
Discrete Mathematics and Theoretical Computer Science(subm.), by the authors, 26–rev

On the Ehrenfeucht-Mycielski Balance
Conjecture

John C. Kieffer1†and W. Szpankowski2‡

1Dept. of Electrical & Computer Engr., University of Minnesota, 200 Union St. SE, Minneapolis, MN 55455, USA
2Dept. of Computer Science, Purdue University, 305 N. University St., West Lafayette, IN 47907, USA

In 1992, A. Ehrenfeucht and J. Mycielski defined a seemingly pseuorandom binary sequence which has since been
termed the EM-sequence. The balance conjecture for the EM-sequence, still open, is the conjecture that the sequence
of EM-sequence initial segment averages converges to 1=2. In this paper, we do not prove the balance conjecture but
we do make some progress concerning it, namely, we prove thatevery limit point of the aforementioned sequence of
averages lies in the interval[1=4;3=4℄, improving the best previous result that every such limit point belongs to the
interval[0:11;0:89℄. Our approach is novel and exploits an analysis of the growthbehavior asn!∞ of the rooted tree
formed by the binary strings appearing at least twice as substrings of the lengthn initial segment of the EM-sequence.

1 Introduction
In the paper Ehrenfeucht and Mycielski (1992), an interesting binary sequence was defined, since termed
the EM-sequence, which seems to possess pseudorandomness properties. The EM-sequence is sequence
A038219 in the encyclopedia Sloane (2007), and is generatedvia an algorithm described in Sloane (2007)
as follows: “The sequence starts 0,1,0 and continues according to the following rule: find the longest
sequence at the end that has occurred at least once previously. If there are more than one previous occur-
rences select the last one. The next digit of the sequence is the opposite of the one following the previous
occurrence.” For example, the first 50 terms of the EM-sequence are

01001101011100010000111101100101001001110100011000:
Despite the simplicity of this algorithm, not very much is known about the asymptotics of the EM-
sequence. It is natural to conjecture that the EM-sequence behaves as a typical sequence generated by
a binary IID process. In particular, we would expect that theaverages of the initial segments of the EM-
sequence converge to 1=2; this is called thebalance conjecture. The balance conjecture remains open,
although various asymptotic properties of the EM-sequence, discussed in the following, have previously
been established.

In Ehrenfeucht and Mycielski (1992), the following result concerning the EM-sequence was estab-
lished.
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Proposition 1. Every binary string of finite length appears infinitely many times as a substring of the
EM-sequence.

This suggestive result motivated subsequent authors to tryto prove the balance conjecture. In or-
der to describe these efforts, letfxi : i = 1;2;3; � � �g denote the EM-sequence, letx j

i denote the segment(xi ;xi+1; � � � ;x j), and letNn(0) (Nn(1)) be the number of zeroes (ones) in the initial segmentxn
1. The

balance conjecture is equivalent to the statementjNn(0)�Nn(1)j= o(n):
A weaker result than the balance conjecture would be to show thatjNn(0)�Nn(1)j � βn+o(n) (1)

for a specific real numberβ in the interval[0;1℄.§ The papers by McConnell (1996) and Sutner (2003)
have established such a result. For each real numbert in the interval(0;1℄, let α(t) be the unique real
numberu2 (0;1=2℄ such that �ulog2(u)� (1�u) log2(1�u) = t:
In the paper McConnell (1996), it was proved that statement (1) holds for

β = 1�2α(1=7)� 0:96:
This result was subsequently improved in the paper Sutner (2003), where it was established that statement
(1) holds for

β = 1�2α(1=2)� 0:78:
In the present paper, we obtain an improvement, encapsulated in this our main result.

Theorem 1. jNn(0)�Nn(1)j � n=2+o(n).
Remark. Theorem 1 is equivalent to saying that any limit point offNn(1)=ng belongs to the interval[1=4;3=4℄. The best previous result of which we are aware (Sutner (2003)) states that every such limit

point belongs to the interval[α(1=2);1�α(1=2)℄; if we round to two decimal places, this best previous
result tells us that every limit point offNn(1)=ng belongs to the interval[0:11;0:89℄.

For any positive integern, consider the rooted tree formed by the binary strings whichappear as least
twice as substrings ofxn

1. We obtain Theorem 1 via an analysis of the structure of this “recurrence” tree.
This approach has not been used in previous work on the EM-sequence. It would be of interest to know
whether this approach can lead to still further results about the EM-sequence in the future.

Notation and Terminology. We list the notation and terminology that will remain in force throughout
the paper.� f0;1g+ denotes the set of all binary strings of finite nonzero length, λ denotes the empty string,

andf0;1g� denotes the set of stringsf0;1g+[fλg. A string in f0;1g+ is denoted in coordinate

§ This is equivalent to saying that every limit point of the sequencefNn(1)=n : n� 1g belongs to the interval[(1�β)=2;(1+β)=2℄.
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form asb1b2 � � �b j , whereb1;b2; � � � ;b j belong tof0;1g and j is the length of the string. IfB =
b1b2; � � �b j andC = c1c2 � � �ck are two strings inf0;1g+ expressed in coordinate form, thenBC,
the concatenation of stringB with stringC, is the string inf0;1g+ expressed in coordinate form
asb1b2; � � � ;b jc1c2 � � �ck: We make the obvious extension to the concatenation of more than two
strings.� jbj denotes the length of stringb2 f0;1g�.� If a2 f0;1g, thenā is 1�a, the complement ofa.� card(S) or jSj denotes the cardinality of setS.� If T is a tree,jTj denotes the number of vertices.

2 Recurrent Substrings and Recurrence Trees
In this section, we introduce the concept ofrecurrent substringsof the EM-sequence and the concept of
recurrence treesformed from the recurrent substrings. The concepts of recurrent substrings and recurrence
trees are needed for proving Theorem 1.

Definitions. For each positive integern, we defineRn to be the set consisting of those strings inf0;1g� which occur at least twice as substrings of the initial segment xn
1 of the EM-sequence. We call

the elements ofRn the recurrent substrings of xn1. The recurrence tree Tn is the directed labelled graph
specified as follows:� The vertices ofTn are the elements ofRn.� The edges ofTn are the pairs(aw;w) in which w 2 Rn, a 2 f0;1g, andaw2 Rn. aw is called the

initial vertex of edge(aw;w) andw is called the final vertex of edge(aw;w).� The direction along edge(aw;w) is taken to beaw! w.� Each edge(aw;w) carries the labela.

The children of vertexw of Tn are those members (if any) of the setf0w;1wg which belong toRn. Each
vertex ofTn which has no children is called aleafof Tn. The vertexλ is called theroot of Tn. A path inTn

is a finite nonempty sequence of edges(e1;e2; � � � ;ek) in which, for eachi satisfying 1� i � k�1, the final
vertex of edgeei coincides with the initial vertex of edgeei+1; k is called the length of path(e1;e2; � � � ;ek).
The paths of length one inTn are the edges ofTn. Given any vertexv of Tn which is not the root, there is
a unique path(e1;e2; � � � ;ek) in Tn such thate1 has initial vertexv andek has final vertexλ. Thus, if the
recurrence treeTn has j leaf vertices, there arej unique leaf-to-root paths inTn. Thebinary addressof a
path(e1;e2; � � � ;ek) is defined to be the sequence of edge labels along the path. Theset consisting of all
the binary addresses of paths inTn is preciselyRn.

Example 1.From the fact that
x16

1 = 0100110101110001;
one sees that

R16 = fλ;0;01;1;10;010;101;011;11;110;100;00;001g:
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SinceR16 consists of 13 strings, the recurrence treeT16 will therefore consist of 13 vertices. Fig. 1 gives
us a pictorial representation ofT16. Our convention in Fig. 1 is that the root is to the right and one
follows paths from left to right. Therefore, the address of apath goes from left to right, conforming to the
appearance of that address as a recurrent substring ofx16

1 . The reader can check that the addresses of the
13 vertex-to-root paths in Fig. 1 comprise the elements of the setR16 above.
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Fig. 1: The TreeT16.

The setsfRn : n� 1g have various useful properties. We point out some of these properties which are
easy to deduce. First of all, each setRn is nonempty because it contains the empty stringλ. We also have
the obvious property

Rn �Rn+1; n� 1:
By Proposition 1, we can deduce the property[∞

n=1Rn = f0;1g�:
Good strings.We define a stringB2 f0;1g+ to begoodif its first two appearances in the EM-sequence

are preceded by 0;1 or 1;0, respectively. IfB2 f0;1g+ is an initial segment of the EM-sequence, thenB
fails to be good (because the first appearance ofB in the EM-sequence is preceded by the empty string).
But there are also stringsB which fail to be good which are not initial segments of the EM-sequence.
For example, 1 is not good: it makes its first and second appearances in the initial segment 01001, but is
preceded by 0 each time instead of being preceded by complementary bits.

We state the following result useful for proving Theorem 1, proved in Kieffer and Szpankowski (2007),
the extended version of the present summary.



New E-M Sequence Asymptotics 5

Proposition 2. The setsfRng obey the following asymptotic properties:� card(Rn) = n+o(n).� card(fb2 Rn : 0 is rightmost bit ofbg) = Nn(0)+o(n).� card(fb2 Rn : 1 is rightmost bit ofbg) = Nn(1)+o(n).� card(fb2 Rn : b is not goodg) = o(n).
Definitions. We defineTn(0) andTn(1) to be the subtrees ofTn which taken together give the treeTn as

indicated in Fig. 2. Define edgee= (aw;w) of Tn to begoodif and only if the stringw is good. Suppose
e= (aw;w) is an edge ofTn, and let(e1;e2; � � � ;ek) be the path starting with edgee1 = eand ending at the
root of Tn. Thenw is the binary address of path(e2; � � � ;ek). One concludes thate is good if and only if
the address of the path which starts at the final vertex ofe and ends at the root is good.

������ ������
������ HHHHHH
������ HHHHHH

Tn(0)
Tn(1)

0

1

Fig. 2: Decomposition ofTn into subtreesTn(0) andTn(1).
Proposition 3. The recurrence tree Tn has the following properties:� Tn has n+o(n) vertices.� Tn(0) has Nn(0)+o(n) vertices.� Tn(1) has Nn(1)+o(n) vertices.� The cardinality of the set of edges of Tn which are not good is o(n).
The proof of this result is omitted because it follows straightforwardly from Proposition 2.

Definitions. A subtreeT̃ of rooted treeT shall be called aprincipal subtreeof T if T̃ is a rooted tree
whose root coincides with the root ofT. Fig. 3 indicates the principal subtree ofTn in which the subtree
T�n (appearing in two places as indicated) is uniquely specifiedby requiring thatjT�n j be maximized. We
call this principal subtree ofTn theprincipal symmetric subtreeof Tn.



6 John C. Kieffer and W. Szpankowski
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0

1

root

Fig. 3: Principal symmetric subtree ofTn.

We can specify the principal symmetric subtree ofTn and the treeT�n without referring to a figure: LetR�n
be the set of allb2 f0;1g� such that bothb0 andb1 belong toRn; thenT�n is the tree generated byR�n and
the principal symmetric subtree ofTn is the tree generated byR�n0[R�n1.

Example 2.Fig. 4 gives the treeT�16, easily extracted from the treeT16 in Fig. 1.

0

1

1

0

Fig. 4: The TreeT�16.

Let Vn be the set of all leaves ofTn which do not belong to the principal symmetric subtree ofTn. For
eachv2Vn, let π(v) be the unique path inTn which starts atv and ends at the first vertex of the principal
symmetric subtree ofTn which is encountered. Suppose we remove the principal symmetric subtree ofTn

from Tn. Then what remains is a forest of trees, which is the union of the pathsπ(v) for v2Vn.
The following auxiliary result is easy to prove.

Lemma 1. For each n, no two paths infπ(v) : v2Vng have an edge in common.
Proof. Let v0;v1 be distinct vertices inVn. Assume thatπ(v0) andπ(v1) have an edge in common. The

proof will be complete once we show that this assumption leads to a contradiction. Lete0 be the last edge
along pathπ(v0) which does not belong to pathπ(v1), and lete1 be the last edge along pathπ(v1) which
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does not belong to pathπ(v0). Then the remainder of pathπ(v0) after edgee0 (which is a nonempty path)
coincides with the remainder of pathπ(v1) after edgee1. e0, e1 are thus “sibling edges” terminating at
the same vertex, and their binary labels must therefore be distinct; relabellingv0;v1 if necessary, we may
assume thate0 carries label 0 ande1 carries label 1. Letπ be the path inTn and lete be the edge inTn

such that(e1;π;e) and(e2;π;e) are the paths starting ate1, e2, respectively, and going back to the root of
Tn. Let a2 f0;1g be the label ofe and letb2 f0;1g+ be the address ofπ. The pathπ is not a path in the
principal symmetric subtree ofTn, since the first edge ofπ belongs to both pathsπ(v0), π(v1) and these
two paths contain no edges in the principal symmetric subtree of Tn. Therefore,b does not belong toR�n.
Sincebabelongs toRn, we conclude thatbā does not belong toRn. Each of the strings 0ba, 1babelongs to
Rn and therefore each of these strings appears at least twice inxn

1. It follows that 0b appears at least twice
in xn�1

1 , and so does 1b. The first two appearances of 0b in xn�1
1 are followed byc; c̄, respectively, where

c2 f0;1g. The first two appearances of 1b in xn�1
1 are followed byd; d̄, respectively, whered 2 f0;1g.

Consequently, all of the following strings appear inxn
1: 0bc;0bc̄;1bd;1bd̄. It follows thatbā appears at

least twice inxn
1, a contradiction.

Definition. We call the paths belonging tofπ(v) : v2Vng spaghetti strands(of the treeTn).

Exploiting Lemma 1, we now have a decomposition ofTn as the principal symmetric subtree ofTn

with spaghetti strands adjoined to it, as conceptualized inFig. 5. There may not be any spaghetti strands,
in which casejTn(0)j = jTn(1)j; if this happens for infinitely manyn one could conclude that 1=2 is a
limit point of the sequencefNn(1)=ng. Our approach to proving Theorem 1 in the next section involves
showing that only a limited portion of recurrence treeTn can be occupied by spaghetti strands asn! ∞.

*
n

root

0

1

T

...

...

spaghetti
strands

spaghetti
strands

T *
n

Fig. 5: Decomposition ofTn showing the spaghetti strands.
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Example 3.Examining Fig. 1, we see by inspection thatT16 has exactly two spaghetti strands, each
consisting of one edge:

110! 10; 001! 01:
3 Proof of Theorem 1
The following two results provide the machinery needed to prove Theorem 1.

Proposition 4. Let B2 f0;1g+ be a good string. Let a< b < c < d < e be the positive integers at
which the first five appearances of B in the EM-sequencefxi : i � 1g end. Let u;v be the strings

u = xa+1xb+1xc+1xd+1xe+1;
v = xa+2xb+2xc+2xd+2xe+2:

Then at least one of the following statements must be true:

(a): u is a permutation of00011or 11100.

(b): v is a permutation of00011or 11100.

Proposition 5. For each n, the set of all edges of Tn which belong to spaghetti strands may be parti-
tioned into two subsets En(1);En(2) satisfying the following properties:� For each n, En(1) contains at most 2 edges from each spaghetti strand of Tn.� jEn(2)j= o(n).

Example 4.If we look at the first five appearances of 11000 in the EM-sequence, together with the
following bit, we obtain:

x16
11 = 110001

x51
46 = 110000

x85
80 = 110001

x119
114 = 110001

x128
123 = 110000

Note that the first and third appearances of 11000 are followed by 1, whereas the second and fifth appear-
ances are followed by 0. Thus, property(a) of Proposition 4 holds for the stringB= 11000.

The proofs of Propositions 4-5 are given in the paper Kiefferand Szpankowski (2007), the extended
version of the present summary. We remark that in our development in Kieffer and Szpankowski (2007),
we obtain Proposition 5 as a consequence of Proposition 4.

We now embark upon the proof of Theorem 1. Lettn = jT�n j. Let k0(n) be the total number of spaghetti
strands ofTn whose paths, continued back to the root, end in the edge(0;λ), and let j0(n) be the total
number of edges in thesek0(n) spaghetti strands. Letk1(n) be the total number of spaghetti strands ofTn
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whose paths, continued back to the root, end in the edge(1;λ), and let j1(n) be the total number of edges
in thesek1(n) spaghetti strands. Then jTn(0)j = tn+ j0(n)jTn(1)j = tn+ j1(n)jTn(0)j+ jTn(1)j = 2tn+ j0(n)+ j1(n)
Let L(T�n ) be the number of leaf vertices ofT�n and letU(T�n ) be the number unary vertices ofT�n . Then

tn = 2L(T�n )+U(T�n )�1:
Since each spaghetti strand terminates at either a leaf vertex or unary vertex ofT�n , we have

max(k0(n);k1(n))� 2L(T�n )+U(T�n ) = tn+1:
By Proposition 5, we have

j0(n) � 2k0(n)+o(n)
j1(n) � 2k1(n)+o(n)

Therefore,
max( j0(n); j1(n))� 2tn+o(n): (2)

We will argue that
limsup

n!∞
n�1Nn(0)� 3=4: (3)

A similar argument will give
limsup

n!∞
n�1Nn(1)� 3=4: (4)

Together, (3) and (4) yield Theorem 1. Since by Proposition 3we havejTn(0)j+ jTn(1)j= n+o(n)
and jTn(0)j= Nn(0)+o(n);
it follows that

limsup
n!∞

n�1Nn(0) = limsup
n!∞

� jTn(0)jjTn(0)j+ jTn(1)j� :
Thus, to establish (3), we can prove that

limsup
n!∞

� jTn(0)jjTn(0)j+ jTn(1)j�� 3=4: (5)

By (2), we may pick a sequence of positive numbersfεng tending to zero such that

jn(0)� 2tn+nεn; n= 1;2; � � � :
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We then obtainjTn(0)jjTn(0)j+ jTn(1)j = tn+ j0(n)
2tn+ j0(n)+ j1(n) � tn+ j0(n)

2tn+ j0(n) � 3tn+nεn

4tn+nεn
� (3=4)+�

n
4tn

�
εn:

To finish our proof of (5), we can simply show thatn=tn = O(1). To see this, first note that

n= jTn(0)j+ jTn(1)j+o(n) = 2tn+ j0(n)+ j1(n)+o(n)� 6tn+o(n):
The inequality

n� 6tn+o(n)
impliesn=tn = O(1).
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