =

(n
k)∑

j=1

⌊log2(Ak−1 + j)⌋

=

(
n

k

)
⌊log2 Ak⌋ − (2⌊log2(Ak)⌋+1 − 2⌈log2(Ak−1+2)⌉)

+ (Ak−1 + 1)(1 + ⌊log2(Ak)⌋ − ⌈log2(Ak−1 + 2)⌉).

After some algebra, using ⌊x⌋ = x−〈x〉 and ⌈x⌉ = x + 〈−x〉, we finally

reduce the formula for E[Ln] to the following

E[Ln] =
n∑

k=0

(
n

k

)
pkqn−k⌊log2 Ak⌋ (7.3)

− 2
n∑

k=0

(
n

k

)
pkqn−k2−〈log2 Ak〉

+
n∑

k=0

(
n

k

)
pkqn−k 1 + Ak−1(n

k

)

×
(

1 + log2

(
Ak

Ak−1 + 2

)
− 〈− log2(Ak−1 + 2)〉 − 〈log2 Ak〉

)

−
n∑

k=0

(
n

k

)
pkqn−k Ak−1(n

k

)
(
2−〈log2 Ak〉+1 − 2〈− log2(Ak−1+2)〉

)

+ 2
n∑

k=0

pkqn−k2〈− log2(Ak−1+2)〉.

Now we are in the position to present our main result.
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Theorem 7.1 (W. Szpankowski, 2008). Consider a binary memoryless

source and the one-to-one block code described above. Then for p < 1
2

Rn = −1

2
log2 n− 3 + ln(2)

2 ln(2)
+ log2

1− p

1− 2p

1√
2πp(1− p)

+
p

1− 2p
log2

(
2(1− p)

p

)
+ F (n) + o(1) (7.4)

where α = log2(1 − p)/p, β = log2(1/(1 − p). Furthermore if α is

irrational then F (n) = 0. Conversely if α = N/M for some integers

M, N such that gcd(N, M) = 1, then

F (n) = − 1− p

1− 2p
HM (nβ)[x] − p

1− 2p
HM (nβ − α)[−x]

−2(1− 3p)

1− 2p
HM(nβ)[2−x] +

p

1− 2p
HM(nβ − α)[2x]

where

HM (y)[f ] :=
1

M
√

2π

∫ ∞

−∞
e−x2/2

(〈
M

(
y − log2

(
1− 2p

1− p

√
2πpqn

)

− x2

2 ln 2

)〉
−
∫ 1

0
f(t)dt

)
dx

for some Riemann integrable function f .

Finally for p = 1
2 , we have

Rn = −2 + 2−n(n + 2)

for every n ≥ 1.

We start with some observations. First, the average redundancy

Rn is negative for such one-to-one codes. Therefore, in [155] we coin

the term anti-redundancy for Rn in this case. The fact that one-to-

one codes have average code length smaller than entropy was actually

known to Shannon and Huffman. However, Wyner in 1972 [174], and

then Alon and Orlitsky [4], quantified more precisely this difference.

Second, in view of Theorem 7.1, we again see that asymptotic behav-

ior of the redundancy depends on the rationality/irrationality of α =

log2(1− p)/p (cf. [33, 36, 153]). In Figure 7.1 we plot Rn + 0.5 log2(n)
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versus n. We observe change of “mode" from a “converging mode” to

a “fluctuating mode”, when switching from α = log2(1 − p)/p irra-

tional (cf. Fig. 7.1(a)) to rational (cf. Fig. 7.1(b)). Recall that we saw

this already in Chapters 3 and 4 for Huffman, Shannon, and Tunstall

codes.

150 200100
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−1.15

−1.2

50

−1.1

L_n−n*h(p)+0.5*log(n)   

−1.65

200

−1.45

−1.5

−1.7

−1.55

50

−1.6

150100

L_n−n*h(p)+0.5*log(n)   

(a) (b)

Figure 7.1: Plots of Ln − nh(p) + 0.5 log(n) (y-axis) versus n (x-axis) for: (a)
irrational α = log2(1 − p)/p with p = 1/π; (b) rational α = log2(1 − p)/p with
p = 1/9.

We only briefly sketch the proof of Theorem 7.1. The full proof

can be found in [155]. We only analyze here (7.3) which we re-write as

follows

n∑

k=0

(
n

k

)
pkqn−k⌊log2 Ak⌋ =

n∑

k=0

(
n

k

)
pkqn−k log2 Ak

−
n∑

k=0

(
n

k

)
pkqn−k〈log2 Ak〉,

and define

an =
n∑

k=0

(
n

k

)
pkqn−k log2 Ak, bn =

n∑

k=0

(
n

k

)
pkqn−k〈log2 Ak〉.
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We first deal with an for which we need to derive a precise asymp-

totic estimate for An. But this is a simple exercise of the saddle point

method [47, 154] as discussed below.

Lemma 7.2. For large n and p < 1/2

A⌊np⌋ =
1− p

1− 2p

1√
2πnp(1− p)

2nh(p)
(
1 + O(n−1/2)

)
(7.5)

where h(p) is the binary entropy. More precisely, for every sufficiently

small ε > 0 there exist δ > 0 such that uniformly for k = np+O(n1/2+ε)

Ak =
1− p

1− 2p

1√
2πnp(1− p)

(
1− p

p

)k 1

(1− p)n
(7.6)

× exp

(
− (k − np)2

2p(1− p)n

)(
1 + O(n−δ)

)

for some δ > 0.

Proof. We use the saddle point method (see for example [154]). Let’s

first define the generating function of Ak, that is,

An(z) =
n∑

k=0

Akzk =
(1 + z)n − 2nzn+1

1− z
.

Thus by Cauchy’s formula

Ak =
1

2πi

∮
(1 + z)n − 2nzn+1

1− z

dz

zk+1

=
1

2πi

∮
1

1− z
2n log(1+z)−(k+1) log zdz.

Define H(z) = n log(1 + z) − (k + 1) log z. The saddle point z0 solves

H ′(z0) = 0, and one finds z0 = (k +1)/(n−k +1) = p/(1−p)+O(1/n)

for k = ⌊np⌋ and H ′′(z0) = q3/p. Thus by the saddle point method

Ak =
1

1− z0

1√
2πnH ′′(z0)

2nH(z0)(1 + O(n−1/2)).

This proves (7.5). In a similar manner, as shown in [32], we establish

(7.6), as desired.
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For bn we need to appeal to an extension of Lemma 3.7 from Chap-

ter 3 presented next (for a proof see [33]).

Lemma 7.3. Let 0 < p < 1 be a fixed real number and f : [0, 1] → R

be a Riemann integrable function.

(i) If α is irrational, then

lim
n→∞

n∑

k=0

(
n

k

)
pk(1− p)n−kf

(〈
kα + y − (k − np)2/(2pqn ln 2)

〉)
(7.7)

=

∫ 1

0
f(t) dt,

where the convergence is uniform for all shifts y ∈ R.

(ii) Suppose that α = N
M is a rational number with integers N, M such

that gcd(N, M) = 1. Then uniformly for all y ∈ R

n∑

k=0

(
n

k

)
pk(1− p)n−kf

(〈
kα + y − (k − np)2/(2pqn ln 2)

〉)
(7.8)

=

∫ 1

0
f(t) dt + GM (y)

where

GM (y)[f ] :=
1

M

1√
2π

∞∫

−∞
e−x2/2

(〈
M

(
y − x2

2 ln 2

)〉
−
∫ 1

0
f(t) dt

)
dx

is a periodic function with period 1
M .

Now, by Lemma 7.3 after observing that for |k − pn| ≤ n1/2+ε

log Ak = αk + nβ − log2 ω
√

n− (k − np)2

2pqn ln 2
+ O(n−δ),

where ω = (1 − 2p)
√

2πpq/(1 − p). Thus, we need the asymptotic be-

havior of
n∑

k=0

(
n

k

)
pkqn−k

〈
αk + nβ − log2 ω

√
n− (k − np)2

2pqn ln 2

〉

that is provided by Lemma 7.3. This completes our sketch of the proof

of Theorem 7.1. A full detailed proof can be found in [155].
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7.2 Non-binary One-to-One Code

Finally, we consider a non-prefix codes over a general finite alphabet.

Consider a probability distribution P on a set of ordered elements X =

{1, . . . , m}. We define a permutation π on X by π(a) < π(b) if P (a) >

P (b) or if P (a) = P (b) and a < b. Thus, π(x) = ℓ if x is the ℓ-th

most probable element in X according to the distribution P , with ties

broken according to the ordering in X . It is easy to verify that

P (x)π(x) ≤ 1 (7.9)

for all x ∈ X : if (7.9) failed to be satisfied for x0 ∈ X , there would be

at least π(x0) masses strictly larger than 1/π(x0).

The one-to-one code assigns to x the shortest (possibly empty) bi-

nary string (ties broken with the ordering 0 < 1) not assigned to any

element y with π(y) < π(x). Thus, we obtain (the simple but important

conclusion) that the length of the encoding of x is ⌊log2 π(x)⌋.
We are interested in finding the average code length

L = E[⌊log2 π(X)⌋].

A simple upper bound first noticed in [175] is obtained as follows

L = E[⌊log2 π(X)⌋] (7.10)

≤ E[log2 π(X)] (7.11)

≤ E

[
log2

1

P (X)

]
(7.12)

= H(P ) (7.13)

where (7.12) follows from (7.9). Note that dropping the prefix condition

makes the entropy an upper bound to the minimum average length,

rather than a lower bound.

As a simple example, let us compute the average code length when

when P is uniform over X = {1, . . . , m}. Here we have [156]

L =
1

m

m∑

i=1

⌊log2 i⌋

= ⌊log2 m⌋+
1

m

(
2 + ⌊log2 m⌋ − 2⌊log2 m⌋+1

)
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which is quite close to the entropy H(P ) = log2 m. In the second line

above we apply formula (7.2).

Our goal is to present a general result for the asymptotic behavior of

average block code length for Bernoulli sources over A = {1, . . . , m}n.

Theorem 7.4 (W. Szpankowski and S. Verdu, 2011). Consider a

Bernoulli source on A = {1, . . . , m}n and assume that the probabil-

ity distribution p1, . . . pm on X = {1, . . . , m} is not uniform. Then the

average code length of the one-to-one code is given by

Ln = nh− 1

2
log2 n + O(1), (7.14)

where h = −∑m
i=1 pi log2 p1 is the entropy. Hence, the average (anti-

redundancy becomes

Rn = −1

2
log2 n + O(1).

The rest of this section is devoted to the proof of Theorem 7.4.

Without loss of generality we assume that

p1 ≤ p2 ≤ · · · ≤ pm−1 ≤ pm. (7.15)

We set

Bi = log
pm

pi
(7.16)

for i = 1, . . . , m− 1. Note that the entropy h can be expressed as

h = log
1

pm
+

m−1∑

i=1

piBi. (7.17)

Let

k = (k1, . . . , km) (7.18)

such that k1 + · · · + km = n denote the type of an n-string xn
1 ; the

probability of each such string is equal to

P (xn
1 ) = pk = pk1

1 · · · pkm
m . (7.19)

Denote the set of all types of n-strings in A = {1, . . . , m}n by

Tn,m = {(k1, . . . , km) ∈ Nm, k1 + · · ·+ km = n}.
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We introduce an order among types:

j � k iff pj ≥ pk

and we sort all types from the smallest index (largest probability) to

the largest. This can be accomplished by observing that pj ≥ pk is

equivalent to

j1B1 + · · · + jm−1Bm−1 ≤ k1B1 + · · ·+ km−1Bm−1. (7.20)

Therefore, to sort types k one needs to sort the function S : Rm−1 7→
R+

S(k) = k1B1 + · · ·+ km−1Bm−1 (7.21)

from the smallest value S(00 · · · 0) = 0 to the largest.

There are (
n

k

)
=

(
n

k1, . . . , km

)
=

n!

k1! · · · km!
(7.22)

sequences of type k and we list them in lexicographic order. Then, the

optimum code assigns length ⌊log i⌋ to the ith sequence (1 ≤ i ≤ mn)

in this list. Denote the number of sequences more probable than or

equal to type k as

Ak :=
∑

j�k

(
n

j

)
.

Using somewhat informal, but intuitive, notation, k + 1 and k − 1

denote the next and previous types, respectively, in the sorted list of

the elements of Tn,m. Clearly, starting from position Ak the next
( n

k+1

)

sequences have probability pk+1. Thus the average code length can be

computed as follows

Ln =
∑

k∈Tn,m

pk
Ak∑

i=Ak−1+1

⌊log2 i⌋ (7.23)

=
∑

k∈Tn,m

pk

(n
k)∑

i=1

⌊log2(Ak − i + 1)⌋ (7.24)

=
∑

k∈Tn,m

(
n

k

)
pk log2 Ak + O(1), (7.25)

= log2 A⌊np⌋ + O(1), (7.26)
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where p = (p1, . . . , pm) with pm = 1−p1−· · ·−pm−1. We now proceed

to justify (7.25) and (7.26). Noticing that for 1 ≤ i ≤ (n
k

)

log2

(
Ak −

(
n

k

)
+ 1

)
≤ ⌊log2(Ak − i + 1)⌋ ≤ log2(Ak + 1)

we conclude that

∑

k∈Tn,m

(
n

k

)
pk log2 Ak +

∑

k∈Tn,m

(
n

k

)
pk log

(
1−

(n
k

)− 1

Ak

)
(7.27)

≤ Ln ≤
∑

k∈Tn,m

(
n

k

)
pk log2(Ak + 1).

We first estimate the second sum on the left side of (7.27). In (7.37)

and (7.39) below we establish that
( n

⌊np⌋
)

A⌊np⌋
= O

(
n−(m−2)/2

)
,

which along with log(1− x) = −x + O(x2) enables us to conclude that

the second sum in (7.27) is of order O(n−(m−2)/2).

In order to verify (7.25) we need asymptotics of the following multi-

nomial sum

Sf (n) :=
∑

k∈Tn,m

(
n

k

)
pkf(k)

where f(k) is a function of at most polynomial growth. In our case

f(k) = log Ak = O(n), where n = k1 + · · ·+ km. In [45, 68] it is proved

that such a sum grows asymptotically as f(⌊np⌋). For the reader’s

convenience we offer a streamlined justification for functions of poly-

nomial growth; in particular when f(k) has an analytic continuation

to a complex cone around the real positive axis [68, 154].

In general, Taylor’s expansion of f around np is

f(x) = f(np) + (x − p)∇f(np) +
1

2
(x− np)∇2f(x′)(x − np)

for some x′ in the vicinity of np, where we use the same simplified

notations as before. Observe now that

Sf (n) = E[f(X)] (7.28)
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= f(np) + O(n max
x′,ij

f ′′
ij(x

′)) (7.29)

= f(np) + O(nξ(n)), (7.30)

where X is a multinomial distribution with parameters n and p and

f ′′
ij(x) is the second derivative with respect to xi and xj. Observe that

in (7.29) we use the fact that variance of X is of order O(n). The

above asymptotic result is useful as long as the first term dominates

the second term O(nξ(n)), as is the case in our situation. One can argue

that f has an analytic continuation in a cone around the real positive

axis and polynomial growth (cf. (7.41) below). By Lemma 3 of [67] or

[154] we conclude that nξ(n) = O(1/n) and f ′′(k) = O(1/n). Thus,

(7.25)-(7.26) follow.

Let now

ji = npi + xi

for i = 1, . . . , m− 1. Then, by (7.20) pj ≥ pnp, is equivalent to

B1x1 + · · · + Bm−1xm−1 ≤ 0. (7.31)

Thus1

Anp =
∑

pj≥pnp

(
n

j

)
(7.32)

=
∑

x:bT x≤0

(
n

np + x

)
, (7.33)

where

xT = [x1, . . . , xm−1],

bT = [B1, . . . , Bm−1],

and that sum runs over all vectors x such that np+x are integer vectors

(we will not mention this explicitly in the sequel). The next step is to

use Stirling’s formula

n! =
√

2πn · nne−n(1 + O(1/n)) (7.34)

1For the sake of notational simplicity we do not distinguish between np and
⌊np⌋.
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to estimate the summands in (7.33). This leads to
(

n

np + x

)
=

n!

(np1 + x1)! · · · (npm−1 + xm−1)!(npm − x1 − · · · − xm−1)!
=

√
2πnnne−nenp1+x1 · · · enpm−x1−···−xm−1(1 + O(1/n))

∏m
i=1

√
2π(npi + xi)(npi + xi)npi+xi

=
1

(2π)(m−1)/2

1√
p1 · · · pm

1

n(m−1)/2

(
1 + O(1/

√
n)
) ·

· nn

∏m
i=1(npi)npi+xi(1 + xi

npi
)npi+xi

=
1

(2π)(m−1)/2

1√
p1 · · · pm

1

n(m−1)/2

1

pnp1
1 · · · pnpm

m

(
pm

p1

)x1

· · ·
(

pm

pm−1

)xm−1

·
(

1 +
x1

np1

)−(np1+x1)

· · ·
(

1− x1 + · · · xm−1

npm

)−(npm−x1···−xm−1)

.

(7.35)

Applying now Taylor’s expansion to (7.35)
(

1 +
x

np

)−(np+x)

= exp

(
−(np + x) ln

(
1 +

x

np

))

= exp

(
−(np + x)

(
x

np
− x2

2(np)2
+ O(n−3)

))

= exp

(
− x2

2np

)
(1 + O(1/n)),

we arrive at(
n

np + x

)
=

1

(2π)(m−1)/2

1√
p1 · · · pm

1

n(m−1)/2
2nh (7.36)

·
(

pm

p1

)x1

· · ·
(

pm

pm−1

)xm−1 (
1 + O(1/

√
n)
)

· exp

(
− x2

1

2np1
− · · · − x2

m−1

2npm−1
− (x1 + · · · + xm−1)2

2npm

)

=
(
1 + O(1/

√
n)
)

C
2nh

n(m−1)/2

· exp (B1x1 + · · · + Bm−1xm−1)

· exp

(
− 1

2n
xT Σ−1x

)
(7.37)



122 Redundancy of Non Prefix One-to-One Codes

where Σ is an appropriately chosen invertible covariance matrix.

We are now in the position to evaluate the sum (7.33). We need

to sum over bT x ≤ 0 which we split by summing over hyperplanes

bT x = −d for d ≥ 0 of dimension m− 2. We denote such a hyperplane

by Dm−2 = {x : bT x = −d}. Noting that the Gaussian kernel of (7.37)

when summed over the hyperplane Dm−2 is of order O(n(m−2)/2) we

arrive at our final result. More precisely, plugging (7.37) into (7.33),

yields

Anp =
C2nh

n(m−1)/2



∑

bT x≤0

exp

(
bT x− 1

2n
xT Σ−1x

)
 (7.38)

=
∑

d≥0

exp(−d)
∑

bT x=−d

exp

(
− 1

2n
xT Σ−1x

)
. (7.39)

Noting now that
∑

x∈Dm−2

exp

(
− 1

2n
xT Σ−1x

)
∼ C(d)n(m−2)/2 (7.40)

where C(d) is of at most polynomial growth of d (in fact, C(d) =

O(d2)). Combining (7.39) and (7.40) we finally arrive at

log2 Anp ∼ log2

(
C ′ 2nh

n(m−1)/2
n(m−2)/2

)

= nh− 1

2
log2 n + O(1), (7.41)

where C ′ is a constant. Observe that the right order of Anp can be

obtained by considering only the hyperplane bT x = 0. In view of (7.26),

this completes the proof of Theorem 7.4.

Example 7.1. To illustrate our methodology, we explain it first for

m = 2 and then we give some details for the case of m = 3 symbols

with probability p1 < p2 < p3. For m = 2 we have (p < 1− p)
(

n

np− x

)
=

2nh

√
2πp(1− p)n

(
p

1− p

)x

exp

(
− x2

2np(1− p)

)
(1+O(1/n)).

Then

Anp =
∑

x≥0

(
n

np− x

)
=

1

1− p
(1−p)

2nh

√
2πp(1− p)n

(1 + O(1/n)).
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Observe again that the order of growth of Anp is determined by x = 0.

The summation of the geometric series contributes to the constant.

Let’s now illustrate our calculation for m = 3. With B1 =

log(p3/p1) and B2 = log2(p3/p2), we need to evaluate

Anp1,np2 =
∑

k1B1+k2B2≤np1B1+np2B2

(
n

k1, k2

)
. (7.42)

As before, we denote k1 = np1 + x and k2 = np2 + y to arrive at
(

n

np1 + x, np2 + y

)
=

1√
2πp1p2p3n

2nh(p)
(

p3

p1

)x (p3

p2

)y

(7.43)

· exp

(
− x2

2np1
− y2

2np2
− (x + y)2

2np3

)
(
1 + O(1/

√
n)
)

.

In Figure 7.2 we show the behavior of the above multinomial co-

efficient on the critical line k1B1 + k2B2 = 0 and below it. On the

normal

geometric

np2

np1

k2

k1

O n( )

Figure 7.2: Illustration for m = 3. The value of the multinomial coefficient (7.43)
is shown as the third dimension: The normal distribution is along the line k1B1 +
k2B2 = np1B1 +np2B2, while away from this line the multinomial coefficient decays
exponentially.

critical line the coefficient is well approximated by the normal distribu-

tion around the point (np1, np2), while for (k1, k2) (or equivalently for
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(x, y)) away from the critical line the coefficient decays exponentially.

This leads to

Anp =
∑

B1x+B2y≤0

(
n

np1 + x, np2 + y

)
(7.44)

∼ 2nh

n
√

2πp1p2p3

∑

B1x+B2y=0

exp

(
− x2

2np1
− y2

2np2
− (x + y)2

2np3

)

= O(
√

n)
2nh

n
(7.45)

= C
2nh

√
n

,

where (7.45) follows from the normal approximation on the line B1x +

B2y = 0.



8

Concluding Remarks

In this survey we present precise analyses of several lossless data com-

pression schemes for known sources using analytic tools. We start with

detailed analysis of Shannon and Huffman codes showing that their

asymptotic behavior very much depends on rationality or irrationality

of a certain quantity depending of the source parameters. This, among

others, explains why since Huffman’s code inception we could only find

non-matching bounds for its performance.

After discussing fixed-to-variable codes, we move to variable-to-

fixed codes such as Tunstall code and its cousin Khodak’s VF code. We

use sophisticated tools of analytic combinatorics such as Mellin trans-

form and Tauberian theorems to provide detailed and precise analysis.

We apply similar tools to study Boncelet VF code where we also inves-

tigate a general divide-and-conquer recurrence, a topic of great interest

on its own.

At last, we consider variable-to-variable codes such as Khodak code

that achieves redundancy decaying faster than linear with the average

code length. We also provided explicit construction of a Khodak code.

In this chapter we use different analytic methods such as analytic num-

ber theory, sequences modulo 1, and geometry of numbers.
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Finally, in the last chapter we consider one-to-one codes and use

analytic techniques such as the saddle point method to distill precise

behavior of a one-to-one code.

We should point out a unique future of this survey. We analyze dif-

ferent lossless data compression schemes using tools of analytic com-

binatorics such as generating function, Mellin transform, depoissoniza-

tion, analytic number theory, sequences modulo 1, complex asymp-

totics, and so on. We coin the term analytic information theory for

solving problems of information theory using tools of analytic combi-

natorics and analysis of algorithms. As we mention in the introduction,

Andrew Odlyzko opines that “analytic methods are extremely power-

ful and when they apply, they often yield estimates of unparalleled

precision.” We have seen it in this survey.

Finally, we should mention what we do not discuss in this survey.

As pointed out in many places we focus on lossless data compression

schemes for known sources, that is, when parameters of sources are

known. We delay any discussion of universal source coding to our future

book Analytic Information Theory which will cover many more topics

including minimax redundancy, Markov types, and more.
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