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Abstract

The Fourier analysis over the Boolean cube has been an essential tool in a wide1

range of problems in computer science. However, such analysis is restricted to2

mutually independent random variables making its practical usage limited. We3

demonstrate that this limitation is overcome, developing a novel Fourier expansion4

on the Boolean cube with correlated variables. We further apply our Fourier5

analysis to stochastic mappings, extending its capabilities beyond classical usage.6

As one application of this analysis, we investigate the feature selection problem and7

reformulate it in the Fourier domain. We propose two feature selection algorithms,8

one for supervised and the other for an unsupervised variant of the problem. The9

computational complexity of the algorithms can be as low as Opndq with n being10

the number of samples and d the number of features. Based on our Fourier11

analysis, we show that for binary features the proposed algorithms find provably12

asymptotically optimal feature subsets. Through exhaustive numerical experiments,13

we demonstrate that our methods outperform state-of-the-art feature selection14

algorithms (e.g., mRMR, ReliefF, MCFC, Laplacian Score) on various data sets.15

1 Introduction16

Feature selection contributes not only to reducing computational complexity and running time, but17

also to interpretability of the learning model. The objective is to remove as many features as possible18

without significantly increasing the classification loss. A natural solution is the wrapper method19

in which the feature subsets are evaluated directly by an induction algorithm [13]. However, this20

approach is computationally expensive and, hence, prohibitive in large data sets. An alternative21

solution is the filter approach in which an intermediate measure, independent of the induction22

learning algorithm, is used to evaluate the feature subsets. Filter methods are preferred as they are23

computationally more efficient and relatively robust against overfitting. Several measures has been24

introduced in the literature [2, 8, 12, 21, 27, 29, 32]. The challenge in this area, that remains open, is25

to design a computationally efficient measure which is provably related to the generalization loss.26

To address this challenge, in this work, we take a different approach. We develop a novel Fourier27

expansion for functions of correlated binary random variables. The Fourier expansion provides28

a powerful tool to characterize nonlinear redundancies in features and nonlinear dependencies in29

features-label relation. Using this framework, we study supervised and unsupervised feature selection,30

and propose our algorithms. Aiming to address the above challenges, we provide a theoretical analysis31

and derive conditions under which our algorithms find the optimal feature subset. Further, through32

numerical experiments, we show that our algorithms outperform several well-known feature selection33

techniques. That said, the contributions of this paper are three-fold as summarized in the following.34

Fourier expansion for correlated random variables: The standard Fourier expansion on the35

Boolean cube has been central in a wide range of applications such as computational learning theory36

[3, 15, 23, 24, 25], noise sensitivity [18, 26], and other information-theoretic problems [9]. In this37

expansion, any real-valued function on the Boolean cube can be written as a linear combination of38
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parities [26, 30]. The Fourier coefficients quantify the levels of “nonlinearities” in a function. Highly39

nonlinear functions have Fourier expansion with large coefficients for high-degree parities. Thus, the40

Fourier expansion is potentially a powerful tool in the feature selection problem. However, there are41

limitations making it impractical for this purpose. First, it is assumed that the features are mutually42

independent. Secondly, this expansion is defined only for deterministic functions of the features.43

These assumptions are too strong, as real-world learning problems, often, involve correlated features44

with stochastic labeling.45

In this work, we address both limitations. First by developing a generalized Fourier expansion46

for functions of correlated binary random variables (Proposition 1). For this purpose, we adopt a47

Gram-Schmidt-type orthogonalization and construct a set of orthogonal basis functions. We address48

the second limitation by adapting our Fourier expansion to the more general space of stochastic49

mappings (e.g., mappings from one probability space to another). To the best of our knowledge, this50

is the first generalization of the Fourier expansion for correlated binary random variables. Although51

this Fourier expansion is defined on the Boolean cube, our algorithms are applicable to non-binary52

features too. We view the Binary Fourier as a framework that captures a special class of nonlinearities53

— those characterized via the parities. Alternatively, we could generalize our Fourier expansion to54

discrete features and, based on it, design feature selection algorithms. However, such a generalization55

requires character theory, which is beyond the scope of this paper. We note that there are other56

forms of orthogonal decomposition including the Hoeffding-Sobel decomposition [7, 16, 28] and its57

generalization [7]. However, such decompositions are basis-free. Our Fourier expansion is defined by58

constructing a set of orthonormal basis functions which makes it suitable for feature selection.59

Unsupervised feature selection: In practice, collecting unlabeled data is usually a less expensive60

task that motivates to develop unsupervised feature selection algorithms. Popular unsupervised feature61

selection approaches rank the features based on local geometrical structures (e.g. Laplacian Score62

[14]), manifold structures (e.g. MCFC [5]), or their discriminate power (e.g. UDFS [31]). In this63

paper, we aim to capture nonlinear redundancies in the statistics of the data. We take an information-64

theoretic perspective, and group the features into redundant and sufficiently informative. All the65

accessible information about the data can be captured from the later group. The former is statistically66

a nonlinear function of the later, hence can be removed without affecting the learning’s performance.67

This approach extends the notion of “redundant” features to the unsupervised setting [4, 20, 32].68

Built upon the Fourier framework, we develop an Unsupervised Fourier Feature Selection (UFFS)69

algorithm, which captures the redundant features. Instead of ranking the features, the UFFS finds70

redundant features and declares the rest of the features as informative. We prove that, when the71

features are binary, all nonlinear redundancies are detected. In that case, the algorithm finds the72

smallest sufficiently informative feature subset (Theorem 1). Although such guarantees are established73

for binary features, we empirically show that the algorithm performs well on non-binary real-valued74

features too. Through comprehensive numerical experiments, we show that the UFFS is applicable in75

a wide range of applications and significantly outperforms popular methods such as MCFC, Laplacian76

Scre (LS), and UDFS (see Table 2).77

Supervised feature selection: Well-known criteria for supervised feature selection can be grouped78

into correlation measures (e.g., Pearson correlation, Fisher Score), information-theoretic measures [2,79

21, 27, 29, 32], and Kernel-based measures [8, 12]. Although correlation criteria are computationally80

more efficient, they usually are not able to detect nonlinear dependencies in features-label relations.81

Methods based on kernels can detect the nonlinear dependencies. However, the computational82

complexity of computing a kernel grows super linearly, if not quadratic, with the number of the83

samples [6]. Mutual Information (MI) criteria, on the other hand, can detect nonlinear dependencies84

with lower computational complexity [2]. In addition, mutual information can be used to bound the85

Bayes misclassification rate. However, estimating multi-variate mutual information is known to be a86

difficult task with high sample complexity.87

In this work, we propose a computationally efficient measure that captures nonlinear dependencies88

and has provable relation to the Bayes misclassification rate. For that, we first formulate the feature89

selection in an ideal setting as follows: given a parameter k, the objective is to find k features such90

that the misclassification rate of the Bayes classifier, restricted to them, is minimized. We reformulate91

this problem in the Fourier domain and characterize the optimal feature subset. Build upon this92

formulation, we develop a measure to evaluate feature subsets. We prove that when the features are93

binary, an exhaustive search based on this measure finds an asymptotically optimal feature subset.94

That is a feature subset whose Bayes misclassification rate is at most Opn´1{2q larger than that of the95
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optimal feature subset (Theorem 2). Since the exhaustive search is an NP-hard problem, we propose96

a search algorithm called fixed-depth search. Given a depth parameter t, the idea is to evaluate only97

the feature subsets of size at most t. With this approach, we propose a Supervised Fourier Feature98

Selection (SFFS) algorithm with computational complexity Opndtq, where n is the number of the99

samples and d is the number of the features. Through our numerical experiments, we show in Figure100

1 that SFFS, even with t “ 1 or 2, outperforms well-known feature selection algorithm (e.g., mRMR,101

and ReliefF, MI) on various data sets (See Section 4).102

Notations: As a shorthand, in this paper, for any natural number m, the set t1, 2, ¨ ¨ ¨ ,mu is denoted103

by rms. Also, for any subset J Ď rds with ordered elements tj1, j2, ¨ ¨ ¨ , jku, the vectors pXj1 , Xj2 ,104

¨ ¨ ¨ , Xjkq, and pxj1 , xj2 , ¨ ¨ ¨ , xjkq are denoted, respectively, by XJ and xJ .105

2 Fourier Expansion for Correlated Random Variables106

In this section, we propose a novel Fourier expansion for functions of correlated binary features. For107

convenience in presenting our results, we restrict ourselves to binary features. One can extend our108

approach to discrete features via group characters.109

We start with a brief overview of the well-known Fourier expansion on Boolean cube [26]. Let110

X “ pX1, X2, ..., Xdq be a vector of mutually independent random variables taking values from111

a subset X Ă Rd. Let µj and σj be the mean and standard-deviation of Xj , j P rds. Suppose112

that these random variables are non-trivial, that is σj ą 0 for all j P rds. The Fourier expansion113

is defined via a set of basis functions called parities. The parity for a subset S Ď rds is defined114

as φSpxq “∆
ś

iPS
xi´µi

σi
for all x P Rd. Since Xi’s are mutually independent, the parities are115

orthonormal, that is ErφSpXq2s “ 1 for any subset S, and ErφSpXq φT pXqs “ 0 when T ‰ S116

(that is Dx P T
Ť

S such that x R T
Ş

S). Under the assumption that X “ t´1, 1ud, the117

parities form an orthonormal basis for the space of bounded function f : t´1, 1ud ÞÑ R [26]. That118

is, any bounded function f : t´1, 1ud ÞÑ R can be written as a linear combination of the form119

fpxq “
ř

SĎrds fS φSpxq, for all x P t´1, 1ud, where fS P R are called the Fourier coefficients of120

f with respect to PX, the distribution of X. Further, the Fourier coefficients can be computed as121

fS “ ErfpXqφSpXqs, for all subsets S Ď rds.122

With this overview, we are ready to construct our Fourier expansion. Note that, in a general probability123

space with correlated features, the standard Fourier expansion is no longer well-defined. Because, the124

parities φS are not necessarily orthogonal. That said, we construct our Fourier expansion by adopting125

a Gram-Schmidt-type procedure to make the parities orthogonal. Then, we use this basis to develop126

our Fourier expansion for function of correlated random variables. The orthogonalization process is127

explained in the following.128

Orthogonalization process: Fix the following ordering for subsets of rds:129

H, t1u, t2u, t1, 2u, t3u, t1, 3u, t2, 3u, t1, 2, 3u, ¨ ¨ ¨ , t1, 2, ..., du. (1)

For any pair of functions g1, g2 denote xg1, g2y “ Erg1pXqg2pXqs. We apply the Gram-Schmidt130

process on the parities φSi
with the above ordering and xg1, g2y as the inner product. With this131

method, the orthogonalized parity corresponding to the ith subset is obtained from the following132

operation:133

ψ̃Si “ φSi ´

i´1
ÿ

j“1

xψSj , φSiy ψSj , ψSi “

#

ψ̃Si

‖ψ̃Si
‖2

if ‖ψ̃Si‖2 ą 0

0 otherwise.
(2)

where ‖ψ̃Si‖2 “

b

xψ̃Si , ψ̃Siy. Note that the first orthogonalized parity is given by ψHpxq “∆ 1 for134

all x P Rd. It is not difficult to check that the resulted nontrivial parities ψSi
’s are orthonormal, that is135

xψSi
, ψSj

y “ 0 for i ‰ j and xψSi
, ψSi

y “ 1 if ψSi
is not trivial. Note also that different orderings136

for the subsets of rds result in different orthogonalized parities. Hence, unless otherwise stated, we137

use the ordering in (1). Next, in the proceeding proposition, we establish our Fourier expansion for138

functions of correlated binary random variables. The proof is given in Appendix B.139

Proposition 1 (Correlated Fourier Expansion). Let PX be a probability distribution on t´1,140

1ud and f : t´1, 1ud ÞÑ R be a bounded function. Let ψS’s be the orthogonalized parities as141

defined in (2). Then, for all x P t´1, 1ud except a measure-zero subset, f is decomposed as142
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fpxq “
ř

SĎrds fSψSpxq, where the summation is taken over all S for which ψS is not trivial.143

Further, the coefficients fS are unique and obtained from fS “ ErfpXqψSpXqs.144

Remark 1. In contrary to our Fourier expansion, which is established only for binary features, the145

orthogonalization process is not restricted to such an assumption. Because, by construction, the146

orthogonalized parities are orthonormal for any value domain X Ă Rd. If X “ t´1, 1ud, then the147

parities span the space of all function on X ; otherwise they span a subspace of such functions. We148

clarify this in the following example.149

Example 1. Set d “ 3 and letX1 andX2 be independent random variables with Gaussian distribution150

Np0, 1q. Suppose X3 “ X1X2 with probability one. There are eight standard parities, one for each151

subsets, as p1, x1, x2, x1x2, x3, x1x3, x2x3, x1x2x3q. By performing the orthogonalization process,152

as in (2), there are only four non-trivial orthogonalized parities as ψH “ 1, ψt1u “ x1, ψt2u “ x2,153

and ψt1,2u “ x1x2. The rest of the parities are zero, because ‖ψ̃S‖2 “ 0 for any of the subsets154

t3u, t1, 3u, t2, 3u, t1, 2, 3u. Now, suppose we change the relation of X3 to X3 “ signrX1X2s. In155

this case, after the orthogonalization process, there are eight non-trivial parities. For instance, it is not156

difficult to check that ψ̃t3u “ x3 ´
2
πx1x2. Hence, ‖ψ̃t3u‖2 ą 0, implying that ψt3u is not redundant.157

This example shows that the orthogonalization removes nonlinear redundancies. However, as158

discussed in Remark , it captures only a class of non-linearities for non-binary features. This is159

because the orthogonalization process is based on the binary Fourier expansion. We view our binary160

Fourier as a framework that captures a special class of nonlinearities — those characterized via161

orthogonalized parities. Our numerical experiments confirm that such an approximation is sufficient162

to outperform state-of-the-art methods for many data sets (see Table 2). It is also noted that dimension163

reduction methods such as PCA do not necessarily capture the nonlinear redundancies. For instance,164

the features in the above example are pairwise uncorrelated and, hence, the covariance matrix is the165

identity matrix. In Appendix H, we show that our approach outperforms PCA as well.166

3 Feature Selection: a Fourier Perspective167

In this section, we build upon our Fourier expansion to study unsupervised and supervised feature168

selection problems. The Fourier expansion provides a powerful tool to characterize non-linear169

relations among the features and the labels.170

3.1 Unsupervised Feature Selection: Informative vs. Redundant171

We build upon our orthogonalization process in (2) and develop our UFFS algorithm (see Algorithm172

1) to capture non-linear redundancies in the features. For this purpose, we first define a measure173

to identify the features as “sufficiently informative” and “redundant”. Intuitively, the former group174

contains all the information accessible from the features. The later consists of the features that are a175

function of the “informative” features, and hence, can be removed from the data set.176

Suppose that there are d features denoted by the random vector X “ pX1, X2, ..., Xdq taking177

values from a subset X Ă Rd. We say J Ď rds is a “sufficiently informative” feature subset, if178

HpXq “ HpXJ q, whereH is the Shannon entropy. This definition is related to the notion of Markov179

Blanket [21], as J is a Markov blanket for any feature in J c. Also, J being sufficiently informative180

immediately leads to J c being redundant. Because, the condition HpXq “ HpXJ q implies that181

there exists a mapping T , such thatXJ c

“ T pXJ q, with probability one [10]. Hence, all the features182

not included in J can be removed. With this elimination, the dimension is reduced from d to |J |. As183

there are multiple such J ’s, the objective is to find the smallest one1. Tolerating small amounts of184

imperfections, we formalize the above notion in the following.185

Definition 1 (Sufficiently Informative). For discrete features and 0 ď ε ď 1, a feature subset186

J is said to be ε-sufficiently informative, if HpX|XJ q ď ε. The feature subset J is sufficiently187

informative, if HpX|XJ q “ 0. Such J is called minimal, if it has the minimum cardinality among188

all sufficiently informative feature subsets.189

Next, we make a connection between the above definition and the orthogonalization process in (2). We190

employ this process to extract a sufficiently informative feature subset. Fix the standard ordering as in191

1The set of all features is a trivial example of a sufficiently informative feature subset.
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(1), and generate the orthogonalized parities ψSi
. We start by deriving an upper-bound on HpX|XJ q192

in terms of the orthogonalized parities in (2). Note that HpX|XJ q “ HpXJ c

|XJ q, where J c is the193

complement of J . Thus, from the chain rule [10], this quantity equals to
ř

iPJ c HpXi|X
J , Xi´1q.194

As Xi is a discrete random variable, then HpXi|X
J , Xi´1q “ Hpφtiu|X

J , Xi´1q, where φtiu195

is the standard parity as in Section 2. From the orthogonalization process in (2), we can write196

φtiu “ ψ̃tiu `
ř

SĎri´1s αSψS , where αS “ xφtiu, ψSy. Therefore, as the terms in the summation197

are functions of Xi´1, we get the following upper-bound198

Hpφtiu|X
J , Xi´1

q “ Hpψ̃tiu|X
J , Xi´1

q ď Hpψ̃tiuq, (3)
where the last inequality follows by removing the conditioning in the entropy. Lastly, by adapting199

this bound for all i P J c, we get our designed bound: HpX|XJ q ď
ř

iPJ c Hpψ̃tiuq. Using this200

upper bound, we prove the following theorem in Appendix C.201

Theorem 1. Let Jε Ď rds be the set of all i’s such that ‖ψ̃tiu‖2 ą ε. Then, for sufficiently small202

ε ą 0, HpX|XJεq “ Opεq. Further, if the features take values from t´1, 1ud, then Jε with ε “ 0 is203

a sufficiently informative subset with minimum cardinality.204

Algorithm 1 Unsupervised Fourier Feature Selection
Input: n training samples xi P Rd, depth parameter t ď d, and redun-

dancy threshold ε P p0, 1q
1: procedure ORTHOGONALIZATION
2: Compute the empirical mean µ̂j and standard deviation σ̂j of each

feature.
3: Generate all subsets Si Ď rds with size at most t and with the stan-

dard ordering as in (1). Compute the matrix B̂ with elements:

b̂j,i Ð
1

n

n
ÿ

l“1

”

ź

uPSj

xlu ´ µ̂u

σ̂u

ı”

ź

vPSi

xlv ´ µ̂v

σ̂v

ı

4: Set ÂÐ B̂
5: for row j of Â do
6: update the jth row: Âj,˚ Ð Âj,˚ ´

ř

`ăj â`,jÂ`,˚

7: Compute normpSjq Ð

b

rb̂j,j ´
ř

răj â
2
r,js

`

8: if normpSjq ď ε then
9: Set the jth row of Â zero: Âj,˚ Ð 0

10: else
11: Normalize the jth row: Âj,˚ Ð

Âj,˚
normpSjq

return All j P rds with normpjq ě ε as non-redundant.

Unsupervised Feature Selection: As a re-205

sult of Theorem 1, ‖ψ̃tiu‖2 can be viewed206

as a measure of the redundancy of each207

feature and that the orthogonalization pro-208

cedure can remove them. We use this209

measure for unsupervised feature selection,210

where n independent and identically dis-211

tributed (i.i.d.) instances
 

xpiq, i P rns
(

212

are available. The idea is to perform the213

orthogonalization process as in (2) and find214

the features j for which ‖ψ̃tju‖2 is smaller215

than a threshold ε. These features are de-216

clared as redundant. As for the algorithm,217

two issues need to be addressed: 1) the or-218

thogonalization is an NP hard process, as219

there are 2d feature subsets, and 2) estima-220

tion of ‖ψ̃tju‖2 from the training instances.221

In what follows, we address these issues.222

1) Fixed-depth search: We propose to address the first issue using a fixed-depth search method.223

Given a parameter t ď d, the orthogonalization is performed only on feature subsets of size at most t.224

For that we use the standard ordering as in (1), but restricted to subsets of size at most t.225

2) Empirical orthogonalization: We propose a recursive formula to perform the orthogonalization226

and estimate ‖ψ̃tju‖2. Let bj,i “ xφSj , φSiy, and define aj,i “ xψSj , φSiy. Therefore, (2) can227

be written as that ψ̃Si
“ φSi

´
ř

jăi aj,iψSj
. Due to the orthonormality of ψSi

’s, we obtain that228

‖ψ̃Si
‖2

2 “ bi,i ´
ř

jăi a
2
j,i. Further, the coefficients aj,i can be calculated recursively as229

aj,i “
1

b

bj,j ´
ř

răj a
2
r,j

´

bj,i ´
ÿ

`ăj

a`,ja`,i
¯

(4)

With this formulas, we first compute an empirical estimate of bj,i’s, denoted by b̂j,i. Then, we230

compute an estimation of aj,i’s (denoted by âj,i) by calculating (4) with bj,i and aj,i replaced231

by b̂j,i and âj,i, receptively. Lastly, we obtain an empirical estimate of ‖ψ̃Si‖2 by computing232
b

b̂i,i ´
ř

jăi â
2
j,i.233

3) Clustering the features: The above two processes are implemented in Algorithm 1. For large234

dimensional data sets, we can group the features into multiple clusters of approximately equal size235

(say m features). Then, we perform Algorithm 1 on each cluster, and remove the redundant features236

within it. With this approach, the computational complexity of UFFS algorithm with depth parameter237

t and cluster size m is Opn d
mm

2tq. The parameters m and t are chosen independently of pn, dq. For238

instance, we choose t “ 3 and m “ 40. As a result, we obtain a complexity linear in the size of the239

data set. We present our experimental results in Section 4.240
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3.2 Supervised Feature Selection241

We build upon our Fourier expansion in Section 2 and propose a Supervised Fourier Feature Selection242

(SFFS) algorithm. We consider the learning problem with d real-valued features and with labels taking243

values from Y . The features X P Rd and the label Y P Y are generated according to an unknown244

distribution PXY . Available are n i.i.d. instances
 

pxpiq, ypiqq, i “ 1, 2, ..., n
(

generated from PXY .245

For convenience in presenting the theoretical results, we restrict ourselves to binary classification246

with 0´ 1 loss function. In this case, the expected loss is the misclassification probability.247

We describe the feature selection problem by first defining the optimum feature subset and the248

minimum misclassification probability in the ideal setting, where PX,Y is known. Given k ď d, the249

optimum feature subset J ˚ and the minimum misclassification probability Poptpkq are defined as250

PepJ q “ min
gPGk

PXY

 

Y ‰ gpXJ
q
(

, J ˚ “ argmin
JĎrds, |J |“k

PepJ q, Poptpkq “ PepJ ˚q, (5)

where Gk is the collection of all functions on Rk. In agnostic settings, where only a training data set251

is available, the above optimization is infeasible to solve. Instead, an intermediate measure Mn is252

defined to evaluate feature subsets using the training instances. Then the feature selection problem253

reduces to the optimization: Ĵn “ arg minT PTk
MnpT q, where Tk is a collection of feature subsets254

with at most k-elements.255

Within this framework, we construct our SFFS algorithm by proposing a measure to evaluate different256

feature subsets (see (7)). For binary features, we prove in Theorem 2 that maximizing this measure257

over different feature subsets give Ĵn, such that PepĴnq converges to PepJ ˚q, as the sample size n258

tends to8. Although the theoretical guarantees are established for binary features, SFFS algorithm is259

not restricted to such assumptions. We empirically show, in section 4, that SFFS outperforms several260

state-of-the-art feature selection algorithms on many benchmark data sets.261

We start with developing a representation of Poptpkq in the Fourier domain. Note that the Bayes262

predictor of Y from the observation xJ is given by g˚pxJ q “ sign
“

ErY |xJ s
‰

. We proceed by263

characterizing the above conditional expectation in the Fourier domain. As a key ingredient in our264

characterization, we need to define the notion of projection onto a feature subset. Let J Ď rds be265

a feature subset with k elements. Denote the elements of J , in the ascending order, as j1 ă j2 ă266

¨ ¨ ¨ ă jk. Fix the following ordering of subsets of J :267

H, tj1u, tj2u, tj1, j2u, tj3u, tj1, j3u, tj2, j3u, tj1, j2, j3u, ¨ ¨ ¨ , tj1, j2, ..., jku.

Apply the orthogonalization process with respect this ordering and to all the parities ψS with268

S Ď J . Let ψSi
, i “ 1, 2, ..., 2k be the resulted orthogonalized parities. This process is called269

orthogonalization with respect to the feature subset J . with this process, we are ready to define the270

projection onto J .271

Definition 2 ( Projection onto a subset). Given a feature subset J Ď rds, let ψS’s be the or-272

thogonalized parities w.r.t J . The projection of the label Y onto J is defined as fĎJ pxq “∆273
ř

SĎJ ErY ψSsψSpxq, where the expectation is taken with respect to PX,Y .274

We show in Lemma 2, in Appendix D, that fĎJ pxq is, in fact, equal to the conditional expectation275

ErY |xJ s. Further, based on the above argument, we prove the following proposition in Appendix E.276

Proposition 2. Suppose pX, Y q „ PXY , where Xi’s and Y take values from t´1, 1u. Then the277

minimum attainable misclassification probability equals to278

Poptpkq “
1

2

„

1´ max
JĎrds, |J |“k

‖fĎJ ‖1



. (6)

Further, an optimal k-variable predictor of the labels is given by the function signrfĎJ˚pxqs, where279

J ˚ is an optimal feature subset that maximizes the 1-norm expression above.280

A Measures for Feature Selection: Based on Proposition 2, we define M p1q
n pJ q to be an empirical281

estimate of ‖fĎJ ‖1. More precisely, given the training instances pxpiq, ypiqq, 1 ď i ď n, this282

estimation is obtained from283

M p1q
n pJ q “ {‖fĎJ ‖1 “

∆ 1

n´ 1

n
ÿ

i“1

ˇ

ˇ

ˇ

ˇ

ÿ

SĎJ
f̂S pψSpxpiqq ´

1

n
ypiq

`

pψSpxpiqq
˘2

ˇ

ˇ

ˇ

ˇ

, (7)
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where f̂S are the empirical estimation of the Fourier coefficients. A more detailed discussion on284

the derivation of this measure is presented in Appendix A. We construct our SFFS algorithm by285

adopting the fixed-depth search in Subsection 3.1 and using the above measure (see Algorithm 2).286

We conclude this section by proving our theoretical guarantees for SFFS algorithm. We present the287

following theorem which is proved in Appendix F.288

Theorem 2. Fix k ď d and let Ĵn be the feature subset maximizing M p1q
n which is defined in (7). Let289

J ˚ be the optimum feature subset as in (6). Then, with probability at least p1 ´ δq, the following290

bound holds291

P pĴnq ď P pJ ˚q `
c

λpkq

n´ 1
logp

d

δ
q `

2k{2
?
n´ 1

,

where λpkq “ 32 k22kc2k, with ck “
∆ maxSĎrds,|S|ďk‖ψS‖2

8.292

Algorithm 2 Supervised Fourier Feature Selection (SFFS)
Input: n training samples pxi, yiq, desired number of features k, and the depth parameter t ď k

Output: Feature subset Ĵn

1: procedure FEATURE SELECTION:
2: Rank all t-variable features subsets T according toMp1q

n as in (7) orMp2q
n as in (8).

3: If Ti are the subsets in the descending order, set Ĵn “
Ťr

i“1Ti, where r chosen such that the union has k different elements.
return Ĵn

Alternative measure: Instead of 1-norm, we can use the 2-norm measure ‖fĎJ ‖2
2. From Parseval’s293

identity ‖fĎJ ‖2
2 “

ř

SĎJ fS
2. We prove the following statement in Appendix I.294

Lemma 1. For binary features and labels, the following bounds hold295

1

2

`

1´ max
JĎrds: |J |“k

‖fĎJ ‖2

˘

ď Poptpkq ď
1

2

`

1´ max
JĎrds: |J |“k

‖fĎJ ‖2
2

˘

.

Note that the above bounds are close to Poptpkq when ‖fĎJ ‖2 is close to 1— hence a justification296

for using 2-norm. That said, instead of M p1q
n , we can use the following measure297

M p2q
n pJ q “ {‖fĎJ ‖2

2 “
∆

ÿ

SĎT
pf̂Sq

2. (8)

Although we provide theoretical guarantees for M p1q
n , we now use M p2q

n as an approximation298

that further reduces the running time of the algorithm. Further, we estimate only the standard299

Fourier coefficients, not the correlated ones, by first running the UFFS. With that, the computational300

complexity of our SFFS algorithm for a fixed k is Opndtq.301

4 Numerical Experiments302

We now compare the performance our UFFS and SFFS algorithms (Algorithm 1 and 2) with a number303

of well-known methods for unsupervised and supervised feature selection. Our numerical results are304

presented in two parts: one for unsupervised and one for supervised setting. The real-world data305

sets are the UCI repository Isolet, HAPT, Sonar, COIL20, and Wine data sets [11], and the USPS306

hand-written data set [17]. A summary of such data sets is given in Table 1. For the unsupervised307

feature selection, we additionally generate synthetic data sets that are explained below.308

Synthetic data sets: We generated three data sets, denoted by S1, S2, and S3. Each data set has 30309

features: 10 informative denoted by pX1, X2, ..., X10q, 10 nonlinear redundant pX11, X12, ..., X20q,310

and 10 linearly redundant pX21, X12, ..., X30q. The informative features are generated according311

to three distributions, one for each data set. The distribution for S1 is Np0, I10q, for S2 is uniform312

distribution over r´1, 1s10, and for S 3 is uniform distribution over t´1, 1u10. Each nonlinear313

redundant feature is generated from Xj “ 3Xi1Xi2Xi3 , where j “ 11, 12, ..., 20, and i1, i2, i3 are314

randomly and uniformly selected from t1, 2, ..., 10u. The linearly redundant features are generated315

from Xj “
ř5
l“1 aj,lXil , where il’s are selected randomly from t1, 2, ..., 10u and aj,l „ Unifp0, 1q.316

We use the above redundancy model for each data set. For the sake of performance comparison, we317

add a labeling to the above data sets. However, the labels are not revealed to the algorithms. We318

generate a fixed but randomly generated labeling function fpXq on R10. This function is the sign319

of the following random multi-polynomial in R10: fpxq “ sign
”

ś

1ďjď3

`

b0,j `
ř

1ďiď10 bi,jxi
˘

ı

,320

where bi,j „ Unifp0, 1q and mutually independent.321
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Table 1: Properties of the tested data sets.
Data set S1 S2 S3 USPS Isolet HAPT Sonar COIL20 Wine
Features 30 30 30 256 617 561 60 1024 13
Samples 1000 1000 1000 9298 1560 10299 208 1440 119
Classes 2 2 2 10 26 12 2 20 2

Unsupervised setting: We compare the per-322

formance of UFFS with Laplacian Score (LS)323

[14], MCFC [5], and UDFS [31] on the real324

and the synthetic data sets. The labels are not325

revealed to the algorithms, but used for measur-326

ing the performances. Features are randomly ordered, so that the initial ordering would not affect327

the experiments’ outcomes. Contrary to other algorithms, UFFS does not rank the feature; instead it328

outputs a set of indices as the non-redundant features. We run UFFS three times: first with t “ 1,329

m “ d, second, with t “ 2,m “ 50 but on the selected features from the first run, and third, with330

t “ 3,m “ 30 but on the selected features from the second run. For each experiment, let k denote331

the number of the selected features by UFFS at the third run. For comparing the performance to the332

ranking algorithms, we select only the k features with the highest rank. Once the features are selected333

by each unsupervised algorithm, we reveal the samples of the selects features with the labels to a334

classifier and compute its prediction accuracy. A support vector machine (SVM) classifier with radial335

basis function as kernel is employed for all the studies. We perform a 5-fold cross validation using336

this classifier and on the entire data set. Implementation details are provided in our supplementary337

materials.338

Table 2: Comparison of unsupervised algorithms.
S1 S2 S3 USPS Isolet HAPT Sonar COIL20 Wine

No FS 77.9 75.0 87.0 97.3 92.8 97.1 86.5 98.8 98.3
UFFS k 11 12 11 93 309 88 8 331 7
UFFS 80.3 76.8 86.2 97.0 91.7 95.6 81.3 98.8 97.5

LS 55.1 61.2 71.0 95.6 88.6 89.8 77.4 98.9 97.5
MCFC 56.6 59.0 65.8 93.9 90.1 94.5 77.4 94.0 99.2
UDFS 64.0 60.6 64.3 80.8 90.2 78.0 77.9 98.0 98.3

Table 2 shows the average of the resulted classifi-339

cation accuracies for each algorithm. The second340

row is the resulted accuracy without any feature341

selection. The third row is k which is the num-342

ber of non-redundant features declared by the343

UFFS. Observe that, in synthetic data sets, k is344

very close to 10 which is the actual number of345

non-redundant features. The resulted accuracy by the UFFS is very close or greater than the accuracy346

without feature selection. This implies that the UFFS detects almost all the redundant features.347

Further, it significantly outperforms other algorithms in the synthetic and many real data sets. This348

result shows that the UFFS performs well on data sets with nonlinear redundancies.349
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Figure 1: Classification accuracy (y-axis) versus number of selected features (x-axis).

Supervised setting: In this part, we compare SFFS with ReliefF [19], mRMR [27], and MI [22]350

on the real data sets in Table 1. We first run an UFFS (t “ 3) to extract the non-redundant features351

before running the supervised versions SFFS (t “ 1 and t “ 2). As a performance measure, we352

perform a 5-fold cross validation with feature selection and the SVM classifier described above in353

a pipeline. In our supplementary materials, we explain the implementation details. Figure 1 shows354

the average classification accuracy for various values of selected features (k). It is observed that our355

SFFS improves upon other methods on some ranges of k and has comparable performance on the356

other values of k, but we have reduced computational complexity. For instance, in Isolet data set,357

we observe a dominant performance by our SFFS for k ą 40 as compared to other algorithms. In358

COIL20, we observe a notiable performance improvement for k P r25, 50s. Note that SFFS with359

t “ 1 and t “ 2 are overlapping in these data sets and for many values of k. We note here that the360

SFFS with t “ 1 has a running time linear in data size and of order Opndq.361
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5 Broader Impact362

During the past decade, with the proliferation of data-driven technologies, sophisticated learning363

models incorporating large dimensional data have been implemented. The focus of this work, the364

problem of selecting a small set of features, is one of profound importance in such a context of365

high-dimensional data to reduce the burden on the computational resources and to have a better366

interpretation of the models from the cluttered set of features.367

As machine learning continues to impact decisions in societal establishments such as healthcare, the368

justice system, and financial institutions, there raises an urge to ensure that the learning models are369

interpretable and transparent in the decision process. To this end, our approach for feature selection370

has the potential to increase the interpretability of the learning models without causing too much371

reduction in performance. We provide the flexibility to balance the interpretability-completeness372

tradeoff with our algorithms.373

Feature selection may introduce biases in machine learning tasks by restricting attention to a small374

feature set. The strong guarantees (both theoretical and experimental) of our methods ensure that the375

features selected by our algorithm represent the entire dataset with good accuracy and minimizes376

biases in feature selection. We also characterize the limitations of our algorithm with non-asymptotic377

results to determine the number of samples required to achieve certain levels of accuracy.378

In addition to interpretability, our work has the potential to reduce the cost of collecting data and379

running certain machine learning models. For instance, in the healthcare systems medical diagnoses380

often involve several examinations some of which are expensive and not covered by typical healthcare381

plans. Our feature selection algorithms can be used to choose the most characterizing subset of the382

diagnosing tests without compromising much on the prediction accuracy, and later make clinical383

decisions by restricting to the selected tests.384

In our settings, we did not directly address the fairness in feature selection. Thus, there is a possibility385

that our algorithms are not sensible enough to certain ethical matters and more work is needed in this386

direction.387

References388

[1] K. Azuma. Weighted sums of certain dependent random variables. Tohoku Mathematical389

Journal, 19(3):357–367, 1967.390

[2] R. Battiti. Using mutual information for selecting features in supervised neural net learning.391

IEEE Transactions on Neural Networks, 5(4):537–550, July 1994.392

[3] E. Blais, R. O’Donnell, and K. Wimmer. Polynomial regression under arbitrary product393

distributions. Machine learning, 80(2-3):273–294, 2010.394

[4] A. L. Blum and P. Langley. Selection of relevant features and examples in machine learning.395

Artificial intelligence, 97(1-2):245–271, 1997.396

[5] D. Cai, C. Zhang, and X. He. Unsupervised feature selection for multi-cluster data. In397

Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and398

data mining, pages 333–342, 2010.399

[6] N. Cesa-Bianchi, Y. Mansour, and O. Shamir. On the complexity of learning with kernels. In400

Conference on Learning Theory, pages 297–325, 2015.401

[7] G. Chastaing, F. Gamboa, C. Prieur, et al. Generalized hoeffding-sobol decomposition for402

dependent variables-application to sensitivity analysis. Electronic Journal of Statistics, 6:2420–403

2448, 2012.404

[8] J. Chen, M. Stern, M. J. Wainwright, and M. I. Jordan. Kernel feature selection via conditional405

covariance minimization. In Advances in Neural Information Processing Systems, pages406

6946–6955, 2017.407

[9] T. A. Courtade and G. R. Kumar. Which Boolean functions maximize mutual information on408

noisy inputs? IEEE Trans. Inf. Theory, 60(8):4515–4525, 2014.409

[10] T. M. Cover and J. A. Thomas. Elements of information theory. Wiley-Interscience, 2006.410

[11] D. Dua and C. Graff. UCI machine learning repository, 2017.411

9



[12] A. Gretton, O. Bousquet, A. Smola, and B. Schölkopf. Measuring statistical dependence with412

hilbert-schmidt norms. In Lecture Notes in Computer Science, pages 63–77. Springer Berlin413

Heidelberg, 2005.414

[13] I. Guyon and A. Elisseeff. An introduction to variable and feature selection. Journal of machine415

learning research, 3(Mar):1157–1182, 2003.416

[14] X. He, D. Cai, and P. Niyogi. Laplacian score for feature selection. In Advances in neural417

information processing systems, pages 507–514, 2006.418

[15] M. Heidari, S. S. Pradhan, and R. Venkataramanan. Boolean functions with biased inputs:419

Approximation and noise sensitivity. In Proc. IEEE Int. Symp. Information Theory (ISIT), pages420

1192–1196, July 2019.421

[16] W. Hoeffding. A class of statistics with asymptotically normal distribution. The Annals of422

Mathematical Statistics, 19(3):293–325, 1948.423

[17] J. J. Hull. A database for handwritten text recognition research. IEEE Transactions on pattern424

analysis and machine intelligence, 16(5):550–554, 1994.425

[18] G. Kalai. Noise sensitivity and chaos in social choice theory. Technical report, Hebrew426

University, 2005.427

[19] K. Kira and L. A. Rendell. The feature selection problem: Traditional methods and a new428

algorithm. In W. R. Swartout, editor, Proceedings of the 10th National Conference on Artificial429

Intelligence, San Jose, CA, USA, July 12-16, 1992, pages 129–134. AAAI Press / The MIT430

Press, 1992.431

[20] R. Kohavi and G. H. John. Wrappers for feature subset selection. Artificial intelligence,432

97(1-2):273–324, 1997.433

[21] D. Koller and M. Sahami. Toward optimal feature selection. Technical report, Stanford InfoLab,434

1996.435

[22] A. Kraskov, H. Stögbauer, and P. Grassberger. Erratum: Estimating mutual information [phys.436

rev. e 69, 066138 (2004)]. Physical Review E, 83(1):019903, 2011.437

[23] N. Linial, Y. Mansour, and N. Nisan. Constant depth circuits, Fourier transform, and learnability.438

J. ACM, 40(3):607–620, 1993.439

[24] E. Mossel, R. O’Donnell, and R. A. Servedio. Learning functions of k relevant variables. J.440

Comput. Syst. Sci, 69(3):421–434, 2004.441

[25] E. Mossel, R. O’Donnell, and R. P. Servedio. Learning juntas. In Proc. ACM Symp. on Theory442

of Computing, pages 206–212, 2003.443

[26] R. O’Donnell. Analysis of boolean functions. Cambridge University Press, 2014.444

[27] H. Peng, F. Long, and C. Ding. Feature selection based on mutual information criteria of445

max-dependency, max-relevance, and min-redundancy. IEEE Transactions on pattern analysis446

and machine intelligence, 27(8):1226–1238, 2005.447

[28] I. M. Sobol. Sensitivity estimates for nonlinear mathematical models. Mathematical modelling448

and computational experiments, 1(4):407–414, 1993.449

[29] J. R. Vergara and P. A. Estévez. A review of feature selection methods based on mutual450

information. Neural computing and applications, 24(1):175–186, 2014.451

[30] R. d. Wolf. A Brief Introduction to Fourier Analysis on the Boolean Cube. Number 1 in452

Graduate Surveys. Theory of Computing Library, 2008.453

[31] Y. Yang, H. T. Shen, Z. Ma, Z. Huang, and X. Zhou. L2, 1-norm regularized discriminative454

feature selection for unsupervised. In Twenty-Second International Joint Conference on Artificial455

Intelligence, 2011.456

[32] L. Yu and H. Liu. Efficient feature selection via analysis of relevance and redundancy. Journal457

of machine learning research, 5(Oct):1205–1224, 2004.458

10


	Introduction
	Fourier Expansion for Correlated Random Variables
	Feature Selection: a Fourier Perspective
	Unsupervised Feature Selection: Informative vs. Redundant
	Supervised Feature Selection

	Numerical Experiments 
	Broader Impact
	Derivation of Mn(1)
	Proof of Proposition 1
	Proof of Theorem 1
	Projection onto a subset is the MMSE estimator
	Proof of Prposition 2
	Proof of Theorem 2
	Proof of Lemma 3
	Comparison with PCA
	Proof of Lemma 1



