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In 1992, A. Ehrenfeucht and J. Mycielski defined a seeminguprandom binary sequence which has since been
termed the EM-sequence. The balance conjecture for thedgesce, still open, is the conjecture that the sequence
of EM-sequence initial segment averages convergeg2olh this paper, we do not prove the balance conjecture but
we do make some progress concerning it, namely, we proveveay limit point of the aforementioned sequence of
averages lies in the intervil/4,3/4], improving the best previous result that every such limihpbelongs to the
interval[0.11,0.89]. Our approach is novel and exploits an analysis of the grbettavior as — o of the rooted tree
formed by the binary strings appearing at least twice astsngs of the lengtt initial segment of the EM-sequence.

1 Introduction

In the paper Ehrenfeucht and Mycielski (1992), an intengstinary sequence was defined, since termed
the EM-sequence, which seems to possess pseudorandormesdips. The EM-sequence is sequence
A038219 in the encyclopedia Sloane (2007), and is genevéeh algorithm described in Sloane (2007)
as follows: “The sequence starts 0,1,0 and continues aogptd the following rule: find the longest
sequence at the end that has occurred at least once pregvilbtisere are more than one previous occur-
rences select the last one. The next digit of the sequenke Eiposite of the one following the previous
occurrence.” For example, the first 50 terms of the EM-secei@ne

01001101011100010000111101100101001001110100011000

Despite the simplicity of this algorithm, not very much isom about the asymptotics of the EM-
sequence. It is natural to conjecture that the EM-sequeebaves as a typical sequence generated by
a binary 11D process. In particular, we would expect thatalierages of the initial segments of the EM-
sequence converge tg'2; this is called théalance conjecture The balance conjecture remains open,
although various asymptotic properties of the EM-sequetiseussed in the following, have previously
been established.

In Ehrenfeucht and Mycielski (1992), the following resuttncerning the EM-sequence was estab-
lished.
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2 John C. Kieffer and W. Szpankowski
Proposition 1. Every binary string of finite length appears infinitely maimyds as a substring of the
EM-sequence.

This suggestive result motivated subsequent authors ttotgrove the balance conjecture. In or-
der to describe these efforts, It : i =1,2,3,---} denote the EM-sequence, bétdenote the segment
(X, Xi+1,--+,%j), and letN,(0) (Nn(1)) be the number of zeroes (ones) in the initial segmé&ntThe
balance conjecture is equivalent to the statement

INn(0) —Nn(1)| = o(n).
A weaker result than the balance conjecture would be to shatv t
INn(0) —Na(1)] < Bn+o0(n) y

for a specific real numbef in the interval[O, 1].§ The papers by McConnell (1996) and Sutner (2003)
have established such a result. For each real nuiipethe interval(0, 1], let a(t) be the unique real
numberu € (0,1/2] such that

—ulogy(u) — (1 —u)log,(1—u) =t.
In the paper McConnell (1996), it was proved that statenErt¢lds for
B=1-20(1/7) ~ 0.96.

This result was subsequently improved in the paper Sut@&32 where it was established that statement
(2) holds for
B=1-2a(1/2)~0.78.

In the present paper, we obtain an improvement, encapddtatkis our main result.
Theorem 1.|Np(0) — Np(1)| < n/2+ 0o(n).

Remark. Theorem 1 is equivalent to saying that any limit poin{d§,(1) /n} belongs to the interval
[1/4,3/4]. The best previous result of which we are aware (Sutner (3G@8tes that every such limit
point belongs to the intervéti(1/2),1— a(1/2)]; if we round to two decimal places, this best previous
result tells us that every limit point dN (1) /n} belongs to the intervd0.11,0.89].

For any positive integem, consider the rooted tree formed by the binary strings whjmbear as least
twice as substrings of]. We obtain Theorem 1 via an analysis of the structure of tlésurrence” tree.
This approach has not been used in previous work on the EMes®eg. It would be of interest to know
whether this approach can lead to still further results ablmiEM-sequence in the future.

Notation and Terminology. We list the notation and terminology that will remain in ferthroughout
the paper.

e {0,1}* denotes the set of all binary strings of finite nonzero lenyttenotes the empty string,
and{0,1}* denotes the set of strind®,1} " U{A}. A string in{0,1}* is denoted in coordinate

8 Thisis equivalent to saying that every limit point of the seace{N,(1)/n: n> 1} belongs to the intervd(1—B)/2, (1+B)/2].
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form asbiby---bj, whereby, by, ---,bj belong to{0,1} andj is the length of the string. IB =
biby,---bj andC = c1¢, - - ¢ are two strings in{0,1}* expressed in coordinate form, thBg,
the concatenation of strinB with stringC, is the string in{0,1}* expressed in coordinate form
asbiby, -, bjcico---ck. We make the obvious extension to the concatenation of mane ttho
strings.

|b] denotes the length of strirlge {0,1}*.

If a€ {0,1}, thenais 1— a, the complement cd.

card S) or | denotes the cardinality of s&t

If T is atree|T| denotes the number of vertices.

2 Recurrent Substrings and Recurrence Trees

In this section, we introduce the conceptre€urrent substring®f the EM-sequence and the concept of
recurrence treeformed from the recurrent substrings. The concepts of reatisubstrings and recurrence
trees are needed for proving Theorem 1.

Definitions. For each positive integer, we defineR, to be the set consisting of those strings in
{0,1}* which occur at least twice as substrings of the initial segmg of the EM-sequence. We call
the elements oR, the recurrent substrings ofjx Therecurrence tree Jis the directed labelled graph
specified as follows:

e The vertices off,, are the elements &,.

e The edges off, are the pairgaw,w) in whichw € R,, a€ {0,1}, andaw € R,. awis called the
initial vertex of edgeaw,w) andw is called the final vertex of eddaw,w).

e The direction along edg@w,w) is taken to beaw — w.
e Each edgéaw,w) carries the labed.

The children of vertexv of T, are those members (if any) of the §é, 1w} which belong taR,. Each
vertex of T, which has no children is calledi@af of T,. The vertex is called theoot of T,. A path inT,
is a finite nonempty sequence of edgesey, - - -, &) in which, for each satisfying 1<i < k—1, the final
vertex of edgey coincides with the initial vertex of edge, 1; kis called the length of patte, ey, - - -, &).
The paths of length one if}, are the edges of,. Given any vertex of T, which is not the root, there is
a unique pathie;, e, - - -, &) in Ty such thak; has initial vertexv andeg has final vertex\. Thus, if the
recurrence tre@, hasj leaf vertices, there arpunique leaf-to-root paths if,. Thebinary addres®f a
path(er, ey, -, &) is defined to be the sequence of edge labels along the pathsetltensisting of all
the binary addresses of pathslinis preciselyR.

Example 1From the fact that

x+® = 0100110101110001

one sees that
Ris = {A,0,01,1,10,010,101,011,11,110,100 00,001} .
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SinceRy consists of 13 strings, the recurrence tfegwill therefore consist of 13 vertices. Fig. 1 gives
us a pictorial representation dig. Our convention in Fig. 1 is that the root is to the right ane on
follows paths from left to right. Therefore, the address pbgh goes from left to right, conforming to the
appearance of that address as a recurrent substrixiﬁ.oThe reader can check that the addresses of the
13 vertex-to-root paths in Fig. 1 comprise the elements@&#iR;5 above.

1

Fig. 1: The Tre€Tys.

The sets{R, : n > 1} have various useful properties. We point out some of thespesties which are
easy to deduce. First of all, each &atis nonempty because it contains the empty stNngve also have
the obvious property

Rﬂ C Rn+17 n Z 1
By Proposition 1, we can deduce the property

U?'Iolen = {07 1}*

Good strings. We define a strin@ € {0,1} " to begoodif its first two appearances in the EM-sequence
are preceded by, or 1,0, respectively. IB € {0,1}* is an initial segment of the EM-sequence, tiiien
fails to be good (because the first appearand iofthe EM-sequence is preceded by the empty string).
But there are also string® which fail to be good which are not initial segments of the Ebtuence.
For example, 1 is not good: it makes its first and second appeas in the initial segment 01001, but is
preceded by 0 each time instead of being preceded by comptargdits.

We state the following result useful for proving Theoremibved in Kieffer and Szpankowski (2007),
the extended version of the present summary.
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Proposition 2. The setdR,} obey the following asymptotic properties:
e cardR,) =n+o(n).
e card{b € Ry : 0is rightmost bit ob}) = N,(0) + o(n).
e card{b € Ry: 1lisrightmostbit ob}) = N, (1) + o(n).
e card{b e Ry:bisnotgood) = o(n).
Definitions. We defineT,(0) andTy(1) to be the subtrees df which taken together give the tr@gas
indicated in Fig. 2. Define edge= (aw,w) of T, to begoodif and only if the stringw is good. Suppose
e= (aw,w) is an edge ofl,, and let(e, e, - - -, &) be the path starting with edge = eand ending at the

root of T,. Thenw is the binary address of pafly,---,e). One concludes thatis good if and only if
the address of the path which starts at the final vertexaofd ends at the root is good.

Fig. 2: Decompoasition off, into subtreed(0) andTy(1).

Proposition 3. The recurrence treeplhas the following properties:
e Ty has n+o(n) vertices.
e Tn(0) has N,(0) 4+ o(n) vertices.
e Tn(1) has Ny(1) 4+ o(n) vertices.

e The cardinality of the set of edges @fwWhich are not good is @).

The proof of this result is omitted because it follows strgigrwardly from Proposition 2.

Definitions. A subtreeT of rooted treeT shall be called @rincipal subtreeof T if T is a rooted tree
whose root coincides with the root ®f Fig. 3 indicates the principal subtreeBfin which the subtree
T, (appearing in two places as indicated) is uniquely specifietequiring that T, | be maximized. We
call this principal subtree oF, theprincipal symmetric subtreef Tp.
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root

Fig. 3: Principal symmetric subtree af,.

We can specify the principal symmetric subtredpand the tred, without referring to a figure: LR},
be the set of alb € {0,1}* such that bottn0 andbl belong toR,; thenT, is the tree generated I8, and
the principal symmetric subtree ®f is the tree generated R;,0UR; 1.

Example 2Fig. 4 gives the tre&;}, easily extracted from the trégg in Fig. 1.

1

Fig. 4: The TreeT .

LetV, be the set of all leaves df, which do not belong to the principal symmetric subtre&,pfFor
eachv € ,, let(v) be the unique path ifi, which starts at and ends at the first vertex of the principal
symmetric subtree df, which is encountered. Suppose we remove the principal syriusebtree ofl,
from T,,. Then what remains is a forest of trees, which is the uniohepathst(v) for v € V..

The following auxiliary result is easy to prove.

Lemma 1. For each n, no two paths ifir(v) : v € V} have an edge in common.

Proof. Let vp,v1 be distinct vertices iv,. Assume thati(vp) andri(v1) have an edge in common. The
proof will be complete once we show that this assumptiondeéad contradiction. Let be the last edge
along pathr(vp) which does not belong to pati{vi), and lete; be the last edge along patifv;) which
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does not belong to pati(vo). Then the remainder of pati{vp) after edges (which is a nonempty path)
coincides with the remainder of pattjv;) after edgee;. ey, e are thus “sibling edges” terminating at
the same vertex, and their binary labels must thereforedimdi; relabellings, v1 if necessary, we may
assume thagy carries label 0 and; carries label 1. Lett be the path ifl,, and lete be the edge i,
such that(e;, ,e) and(ey, 11, €) are the paths starting i, e, respectively, and going back to the root of
Tn. Leta € {0,1} be the label ok and letb € {0,1} " be the address af. The pathrtis not a path in the
principal symmetric subtree df,, since the first edge af belongs to both paths(vp), T(v1) and these
two paths contain no edges in the principal symmetric selfd,. Thereforep does not belong t&;,.
Sincebabelongs tdR,, we conclude thata does not belong t&,. Each of the stringslia, 1babelongs to
Rn and therefore each of these strings appears at least twigelirfollows that b appears at least twice
in xQ*l, and so doesl The first two appearances adb (h le are followed byc, ¢, respectively, where
c € {0,1}. The first two appearances o In xg_l are followed byd, d, respectively, wherd € {0,1}.
Consequently, all of the following strings appeaxih Obc, Obc, 1bd, 1bd. It follows thatba appears at
least twice inx}, a contradiction.

Definition. We call the paths belonging fat(v) : v € Vi, } spaghetti strandéof the treeT,).

Exploiting Lemma 1, we now have a decompositionTgfas the principal symmetric subtree Bf
with spaghetti strands adjoined to it, as conceptualizétdgn5. There may not be any spaghetti strands,
in which casgT,(0)| = |Tn(1)|; if this happens for infinitely many one could conclude that/2 is a
limit point of the sequencéN,(1)/n}. Our approach to proving Theorem 1 in the next section ire®lv
showing that only a limited portion of recurrence tigecan be occupied by spaghetti strands as co.

spaghetti
strands

AN

root

spaghetti —
strands \ .

Fig. 5: Decomposition off; showing the spaghetti strands.
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Example 3.Examining Fig. 1, we see by inspection tflag has exactly two spaghetti strands, each
consisting of one edge:
110— 10, 001— 01

3 Proof of Theorem 1
The following two results provide the machinery needed twvprTheorem 1.

Proposition 4. Let Be {0,1}" be a good string. Let & b < ¢ < d < e be the positive integers at
which the first five appearances of B in the EM-sequdmgcei > 1} end. Let yv be the strings

= Xat+1Xb+1Xc+1Xd+1Xe+1,
= Xat2Xb+2Xc+2Xd+2Xet-2.

Then at least one of the following statements must be true:
(a): uis a permutation 000011or 11100
(b): vis a permutation 000011or 11100

Proposition 5. For each n, the set of all edges aof Which belong to spaghetti strands may be parti-
tioned into two subsetsqEl), En(2) satisfying the following properties:

e For each n, (1) contains at most 2 edges from each spaghetti strand.of T
* |En(2)| = o(n).

Example 4.If we look at the first five appearances of 11000 in the EM-sagegtogether with the
following bit, we obtain:

xi$ = 110001
°s = 110000
8 = 110001

X9 = 110001
X338 = 110000

Note that the first and third appearances of 11000 are fotldwel, whereas the second and fifth appear-
ances are followed by 0. Thus, property(a) of Propositionld$for the strind® = 11000.

The proofs of Propositions 4-5 are given in the paper Kiedfied Szpankowski (2007), the extended
version of the present summary. We remark that in our dewedop in Kieffer and Szpankowski (2007),
we obtain Proposition 5 as a consequence of Proposition 4.

We now embark upon the proof of Theorem 1. tet |T,;|. Letko(n) be the total number of spaghetti
strands ofT, whose paths, continued back to the root, end in the ¢@ge, and letjo(n) be the total
number of edges in thegg(n) spaghetti strands. L& (n) be the total number of spaghetti strand§of
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whose paths, continued back to the root, end in the étige, and letj;1(n) be the total number of edges
in thesek; (n) spaghetti strands. Then

ITa(0)] = ta+jo(n)
()] = ta+ja(n)
[Th(0)] +[Ta(D)| = 2ta+ jo(n) + ja(n)

LetL(T,) be the number of leaf vertices @f and letU (T;") be the number unary vertices@f. Then
th =2L(Ty) +U(Ty) - 1.
Since each spaghetti strand terminates at either a le&verunary vertex of;", we have
max(ko(n),ki(n)) <2L(T,)) +U(T,) =tn+ 1.

By Proposition 5, we have

jo(n) < 2ko(n) +o(n)
ja(n) < 2Zky(n) +o(n)
Therefore,
max(jo(n), j1(n)) < 2ta+o(n). 2
We will argue that
limsupn~1Ny(0) < 3/4. ©)
n—soo
A similar argument will give
limsup n~INp(1) < 3/4. (4)
n—oo

Together, (3) and (4) yield Theorem 1. Since by Propositisarehave
[Ta(0)| +|Ta(1)| = n+o0(n)
and
[Tn(0)] = Nn(0) +o(n),
it follows that

lim supn~IN,(0) = limsup
n—oo nN—co

Thus, to establish (3), we can prove that

{ [Tn(0)] ]
[Ta(O) + [Tn(1)[ ]

, |Ta(0)]
fimsup [ Tn(0)] + [Tn(1)]

By (2), we may pick a sequence of positive numbigrs tending to zero such that

] <3/4. 5)

jn(0) < 2th+nen, N=1,2,---.
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We then obtain

[Tn(0)] _ th+ jo(n) th+ jo(n) 3t +nen n
T+ 1T~ Zn Jol) + 127 = Ztn t o) = Zta gy = /DT (4tn> e

To finish our proof of (5), we can simply show thaft, = O(1). To see this, first note that
n=[Ta(0)| + [Ta(1)| + 0(n) = 2t + jo(n) + j1(n) + 0(n) < 6ty + 0(n).

The inequality
n < 6ty +o(n)

impliesn/t, = O(1).
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