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Abstract

We present a rigorous and precise analysis of degree distribution in a dynamic
graph model introduced by Solé, Pastor-Satorras et al. in which nodes are
added according to a duplication-divergence mechanism. This model is dis-
cussed in numerous publications with only very few recent rigorous results,
especially for the degree distribution. In this paper we focus on two related
problems: the expected value and variance of the degree of a given node over
the evolution of the graph and the expected value and variance of the average
degree over all nodes. We present exact and precise asymptotic results show-
ing that both quantities may decrease or increase over time depending on the
model parameters. Our findings are a step towards a better understanding
of the graph behaviors such as degree distributions, symmetry, power law,
and structural compression.

Keywords: Random graphs, Duplication-divergence model, Degree
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1. Introduction1

Many real-world networks, such as protein-protein and citation networks,2

are widely viewed as driven by an internal evolution mechanism based on3
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duplication and mutation [1]. New nodes are added to the network as copies4

of existing nodes together with some random divergence, resulting in differ-5

ences among the original nodes and their copies. It has been claimed that6

graphs generated from these models exhibit many properties characteristic7

to real-world networks such as power-law degree distribution, the large clus-8

tering coefficient, and the large amount of symmetry [2, 3]. However, some9

of these results turned out not to be correct (e.g., power-law degree distri-10

bution was disproved in [4]) or not proved rigorously. In this paper we focus11

on presenting exact and precise asymptotic results for the expected degree of12

a given node over time and the average degree in the graph. We show that13

these two quantities exhibit phase transitions over the parameter space.14

The widest known duplication divergence model was introduced by Solé,15

Pastor-Satorras et al. [5], denoted here as DD(t, p, r). It is defined as follows:16

starting from a given graph Gt0 on t0 vertices (labeled from 1 to t0) we repeat17

the following procedure until we get a graph on t vertices: (i) Duplication:18

Select a node u from a current graph G (on k vertices) uniformly at random.19

Add node v (with label k + 1) to the graph and add edges between v and20

all neighbors of u; (ii) Divergence: connections from v are randomly retained21

with probability p (otherwise they are deleted). Furthermore, for all nodes22

w not adjacent to u we add an edge between v and w, independently at23

random with probability r/k. Note that nodes in the graph are labeled by24

the numbers from 1 to t, according to their order of appearance in the graph.25

This model is a generalization of the pure duplication model, where no26

edges are added in the divergence step (r = 0). It is also similar to the27

Chung-Lu model, in which instead of adding edges between v and all non-28

neighbors of u, we only add an edge between v and u with probability q29

[2].30

It has been shown that graphs generated by this model for a set of pa-31

rameters fit very well into the structure of some real-world networks (e.g.,32

protein-protein and citation networks) in terms of the degree distribution33

[6] and small subgraphs (graphlets) count [7]. It was also shown that this34

model may exhibit a large amount of symmetry (measured by the number of35

automorphisms) [8], and this distinguishes it from other graph models such36

as Erdős-Renyi and preferential attachment [9]. We formally showed in [10]37

that for the special case of p = 1, r = 0 the expected logarithm of the number38

of automorphisms for graphs on t vertices is asymptotically Θ(t log t), which39

indicates a lot of symmetry. However, the extension of it for all p and r is a40

difficult open problem.41
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The most interesting open problem in the duplication-divergence model42

DD(t, p, r) is the quest to uncover the behavior of the degree distribution, that43

is, the number of nodes of a given degree. For r = 0 it was recently proved44

by Hermann and Pfaffelhuber in [4] that depending on a value of p either45

there exists a limiting distribution with almost all vertices isolated or there46

is no limiting distribution as t → ∞. It should be mentioned that still the47

most interesting problem, namely the rate of convergence is open. They also48

asserted (but without proof) that this holds also for r > 0. Our findings in49

this paper indicate that this is not the case as the size of the graph grows to50

infinity. Moreover, it is shown in [11] that the number of vertices of degree51

one is Ω(ln t) but again the precise rates of growth of the number of vertices52

with degrees k > 0 are yet unknown. Recently, also for r = 0, Jordan [12]53

showed that the power-law of the degree distribution exists for the connected54

component but only for p < e−1. In this case the exponent is equal to γ55

which is the solution of 3 = γ + pγ−2.56

In this paper we approach the problem of the degree distribution from a57

different perspective. We investigate the behavior of two closely related vari-58

ables: the degree of a vertex s in Gt denoted degt(s) and the average degree59

D(Gt) in Gt. We present in Theorems 1–5 exact and precise asymptotics60

of the expected values and variances of the parameters under investigation61

when t→∞. We show that all parameters exhibit phase transition as a func-62

tion of p. In particular, we find that E[degt(s)] grows respectively like
(
t
s

)p
,63 √

t
s

log s or
(
t
s

)p
s2p−1, depending whether p < 1/2, p = 1/2 or p > 1/2. Fur-64

thermore, E[D(Gt)] is either Θ(1), Θ(log t) or Θ(t2p−1) for the same ranges of65

p. We also determine the exact constants for the leading terms that strictly66

depend on p, r, t0 and the structure of the seed graph Gt0 . This confirms the67

empirical findings of [13] regarding the seed graph influence on the structure68

of Gt.69

These findings allow us to better understand why the DD(t, p, r) model70

differs quite substantially from other graph models such as preferential at-71

tachment model [14]. In particular, we observe that the expected degree72

behaves different as t → ∞ for different values of s and p. For example,73

if p > 1/2, then for s = O(1) (that is, for very old nodes) we observe74

that E[degs(t)] = O(tp) while for s = Θ(t) (i.e., very young nodes) we have75

E[degs(t)] = O(t2p−1). This behavior is very different than the degree distri-76

bution for, say, preferential attachment model, for which the expected degree77

of a vertex s in a graph on t vertices is of order
√
t/s [9] and may lead to our78
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better understanding of some graph behaviors such as degree distribution,79

existence of power-law phenomenon, symmetry, and structural compression.80

2. Main results81

In this section we present our main results with proofs and auxiliary82

lemmas delayed until the next section.83

We use the standard graph notation, e.g. from [15]: V (G) denotes the
set of vertices of graph G, NG(u) – the set of neighbors of vertex u in G,
degG(u) = |NG(u)| – the degree of u in G. For brevity we use the abbrevia-
tions for Gt, e.g. degt(u) instead of degGt

(u). All graphs are simple. Let us
also introduce the average degree D(Gt) of Gt as

D(G) =
1

|V (G)|
∑

v∈V (G)

degG(u)

, and average degree squared D(Gt) of Gt as

D2(G) =
1

|V (G)|
∑

v∈V (G)

deg2
G(u)

. They are also known in the literature as the first and second moment of84

the degree distribution, respectively.85

Formally, we define the DD(t, p, r) model as follows: let 0 ≤ p ≤ 1 and86

0 ≤ r ≤ t0 be the parameters of the model. Let also Gt0 be a graph on87

t0 vertices, with V (Gt0) = {1, . . . , t0}. Now, for every t = t0, t0 + 1, . . . we88

create Gt+1 from Gt according to the following rules:89

1. add a new vertex t+ 1 to the graph,90

2. pick vertex u from V (Gt) = {1, . . . , t} uniformly at random – and91

denote u as parent(t+ 1),92

3. for every vertex i ∈ V (Gt):93

(a) if i ∈ Nt(parent(t+ 1)), then add an edge between i and t+1 with94

probability p,95

(b) if i /∈ Nt(parent(t+ 1)), then add an edge between i and t+1 with96

probability r
t
.97
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2.1. Expected value98

We focus now on the expected value of degt(s). We start with a recurrence99

expression for E[degt(s)]. Observe that for any t ≥ s we know that vertex s100

may be connected to vertex t+ 1 in one of the following two cases:101

• either s ∈ Nt(parent(t+ 1)) (which holds with probability degt(s)
t

) and102

we add an edge between s and t+ 1 (with probability p),103

• or s /∈ Nt(parent(t+ 1)) (with probability t−degt(s)
t

) and we an add edge104

between s and t+ 1 (with probability r
t
).105

Therefore, we obtain the following recurrence for E[degt(s)]:

E[degt+1(s)
∣∣ Gt] =

(
degt(s)

t
p+

t− degt(s)

t

r

t

)
(degt(s) + 1)

+

(
degt(s)

t
(1− p) +

t− degt(s)

t

(
1− r

t

))
degt(s)

= degt(s)
(

1 +
p

t
− r

t2

)
+
r

t
.

After applying the law of total expectation we find:

E[degt+1(s)] = E[degt(s)]
(

1 +
p

t
− r

t2

)
+
r

t
. (1)

Now we use Lemma 3 (presented and proved in the next section) to obtain106

E[degt(s)] = E[degs(s)]
t−1∏
k=s

(
1 +

p

k
− r

k2

)
+

t−1∑
j=s

r

j

t−1∏
k=j+1

(
1 +

p

k
− r

k2

)
. (2)

To solve this recurrence we need to know E[degs(s)] for all s ≥ t0. In the next107

section we prove the following lemma connecting E[degt(t)] and the average108

degree E[D(Gt)].109

Lemma 1. For any t ≥ t0 it holds that

E[degt+1(t+ 1)] =
(
p− r

t

)
E[D(Gt)] + r.
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Thus to wrap up our analysis we need to find E[D(Gt)], that is, the
average degree ofGt. Using a similar argument as above, we find the following
recurrence for the average degree of Gt+1:

E[D(Gt+1)
∣∣ Gt] =

1

t+ 1
E

[
t+1∑
i=1

degt+1(i)
∣∣ Gt

]

=
1

t+ 1
E

[
t∑
i=1

degt(i) + 2 degt+1(t+ 1)
∣∣ Gt

]

=
1

t+ 1

(
t∑
i=1

degt(i) + 2E
[
degt+1(t+ 1)

∣∣ Gt

])
=

1

t+ 1

(
tD(Gt) + 2E[degt+1(t+ 1)

∣∣ Gt]
)

= D(Gt)

(
1 +

2p− 1

t+ 1
− 2r

t(t+ 1)

)
+

2r

t+ 1
.

Therefore from the law of total expectation:

E[D(Gt+1)] = E[D(Gt)]

(
1 +

2p− 1

t+ 1
− 2r

t(t+ 1)

)
+

2r

t+ 1
. (3)

We can solve this recurrence again by using Lemma 3 from the next section.110

In summary, in the next section we derive the exact and the asymptotic111

expression for the average degree, the expected degree of the last node, and112

the expected degree of a given node.113

Theorem 1. For all t ≥ t0 we have

E[D(Gt)] =
Γ(t+ c3)Γ(t+ c4)

Γ(t)Γ(t+ 1)(
D(Gt0)

Γ(t0)Γ(t0 + 1)

Γ(t0 + c3)Γ(t0 + c4)
+ 2r

t−1∑
j=t0

Γ(j + 1)2

Γ(j + c3 + 1)Γ(j + c4 + 1)

)
,

where c3 = p +
√
p2 + 2r, c4 = p−

√
p2 + 2r, and Γ(z) is the Euler gamma114

function.115
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Furthermore, asymptotically as t→∞ we find

E[D(Gt)] =



t2p−1 Γ(t0)Γ(t0+1)
Γ(t0+c3)Γ(t0+c4)

D(Gt0)(1 + o(1)) if p ≤ 1
2
, r = 0,

2r
1−2p

(1 + o(1)) if p < 1
2
, r > 0,

2r ln t (1 + o(1)) if p = 1
2
, r > 0,

t2p−1 Γ(t0)Γ(t0+1)
Γ(t0+c3)Γ(t0+c4)

(1 + o(1)) if p > 1
2
,(

D(Gt0) + 2rt0
t20+2pt0−2r 3F2

[
t0+1,t0+1,1

t0+c3+1,t0+c4+1 ; 1
])

where D(Gt0) is the average degree of the initial graph Gt0 and

3F2

[ a1,a2,a3
b1,b2 ; z

]
=
∞∑
l=0

(a1)l(a2)l(a3)l
(b1)l(b2)l

zl

l!

is the generalized hypergeometric function with (a)l = a(a+ 1) . . . (a+ l− 1),116

(a)0 = 1 the rising factorial (see [16] for details).117

Applying Theorem 1 to Lemma 1 we obtain the following corollary, that118

is needed to obtain the final formula for degt(s).119

Corollary 1. For all t > t0 it is true that

E[degt(t)] = (pt− p− r) Γ(t+ c3 − 1)Γ(t+ c4 − 1)

Γ(t)2(
D(Gt0)

Γ(t0)Γ(t0 + 1)

Γ(t0 + c3)Γ(t0 + c4)
+ 2r

t−2∑
j=t0

Γ(j + 1)2

Γ(j + c3 + 1)Γ(j + c4 + 1)

)
+ r,

where c3, c4 are as above.120

Moreover, asymptotically as t→∞ it holds that

E[degt(t)] =



pt2p−1 Γ(t0)Γ(t0+1)
Γ(t0+c3)Γ(t0+c4)

D(Gt0)(1 + o(1)) if p ≤ 1
2
, r = 0,

r
1−2p

(1 + o(1)) if p < 1
2
, r > 0,

2rp ln t (1 + o(1)) if p = 1
2
, r > 0,

Γ(t0)Γ(t0+1)
Γ(t0+c3)Γ(t0+c4)

pt2p−1(1 + o(1)) if p > 1
2
,(

D(Gt0) + 2rt0
t20+2pt0−2r 3F2

[
t0+1,t0+1,1

t0+c3+1,t0+c4+1 ; 1
])

with the same notation as in Theorem 1.121
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Now we are in the position to state the exact and asymptotic expressions122

for E[degt(s)].123

Theorem 2. For all t > s > t0 it is true that

E[degt(s)] =
Γ(t+ c1)Γ(t+ c2)

Γ(t)2[
(ps− p− r) Γ(s+ c3 − 1)Γ(s+ c4 − 1)

Γ(s+ c1)Γ(s+ c2)(
D(Gt0)

Γ(t0)Γ(t0 + 1)

Γ(t0 + c3)Γ(t0 + c4)
+ 2r

s−2∑
j=t0

Γ(j + 1)2

Γ(j + c3 + 1)Γ(j + c4 + 1)

)

+
rΓ(s)2

Γ(s+ c1)Γ(s+ c2)
+ r

t−1∑
j=s

Γ(j)Γ(j + 1)

Γ(j + c1 + 1)Γ(j + c2 + 1)

]
,

where c1 =
p+
√
p2+4r

2
, c2 =

p−
√
p2+4r

2
, c3 and c4 as above.124

Asymptotically as t→∞:
(i) for s = O(1)

E[degt(s)] = tp(1 + o(1))[
(ps− p− r) Γ(s+ c3 − 1)Γ(s+ c4 − 1)

Γ(s+ c1)Γ(s+ c2)(
D(Gt0)

Γ(t0)Γ(t0 + 1)

Γ(t0 + c3)Γ(t0 + c4)
+ 2r

s−2∑
j=t0

Γ(j + 1)2

Γ(j + c3 + 1)Γ(j + c4 + 1)

)

+
rΓ(s)2

Γ(s+ c1)Γ(s+ c2)

(
1 + 3F2

[
s,s+1,1

s+c1+1,s+c2+1 ; 1
] s

s2 + ps− r

)]
.

(ii) for s = ω(1) and s = o(t)

E[degt(s)] =



D(Gt0)
pΓ(t0)Γ(t0+1)

Γ(t0+c3)Γ(t0+c4)

(
t
s

)p
s2p−1(1 + o(1)) if p ≤ 1

2
, r = 0,

r log
(
t
s

)
(1 + o(1)) if p = 0, r > 0,

r(1−p)
p(1−2p)

(
t
s

)p
(1 + o(1)) if 0 < p < 1

2
, r > 0,

r
√

t
s

log s (1 + o(1)) if p = 1
2
, r > 0,(

D(Gt0) + 2rt0
t20+2pt0−2r 3F2

[
t0+1,t0+1,1

t0+c3+1,t0+c4+1 ; 1
])

pΓ(t0)Γ(t0+1)
Γ(t0+c3)Γ(t0+c4)

(
t
s

)p
s2p−1(1 + o(1)) if p > 1

2
.
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(iii) for s = ct− o(t), 0 < c ≤ 1,

E[degt(s)] =



D(Gt0)
pΓ(t0)Γ(t0+1)

Γ(t0+c3)Γ(t0+c4)
t2p−1cp−1(1 + o(1)) if p ≤ 1

2
, r = 0,

r (1− log c) (1 + o(1)) if p = 0, r > 0,(
r(1−p)

p(1−2p)cp
− r

p

)
(1 + o(1)) if 0 < p < 1

2
, r > 0,

r√
c

log t (1 + o(1)) if p = 1
2
, r > 0,(

D(Gt0) + 2rt0
t20+2pt0−2r 3F2

[
t0+1,t0+1,1

t0+c3+1,t0+c4+1 ; 1
])

pΓ(t0)Γ(t0+1)
Γ(t0+c3)Γ(t0+c4)

t2p−1cp−1(1 + o(1)) if p > 1
2
.

Thus we have presented a complete characterization of the expected av-125

erage degree and the expected degree of a vertex s at time t.126

2.2. Variance127

The procedure described above can be extended to find also the second128

moment of the degree distribution.129

First, the identical reasoning as in the previous subsection leads to a
formula

E[deg2
t+1(s)

∣∣ Gt] =

(
degt(s)

t
p+

t− degt(s)

t

r

t

)
(degt(s) + 1)2

+

(
degt(s)

t
(1− p) +

t− degt(s)

t

(
1− r

t

))
deg2

t (s)

= deg2
t (s)

(
1 +

2p

t
− 2r

t2

)
+ degt(s)

(
p+ 2r

t
− r

t2

)
+
r

t
.

After we apply the law of total expectation, we find

E[deg2
t+1(s)] = E[deg2

t (s)]

(
1 +

2p

t
− 2r

t2

)
+ E[degt(s)]

(
p+ 2r

t
− r

t2

)
+
r

t
,

(4)

which, combined with Lemma 3, lead us to

E[deg2
t (s)] = E[deg2

s(s)]
t−1∏
k=s

(
1 +

2p

k
− 2r

k2

)

+
t−1∑
j=s

[
E[degj(s)]

(
p+ 2r

j
− r

j2

)
+
r

j

] t−1∏
k=j+1

(
1 +

2p

k
− 2r

k2

)
.

(5)
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To solve this recurrence we need to know E[deg2
s(s)] for all s ≥ t0. In130

the next section we prove the following lemma connecting E[degt(t)] and the131

first two moments of the degree distribution.132

Lemma 2. For any t ≥ t0 it holds that

E[deg2
t+1(t+ 1)] =

(
p2 − 2pr

t
+
r2

t2

)
E[D2(Gt)]

+

(
p− p2 + 2pr − r + 2r2

t
+
r2

t2

)
E[D(Gt)] + r2 + r − r2

t
.

Similarly as before, here we need to find E[D2(Gt)], that is, the average
degree squared of Gt. We find the following recurrence (see the complete
proof in the next section):

E[D2(Gt+1)] = E[D2(Gt)]

(
1 +

2p+ p2 − 1

t+ 1
− 2r(1 + p)

t(t+ 1)
+

r2

t2(t+ 1)

)
+ E[D(Gt)]

(
2p− p2 + 2pr + 2r

t+ 1
− 2r + 2r2

t(t+ 1)
+

r2

t2(t+ 1)

)
+

2r2 + 2r

t+ 1
− r2

t(t+ 1)
.

Here E[D2(Gt+1)] should not be confused with E[D2(Gt+1)], however the
latter one may be derived in similar fashion:

E[D2(Gt+1)
∣∣ Gt] =

1

(t+ 1)2
E

( t+1∑
i=1

degt+1(i)

)2 ∣∣ Gt


=

1

(t+ 1)2
E

( t∑
i=1

degt(i) + 2 degt+1(t+ 1)

)2 ∣∣ Gt


=

1

(t+ 1)2

((
t∑
i=1

degt(i)

)2

+ 4
t∑
i=1

degt(i)E
[
degt+1(t+ 1)

∣∣ Gt

]
+ 4E

[
deg2

t+1(t+ 1)
∣∣ Gt

])
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and therefore

E[D2(Gt+1)
∣∣ Gt] =

=
1

(t+ 1)2

(
t2D2(Gt) + 4tD(Gt)E[degt+1(t+ 1)

∣∣ Gt]

+ 4E
[
deg2

t+1(t+ 1)
∣∣ Gt

])

= D2(Gt)
t2 + 4tp− 4r

(t+ 1)2
+D2(Gt)

4

(t+ 1)2

(
p2 − 2pr

t
+
r2

t2

)
+D(Gt)

4

(t+ 1)2

(
tr + p− p2 + 2pr − r + 2r2

t
+
r2

t2

)
+

4

(t+ 1)2

(
r2 + r − r2

t

)
.

Finally, we may obtain both exact and asymptotic formulas for the vari-133

ances of investigated random variables. However, due to the complicated134

form of the constants in exact formulas, we drop the exact formulas from the135

paper and present only the asymptotic rates of growth.136

Theorem 3. The following holds

E[D2(Gt)] =


Θ(1) if p <

√
2− 1,

Θ(ln t) if p =
√

2− 1,

Θ(tp
2+2p−1) if p >

√
2− 1.

Applying Theorem 3 to Lemma 2 we obtain the following corollary.137

Corollary 2. It holds that

Var[degt(t)] =


Θ(1) if p <

√
2− 1,

Θ(ln t) if p =
√

2− 1,

Θ(tp
2+2p−1) if p >

√
2− 1.

Now we present the asymptotic expressions for Var[degt(s)]. Here we138

have two cases with different regimes – however it should be noted that the139

leading terms have different constants for different ranges of p, the same as140

we have in Theorem 2.141
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Theorem 4. Asymptotically it holds that:
(i) for s = O(1)

Var[degt(s)] =

{
Θ(ln t) if p = 0,

Θ(t2p) if p > 0.

(ii) for s = ω(1)

Var[degt(s)] =


Θ
(

log
(
t
s

))
if p = 0

Θ
( (

t
s

)2p )
if 0 < p <

√
2− 1

Θ
( (

t
s

)2p
log s

)
if p =

√
2− 1

Θ
( (

t
s

)2p
sp

2+2p−1
)

if p >
√

2− 1.

We conclude by stating the formula for Var[D(Gt)].142

Theorem 5. It is true that

Var[D(Gt)] =


Θ(1) if p < 1

2
,

Θ(log2 t) if p = 1
2
,

Θ(t4p−2) if p > 1
2
.

It is worth noting that for both degt(t) and degt(s) the order of growth of143

variance is completely dominated by the second moment (unless it’s O(1)).144

However, with D(Gt) the situation is different: both ED2(Gt) and (ED(Gt))
2

145

have the same order – although with different leading constants.146

3. Analysis147

In this section we prove our main results Theorems 1–5. We start with148

a sequence of lemmas that allow us to solve a particular type of recurrence149

encountered in this analysis, and then we extract asymptotics using analytic150

tools.151

3.1. Useful lemmas152

We begin our analysis by deriving a series of lemmas useful for the analysis153

of the following type of recurrence154

E[f(Gn+1)
∣∣ Gn] = f(Gn)g1(n) + g2(n) (6)

12



for some nonnegative functions g1(n), g2(n) and a Markov process Gn. It155

should be noted that our recurrences for E[degt(s)] and E[D(Gt)] (e.g., see156

(1) and (3)) fall under this pattern.157

Next lemma is a generalization of a result obtained in [4], where only the158

case g1(n) = 1 + a
n
, a > 0, was analyzed.159

Lemma 3. Let (Gn)∞n=n0
be a Markov process for which Ef(Gn0) > 0 and

(6) holds with g1(n) > 0, g2(n) ≥ 0 for all n = n0, n0 + 1, . . .. Then
(ii) The process (Mn)∞n=n0

defined by Mn0 = f(Gn0) and

Mn = f(Gn)
n−1∏
k=n0

1

g1(k)
−

n−1∑
j=n0

g2(j)

j∏
k=n0

1

g1(k)

is a martingale.160

(ii) For all n ≥ n0161

Ef(Gn) = f(Gn0)
n−1∏
k=n0

g1(k) +
n−1∑
j=n0

g2(j)
n−1∏
k=j+1

g1(k)

=
n−1∏
k=n0

g1(k)

(
f(Gn0) +

n−1∑
j=n0

g2(j)

j∏
k=n0

1

g1(k)

)
.

Proof. Observe that

E[Mn+1

∣∣ Gn] = E[f(Gn+1)
∣∣ Gn]

n∏
k=n0

1

g1(k)
−

n∑
j=n0

g2(j)

j∏
k=n0

1

g1(k)

= f(Gn)
n−1∏
k=n0

1

g1(k)
−

n−1∑
j=n0

g2(j)

j∏
k=n0

1

g1(k)
= Mn

which proves (i). Furthermore, after some algebra and taking expectation
with respect to Gn we arrive at

Ef(Gn) = E[Mn]
n−1∏
k=n0

g1(k) +
n−1∑
j=n0

g2(j)

j∏
k=n0

1

g1(k)

n−1∏
k=n0

g1(k)

= f(Gn0)
n−1∏
k=n0

g1(k) +
n−1∑
j=n0

g2(j)
n−1∏
k=j+1

g1(k)

which completes the proof.162

13



We now observe that any solution of recurrences of type (6) contains163

sophisticated products and the sum of products (e.g., see (2)) with which we164

must deal to find asymptotics. The next lemma shows how to handle such165

products.166

Lemma 4. Let W1(k), W2(k) be polynomials of degree d with respective roots
ai, bi (i = 1, . . . , d), that is, W1(k) =

∏d
i=1(k−ai) and W2(k) =

∏d
j=1(k−bj).

Then

n−1∏
k=n0

W1(k)

W2(k)
=

d∏
i=1

Γ(n− ai)
Γ(n− bi)

Γ(n0 − bi)
Γ(n0 − ai)

.

Proof. We have

n−1∏
k=n0

W1(k)

W2(k)
=

n−1∏
k=n0

d∏
i=1

k − ai
k − bi

=
d∏
i=1

n−1∏
k=n0

k − ai
k − bi

=
d∏
i=1

Γ(n− ai)
Γ(n− bi)

Γ(n0 − bi)
Γ(n0 − ai)

which completes the proof.167

The next lemma presents the well-known asymptotic expansion of the168

gamma function but we include it here for the sake of completeness.169

Lemma 5 (Abramowitz, Stegun [16]). For any a, b ∈ R if n→∞, then

Γ(n+ a)

Γ(n+ b)
= na−b

∞∑
k=0

(
a− b
k

)
B

(a−b+1)
k (a) · n−k

= na−b
(

1 +
(a− b)(a+ b− 1)

2n
+O

(
1

n2

))
,

where B
(l)
k (x) are the generalized Bernoulli polynomials.170

Now we deal with sum of products as seen in (6). In particular, we are
interested in the following sum of products

n∑
j=n0

∏k
i=1 Γ(j + ai)∏k
i=1 Γ(j + bi)

with a =
∑k

i=1 ai, b =
∑k

i=1 bi. In the next three lemmas we consider three171

cases: a+ 1 > b, a+ 1 = b and a+ 1 < b.172
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Lemma 6. Let ai, bi ∈ R (k ∈ N) with a =
∑k

i=1 ai, b =
∑k

i=1 bi such that
a+ 1 > b. Then it holds asymptotically for n→∞ that

n∑
j=n0

∏k
i=1 Γ(j + ai)∏k
i=1 Γ(j + bi)

=
1

a− b+ 1
na−b+1 +O

(
nmax{a−b,0})

Proof. We estimate the sum using Lemma 5 and the Euler-Maclaurin formula
[17, p. 294]

n∑
j=n0

∏k
i=1 Γ(j + ai)∏k
i=1 Γ(j + bi)

=
n∑

j=n0

ja−b
(

1 +O

(
1

j

))
=

∫ n

n0

ja−b
(

1 +O

(
1

j

))
dj

=

[
ja−b+1

(
1

a− b+ 1
+O

(
1

j

))]n
n0

= na−b+1

(
1

a− b+ 1
+O

(
1

n

))
+O(1)

which completes the proof.173

Lemma 7. Let ai, bi ∈ R (k ∈ N) with a =
∑k

i=1 ai, b =
∑k

i=1 bi such that
a+ 1 = b. Then asymptotically

n∑
j=n0

∏k
i=1 Γ(j + ai)∏k
i=1 Γ(j + bi)

= lnn+O (1)

Proof. We proceed as before

n∑
j=n0

∏k
i=1 Γ(j + ai)∏k
i=1 Γ(j + bi)

=
n∑

j=n0

1

j

(
1 +O

(
1

j

))
=

∫ n

n0

1

j

(
1 +O

(
1

j

))
dj

= [ln j +O(1)]nn0
= lnn+O(1)

which completes the proof.174

Lemma 8. Let ai, bi ∈ R (i = 1, . . . , k, k ∈ N) with a =
∑k

i=1 ai, b =
∑k

i=1 bi
such that a+ 1 < b. Then it holds for every n ∈ N+ that

∞∑
j=n

∏k
i=1 Γ(j + ai)∏k
i=1 Γ(j + bi)

=

∏k
i=1 Γ(n+ ai)∏k
i=1 Γ(n+ bi)

k+1Fk
[
n+a1,...,n+ak,1
n+b1,...,n+bk

; 1
]

15



where pFq[
a
b ; z] is the generalized hypergeometric function. Moreover it is

true that asymptotically
∞∑
j=n

∏k
i=1 Γ(j + ai)∏k
i=1 Γ(j + bi)

= na−b+1

(
1

b− a− 1
+O

(
1

n

))
.

Proof. The proof of the first formula follows directly from the definition of the
generalized hypergeometric function. Second formula follows from Lemma 5,
as we know that for n→∞:
∞∑
j=n

∏k
i=1 Γ(j + ai)∏k
i=1 Γ(j + bi)

=
∞∑
j=n

ja−b
(

1 +O

(
1

j

))
=

∫ ∞
n

ja−b
(

1 +O

(
1

j

))
dj

=

[
ja−b+1

(
1

b− a− 1
+O

(
1

j

))]∞
n

= na−b+1

(
1

b− a− 1
+O

(
1

n

))
as desired.175

3.2. Proofs of Theorem 1 and Theorem 2176

We start with the proof of Theorem 1. Combining (3) with Lemmas 3177

and 4 we prove the first part of Theorem 1.178

Now we split the formula

A1(t) :=
Γ(t+ c3)Γ(t+ c4)

Γ(t)Γ(t+ 1)
D(Gt0)

Γ(t0)Γ(t0 + 1)

Γ(t0 + c3)Γ(t0 + c4)

A2(t) :=
Γ(t+ c3)Γ(t+ c4)

Γ(t)Γ(t+ 1)

t−1∑
j=t0

Γ(j + 1)2

Γ(j + c3 + 1)Γ(j + c4 + 1)
,

E[D(Gt)] = A1(t) + 2rA2(t).

The second part of Theorem 1 follows directly from the equations above,
combined with Lemmas 6, 7 and 8 for the respective ranges of p:

A1(t) = t1−2pD(Gt0)
Γ(t0)Γ(t0 + 1)

Γ(t0 + c3)Γ(t0 + c4)

A2(t) =


1

1−2p
(1 + o(1)) if p < 1

2
,

ln t (1 + o(1)) if p = 1
2
,

t2p−1 Γ(t0)Γ(t0+1)
Γ(t0+c3)Γ(t0+c4)

t0
t20+2pt0−2r

3F2

[
t0+1,t0+1,1

t0+c3+1,t0+c4+1 ; 1
]
(1 + o(1)) if p > 1

2
.
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Now we turn our attention to the proof of Lemma 1. We first observe
that it follows from the definition of the model that the degree of the new
vertex t + 1 is the total number of edges from t + 1 to Nt(parent(t+ 1))
(chosen independently with probability p) and to all other vertices (chosen
independently with probability r

t
). Note that it can be expressed as a sum

of two independent binomial variables

degt+1(t+ 1)

∼ Bin (degt(parent(t+ 1)), p) + Bin
(
t− degt(parent(t+ 1)),

r

t

)
hence

E[degt+1(t+ 1)
∣∣ Gt] =

t∑
k=0

Pr(degt(parent(t+ 1)) = k)
k∑
a=0

(
k

a

)
pa(1− p)k−a

t−k∑
b=0

(
t− k
b

)(r
t

)b (
1− r

t

)t−k−b
(a+ b)

=
t∑

k=0

Pr(degt(parent(t+ 1)) = k)
(
pk +

r

t
(t− k)

)
=
(
p− r

t

) t∑
k=0

k Pr(degt(parent(t+ 1)) = k) + r.

Since parent sampling is uniform, we know that Pr(parent(t+ 1) = i) = 1
t

and therefore

D(Gt) =
t∑
i=1

Pr(parent(t+ 1) = i) degt(i)

=
t∑

k=0

k Pr(degt(parent(t+ 1)) = k).

Combining the last two equations above with the law of total expectation we179

finally establish Lemma 1 – and therefore the Corollary 1.180

Finally, we proceed to the proof of Theorem 2. First, we apply Lemma 3
with g1(t) = 1 + p

t
− r

t2
and g2(t) = r

t
to (1) and we obtain aforementioned
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(2). Now we combine this result with Lemma 4 and find

E[degt(s)] =
Γ(t+ c1)Γ(t+ c2)

Γ(t)2(
E[degs(s)]

Γ(s)2

Γ(s+ c1)Γ(s+ c2)
+ r

t−1∑
j=s

Γ(j)Γ(j + 1)

Γ(j + c1 + 1)Γ(j + c2 + 1)

)

where c1 =
p+
√
p2+4r

2
, c2 =

p−
√
p2+4r

2
.181

Now it is sufficient to apply Corollary 1 to this equation. All parts of182

Theorem 2 – as it was in the case of E[D(Gt)] above – come as straightforward183

consequences of Lemmas 6, 7 and 8.184

3.3. Proofs of Theorems 3–5185

First, we proceed with the proof of the recurrence for the second moment
of the degree distribution of Gt:

E[D2(Gt+1)
∣∣ Gt] =

1

t+ 1
E

[
t+1∑
i=1

deg2
t+1(i)

∣∣ Gt

]

=
1

t+ 1
E

[
t∑
i=1

(degt(i) + It+1(i)))2 + deg2
t+1(t+ 1)

∣∣ Gt

]

=
1

t+ 1
E

[
t∑
i=1

deg2
t (i) + 2

t∑
i=1

degt(i)It+1(i)

+
t∑
i=1

I2
t+1(i) + deg2

t+1(t+ 1)
∣∣ Gt

]

where It+1(i) is an indicator variable denoting whether there is an edge be-186

tween vertices t+ 1 and i.187
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Now we use the following simple facts

t∑
i=1

I2
t+1(i) =

t∑
i=1

It+1(i) = degt+1(t+ 1),

E

[
t∑
i=1

degt(i)It+1(i)
∣∣ Gt

]
=

t∑
i=1

degt(i)E[It+1(i)
∣∣ Gt]

=
t∑
i=1

degt(i)

(
degt(i)

t
p+

t− degt(i)

t

r

t

)

=
1

t

t∑
i=1

deg2
t (i)

(
p− r

t

)
+

1

t

t∑
i=1

degt(i)r

=
(
p− r

t

)
D2(Gt) + rD(Gt).

This lead us to

E[D2(Gt+1)
∣∣ Gt] = D2(Gt)

(
1 +

2p+ p2 − 1

t+ 1
− 2r(1 + p)

t(t+ 1)
+

r2

t2(t+ 1)

)
+D(Gt)

(
2p− p2 + 2pr + 2r

t+ 1
− 2r + 2r2

t(t+ 1)
+

r2

t2(t+ 1)

)
+
r2 + 2r

t+ 1
− r2

t(t+ 1)
.

Now we apply the law of total expectation and split the formula

B1(t) :=
Γ(t+ c5)Γ(t+ c6)Γ(t+ c7)

Γ(t)2Γ(t+ 1)
D2(Gt0)

Γ(t0)2Γ(t0 + 1)

Γ(t0 + c5)Γ(t0 + c6)Γ(t0 + c7)
,

B2(t) :=
Γ(t+ c5)Γ(t+ c6)Γ(t+ c7)

Γ(t)2Γ(t+ 1)
(1 + o(1))

t−1∑
j=t0

E[D(Gj)]
1

j + 1

Γ(j + 1)2Γ(j + 2)

Γ(j + c5 + 1)Γ(j + c6 + 1)Γ(j + c7 + 1)
,

B3(t) :=
Γ(t+ c5)Γ(t+ c6)Γ(t+ c7)

Γ(t)2Γ(t+ 1)
(1 + o(1))

t−1∑
j=t0

1

j + 1

Γ(j + 1)2Γ(j + 2)

Γ(j + c5 + 1)Γ(j + c6 + 1)Γ(j + c7 + 1)
,

E[D2(Gt)] = B1(t) + (2p− p2 + 2pr + 2r)B2(t) + (r2 + 2r)B3(t),
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where c5, c6, c7 are the roots of equation t3− (2p+p2)t2−2r(1+p)t−r2 = 0.188

Now we may show that asymptotically:

B1(t) = tp
2+2p−1D2(Gt0)

Γ(t0)2Γ(t0 + 1)

Γ(t0 + c5)Γ(t0 + c6)Γ(t0 + c7)
(1 + o(1)),

B2(t) = tp
2+2p−1(1 + o(1))
t−1∑
j=t0

E[D(Gj)]
Γ(j + 1)3

Γ(j + c5 + 1)Γ(j + c6 + 1)Γ(j + c7 + 1)
,

B3(t) = tp
2+2p−1(1 + o(1))
t−1∑
j=t0

Γ(j + 1)3

Γ(j + c5 + 1)Γ(j + c6 + 1)Γ(j + c7 + 1)
.

The rates of growth of B3(t) can be found by applying Lemmas 6, 7 and 8189

to the respective cases.190

Finding the asymptotics of B2(t) trickier, but using Theorem 1 we note
that

B21(t) =
t−1∑
j=t0

Γ(j + c3)Γ(j + c4)Γ(j + 1)2

Γ(j + c5 + 1)Γ(j + c6 + 1)Γ(j + c7 + 1)Γ(j)
,

B22(t) =
t−1∑
j=t0

j−1∑
k=t0

Γ(k + 1)2

Γ(k + c3 + 1)Γ(k + c4 + 1)

Γ(j + c3)Γ(j + c4)Γ(j + 1)2

Γ(j + c5 + 1)Γ(j + c6 + 1)Γ(j + c7 + 1)Γ(j)
,

B2(t) = tp
2+2p−1(1 + o(1))

(
D(Gt0)

Γ(t0)Γ(t0 + 1)

Γ(t0 + c3)Γ(t0 + c4)
B21(t) + 2rB22(t)

)
.

Here B21(t) poses no problem, as it can be analyzed similarly as B3(t). More-
over, we may bound

B22(t) ≤
t−1∑
k=t0

Γ(k + 1)2

Γ(k + c3 + 1)Γ(k + c4 + 1)

t−1∑
j=t0

Γ(j + c3)Γ(j + c4)Γ(j + 1)2

Γ(j + c5 + 1)Γ(j + c6 + 1)Γ(j + c7 + 1)Γ(j)
.
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Now depending on the values of p, we may bound both terms. For example,191

if p >
√

2− 1 we may show that the right hand side is upper bounded by a192

constant, yet B22(t) is strictly increasing when t→∞, so it is converging to193

a constant.194

Putting together all the pieces presented above we obtain Theorem 3.195

Next, we turn our attention to

E[deg2
t+1(t+ 1)

∣∣ Gt] =

=
t∑

k=0

Pr(degt(parent(t+ 1)) = k)
k∑
a=0

(
k

a

)
pa(1− p)k−a

t−k∑
b=0

(
t− k
b

)(r
t

)b (
1− r

t

)t−k−b
(a+ b)2

=
t∑

k=0

Pr(degt(parent(t+ 1)) = k)(
k2

(
p2 − 2pr

t
+
r2

t2

)
+ k

(
p− p2 + 2pr − r + 2r2

t

)
+ r2 + r − r2

t

)
= D2(Gt)

(
p2 − 2pr

t
+
r2

t2

)
+D(Gt)

(
p− p2 + 2pr − r + 2r2

t
+
r2

t2

)
+ r2 + r − r2

t
,

since we have similarly as before (in the case of D(Gt)):

D2(Gt) =
t∑
i=1

Pr(parent(t+ 1) = i) deg2
t (i)

=
t∑

k=0

Pr(degt(parent(t+ 1)) = k)k2.

This, after applying the law of total expectation, establishes Lemma 2 – and196

therefore also Corollary 2.197

The proof of Theorem 4 is done analogously to the proof of Theorem 2:198

we apply Lemmas 3–4 to get (5) to get and then use Lemmas 6, 7 and 8199

to get the final result. It is worth noting that here the first term always200

dominates the asymptotics. Moreover, here we do not need to distinguish201
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the case s = ct − o(t), as it differs only in the leading constant, but not in202

the rate of growth.203

The product form of E[D2(Gt)] after application of Lemma 3 is as follow-
ing

E[D2(Gt)] = D2(Gt0)
t−1∏
j=t0

j2 + 4jp− 4r

(j + 1)2

+
t−1∑
j=t0

E[D2(Gj)]
4p2

(j + 1)2
(1 + o(1))

t−1∏
k=j+1

k2 + 4kp− 4r

(k + 1)2

+
t−1∑
j=t0

E[D(Gj)]
4jr

(j + 1)2
(1 + o(1))

t−1∏
k=j+1

k2 + 4kp− 4r

(k + 1)2

+
t−1∑
j=t0

4r2

(j + 1)2
(1 + o(1))

t−1∏
k=j+1

k2 + 4kp− 4r

(k + 1)2
.

It turns out – after using Lemmas 3–4 – that the third term dominates204

asymptotics up for all p ≤ 1
2

and both first and third terms are growing like205

t4p−2 for p > 1
2
.206

4. Discussion207

In this paper we focus on rigorous and precise analysis of the expected208

average degree and variance of a given node in the network as well as the209

average degree over all nodes. We presented exact and asymptotic results210

showing phase transitions of these quantities as a function of p.211

It is worth noting that the parameter p solely drives the rate of growth of212

both first and second moments of variables D(Gt)], degt(t) and degt(s). The213

parameter r impacts only the leading constant and lower order terms. The214

proposed methodology can be easily extended to obtain higher moments of215

the above quantities, if needed.216

The future work may include investigations both the large deviainto tion217

of the degree distribution as well as the complete spectrum of the degree218

distribution (i.e., the number of nodes of degree k) as a function of k, t, Gt0 ,219

p and r.220

22
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