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Abstract

The method of types is one of the most popular techniques in information theory and com-
binatorics. However, thus far the method has been mostly applied to one-dimensional Markov
processes, and it has not been really thoroughly studied for Markov fields. Markov fields can be
viewed as models for multi-dimensional systems involving a large number of variables with local
mutual dependencies and interactions. These local dependencies can be represented by a shape
S of interactions which are further marked by symbols from a finite alphabet of size m. Such
a marked shape is called a tile. Two assignments in a Markov field have the same type if they
have the same empirical distribution or they can be tiled by the same number of tile types. Our
goal is to study the growth of the number of Markov field types or the number of tile types in a
d-dimensional box of lengths n1, . . . , nd or its cyclic counterpart known as a d dimensional torus
in which edges are glued together. We reduce this question to the enumeration of nonnegative
integer solutions of a large system of Diophantine linear equations called the conservation laws.
We view a Markov type as a vector in a D = m|S| dimensional space and count the number of
such vectors satisfying the conservation laws which turns out to be the number of integer points
in a certain polytope. For the torus this polytope is of dimension µ = D − 1 − rk(C) where
rk(C) is the number of linearly independent conservation laws. This provides an upper bound
on the number of types. We also construct a matching lower bound leading to the conclusion
that the number of types in the torus Markov field is Θ(Nµ) where N = n1 · · ·nd. These results
are derived by analytic geometry tools including ideas of discrete and convex multidimensional
geometry.

Index Terms: Markov fields, Markov types, conservation laws, linear Diophantine equations,
enumerative combinatorics, analytic and discrete geometry.
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1 Introduction

The method of types is one of the most popular and useful techniques in information theory and
combinatorics. Two sequences of equal length are of the same type if they have identical empirical
distributions. Furthermore, sequences of the same type are assigned the same probability by all
distributions in a given class. The method of types was known for some time in probability and
statistical physics. But only in the 1970’s Csiszár and his group developed a general method
and made it a basic tool of information theory of discrete memoryless sources [5, 6]; see also
[4, 7, 10, 15, 23, 28]. The method of types is used in a myriad of applications [6], from the minimax
redundancy [10] to simulation of information sources [16]. However, thus far this method has been
studied only for one-dimensional processes, mostly Markov [10, 11, 28] but also general stationary
ergodic processes [23]. Here we investigate types of Markov fields (Bayesian networks, Gibbs fields
and/or factor graphs) [22] that find applications ranging from sensor networks [20] to images to
information retrieval [17], and so forth [27]. We develop a novel approach based on multidimensional
discrete and analytic geometry to study this important and intricate problem that has been left
open for too long.

In order to gently introduce Markov fields and their types, we start with a one dimensional
Markov chain over a finite alphabet A = {1, 2, . . . ,m}. Let us write xn = x1 . . . xn ∈ An for a
sequence of length n generated by a Markov source. For Markov sources of order r = 1 we have
two equivalent representations for the probability P(xn) of xn:

P(xn) = P(x1)

n
∏

i=2

P(xi|xi−1) = P(x1)
∏

(i,j)∈A2

p
T(ij)
ij ,

∑

x1

P(x1) = 1,

where pij is the transition probability from i ∈ A to j ∈ A, and the frequency count T(ij) is the
number of pairs (ij) in the sequence xn. If we define t = (ij) and T = A2, then the previous
equation can be written as

P(xn) = P(x1)
∏

t∈T

p
T(t)
t . (1)

Similarly, for one-dimensional Markov sources of order r we have

P(xn) = P(xr1)
n
∏

i=r+1

P(xi|xi−1 . . . xi−r) = P(xr1)
∏

t∈T

p
T(t)
t ,

∑

xr
1

P(xr1) = 1, (2)

where t = (i1, . . . , ir+1) ∈ T := Ar+1 and T(t) counts the appearances of t in xn.
To motivate questions we ask in this paper, we remark first that the probability measures above

are in fact Gibbs distributions, associated with local interactions, parameterized by some collections
of neighboring sites (sequential (r + 1)-tuples for Markov sources of order r). We will be calling
these collections plaques, in view of the higher-dimensional generalizations that follow. All these
collections in the case of Markov processes are in fact shifts, or displacements of the same shape
(in 1D situation, the shape is just the interval S = {0, 1, . . . , r}; in higher dimensions there is a
larger variety of shapes). Plaques are p = S + s where s is a shift, however, we often simply write
S ≡ S+s. A marking of a shape with symbols of the alphabet A is called a tile t, that is, t : S → A.

In this paper, we study a high-dimensional generalization of Markov processes called Markov
fields that take values in the finite alphabet A and are supported by a subset of the integer lattice
domain D ⊂ Zd. We only consider box-shaped domains, with either free boundary conditions
(called a box and denoted as I) or with periodic (in all d dimensions) boundary conditions (referred
to as a torus and denoted as O). The set of all possible configurations on the domain D (i.e.,
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functions D → A) is represented as Conf(D). We denote Markov fields as x ≡ xn ∈ Conf(D),
where n = (n1, . . . , nd) is the size of a torus or a box. Finally, the set of all tiles is T ≡ Conf(S).

It is well known that the distribution P(x) of a Markov field x can be rewritten as a Gibbs
distribution

P(x) = Z−1
∏

p

w(x|p), (3)

where w is a weight – a (nonnegative) function (or equivalently vector) on configurations of plaques
(shape S in some position), where x|p is a restriction of x to p, and Z is the so called partition
function

Z =
∑

x

∏

p

w(x|p). (4)

Observe that (3) is an instance of the Hammersley–Clifford Theorem [18].
In the case when all the plaques have the same shape and the weights are translation invariant

(i.e. the weight w(x|p) depends only on the restriction t = x|p, but not on the position of the
plaque), the product in (4) can be rewritten as

∏

p

w(x|p) = wT, (5)

where w = (wx1
, . . . , wxK

) for some K is the vector of weights, and the vector T = {T(t)}t∈T is
the type of the configuration x, i.e. the number of the plaques p (obtained by shifting the shape
S) for which the restriction x|p is the same as t. Here, we use the convention that for two vectors

a = (a1, . . . , aK),b = (b1, . . . , bK), we denote ab =
∏

k a
bk
k .

Observe that the partition function (4) can be rewritten as

Z =
∑

T

M(T)wT, (6)

where the summation is over all types T, that is, the vector of numbers T(t) of plaques p = s+ S
such that the restriction of the configuration x to p has the labeling t, and M(T) is the number
of configurations x ∈ Conf(O) (or in Conf(I)) having the type T. This reformulation (6) allows
one to decouple the effects of the weights w and of the combinatorics of the model encoded by the
shape of the domain O or I, and the shape of the plaques S. Then two questions naturally arise:

1. for a given type, i.e. the counts {T(t)}t∈T, how many sequences xn realize it (i.e., what is
M(T) for a given type T)?

2. how many distinct types are there, that is, what is the size of the set of types T for which
M(T) > 0?

In the language of Markov sources, the types {T(t)}t∈T, as we define them, specialize to the
familiar Markov types: for a one-dimensional Markov source, the type just encodes the number of
times the transition i → j (i, j ∈ A) is observed in a sequence.

In passing we should point out that the condition that a given type can be observed in a Markov
trajectory is equivalent to a multigraph representing the type to be Eulerian, as discussed in some
depth in [11]. The question, for a given Eulerian type T to determine the number of trajectories
having this type is in our notation the question of finding M(T).

These two problems (i.e., number of sequences of a given type and number of types) were studied
quite extensively in the past for one dimensional Markov sources. The number of sequences of a
given Markov type was first addressed by Whittle [28] and then re-established by analytic method
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Figure 1: Illustration of cyclic fields: here x is defined on the torus O(4,3) that is constructed from
the box on the right by gluing the left and the right as we all as the top and the bottom edges.

in [10]. A precise evaluation of the number of Markov types was recently discussed in [11] (see also
[15] for tree models).

In this paper, we address a more general, and much harder problem: the enumeration of
Markov field types (i.e., the number of distinct empirical distributions of tile counts), that can be
realized by a “trajectory” x ∈ Conf(O). Let us be more precise. We need to introduce some
notation. For dimension d ∈ N, let n = (n1, n2, .., nd) and N := n1 · n2 · ... · nd. Define the box
In = In1

× In2
× .. × Ind

⊂ Zd with In := {0, 1, .., n − 1} on which the underlying Markov field
is defined. We mostly work here with the rectangular torus, i.e. the fields on Zd subject to n-
periodic boundary conditions (see Figure 1). Our results remain valid for general case, where the
periodicity lattice is not necessarily rectangular. In the 1-dimensional case analyzed in [11] these
periodic conditions translate into the cyclic sequences of symbols in A, that is, sequences xn in
which xk+n = xk.

Now, the tile count, or type of the field x is a function T : T → N counting how often each tile
occurs in the field x, that is,

T(t) = |{s ∈ D : S + s ⊂ D, and x|S+s = t}| (7)

where f |B denotes the restriction of a function f to a smaller domain B.
While tilings and asymptotically counting them are discussed in many references [1, 12, 13, 19],

our problem is distinctly different: these references are concerned with (asymptotic) evaluation of
what we call M(T). Here we address the issue of the support of the function M , especially of its
size:

Pn = Pn(A,S) = {T ∈ ZT : exists x ∈ Conf(D), such that x is of type T}. (8)

The cardinality of Pn, i.e. the number of realizable types, is our main concern in this paper. While
the question of understanding the structure of the set of types for the multi-dimensional fields is
very natural and important, we could not find any relevant literature, beyond the 1D situation.

We shall view the types {T(t)}t∈T as a D := |T| = m|S|–dimensional vector indexed by the tiles
t ∈ T. Clearly, T(t) ≥ 0 for all t ∈ T. However, this vector satisfies a number of equality constraints
that have a major impact on the cardinality of Pn. First of all, one has the normalization condition

∑

t

T(t) = I(D), (9)

where I(D) is the number of different plaques p = s + S in D. It is quite obvious for the torus
that I = N = n1 · . . . · nd. Further, in order to tile a torus the number of tiles “ending” with a
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subtile t′ : S ′ → A for some subshape S ′ ⊂ S must be equal to the number of tiles that “begin”
with t′. This leads, as in the 1D case, to what we call the conservation laws (discussed in depth in
Section 2):

∑

t:t|S′
1

=t′

T(t) =
∑

t:t|S′
2

=t′

T(t) (10)

for all pairs of subshapes S ′
1,S

′
2 ⊂ S such that S ′

2 = S ′
1 + s for some s, and some tile t′ : S ′ → A.

The system of equations (9)–(10) constitutes a linear system of Diophantine equations in ZD. We
denote by Fn := Fn(A,S) the set of nonnegative integer solutions to (9)–(10). Clearly, |Pn| ≤ |Fn|
since all types in Pn satisfy the conservation laws, and thus lie in Fn. However, we will see that
unlike the 1D situation, these sets are very different.

As we said, little is known about the set of realizable types in higher dimensions. Let us briefly
survey the available 1D results. In [11] an analytic approach was used to enumerate precisely
Fn for d = 1. Another analytic approach is suggested in Stanley [25], however, it allows only to
find the order of growth. We remark here that extending analytic techniques of [11] to estimate
asymptotically |Fn| is in general quite complicated, however, in Section 2 we discuss it in some
details. Furthermore, for the d = 1 case |Pn| ∼ |Fn| as n → ∞. This does not hold any longer
for the multidimensional case where the set of types Pn is a proper subset of Fn. Thus we can
only establish an upper bound on the size of the set of types through Fn, and we propose another
approach to find a lower bound.

To analyze the cardinality of Fn and, ultimately, Pn we need to understand the geometry of D-
dimensional count vectors T. In particular, we must estimate the dimension of the affine subspace
spanned by Fn. To accomplish it we shall write the conservation law (10) as C · T = 000 where C

is a matrix describing a system of conservation laws (10), or, perhaps, its submatrix of the same
rank. This allows us to define the cone C (recall that a set C is a cone if T ∈ C implies λT ∈ C for
all λ > 0):

C ≡ C(A,S) = {T ∈ RD
≥0 : C ·T = 000}

and the corresponding commutative monoid (a “lattice analogue of a cone”),

CZ := C ∩ ZD.

Then
Fn ≡ Fn(A,S) = {T ∈ CZ :

∑

t

T(t) = N}. (11)

The dimensionality (of the affine span of) Fn depends on D and the set of constraints represented
by the matrix C. We shall show that Fn lies in an affine subspace of dimension µ = D− 1− rk(C)
where rk(C) is the rank of C. This is illustrated in Figure 2(a). In our first main result Theorem 3
we present a precise characterization of rk(C).

Our ultimate goal, however, is to estimate the cardinality of the number of types Pn, that is,
the number of realizable tiling types, or the number of distinct count vectors T. We shall see that
the Hausdorff distance between the normalized set P̂n := Pn/N is close to F̂n := Fn/N leading to
our main Theorem 7 in which we establish that |Pn| = Θ(Nµ) where as before µ = D− 1− rk(C).
However, unlike d = 1 where we proved |Pn| ∼ |Fn|, in the multidimensional case |Fn| is not
asymptotically equivalent to |Pn| even if the growth of both is the same. Finally, we briefly discuss
the non-cyclic Markov field types and provide an upper bound on the number of types in a box.
In this case lack of cyclic boundary conditions introduces some imbalance in the conservation laws
replacing C ·T = 000 by C ·T = b for some vector b as illustrated in Figure 2(b). This leads to an
upper bound O(ND−1/(n)rk(C)) on the number of types in the box In. However, whether this is
the right growth for the number of types in the box case, remains an open question.
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Figure 2: Geometry of type vectors {T(t)} for (a) torus and (b) box. Here the gray area denotes
the cone C of non-negative type vectors satisfying the conservation laws while the intersection with
the simplex {

∑

t T(t) = N} representing a polyhedron is displayed in bold.

Regarding methodology used to establish our results. As mentioned before, in [11] for d = 1
we applied an analytic approach through multidimensional Cauchy’s integral. We still can use this
approach for some simple shapes in the multidimensional case, as discussed in Section 2. However,
in the general case we have to switch to tools of discrete, convex, and analytic multidimensional
geometry that somewhat resembles the method discussed in [25]. In particular, we need to un-
derstand how to count the number of lattice points in a polytope [2, 8]. This will allow us to
find the number of nonnegative integer solutions of a linear system of Diophantine equations (i.e.,
conservation laws) that leads to the enumeration of the Markov field types.

The paper is organized as follows. In the next section we present our main results and some
consequences. Most of the proofs are delayed till the last Section 3.

2 Main Results

In this main section we first illustrate the notation and definitions, formulate conservation laws es-
sential to our discussion, and finally present our main results regarding the enumeration of types for
Markov fields and tilings. We sprinkle this section with many examples to illustrate our definitions
and results.

2.1 Basic Definitions and Examples

We start with some examples illustrating our definitions discussed in the introduction.

Example 1: 1D Markov chain.
The first example we consider is the 1D case. For d = 1 the torus becomes a length N = n1

cycle, fields are length N sequences with cyclic boundary condition: xN+i = xi. We are usually
interested in the distribution of pairs, so the shape is S = {0, 1}; for r order Markov the shape
is S = {0, . . . , r}. For m = 2 and O10 = {0, . . . , 9} cycle (1D torus), we consider a 1D (cyclic)
sequence x = (1122111212). Now T(21) = 3 because this ”21” pattern (i.e., t(0) = 2, t(1) = 1)
appears in x for 3 different shifts: s ∈ {3, 7, 9}. Similarly, T(11) = 3, T(12) = 3, T(22) = 1.
Clearly,

∑

(ij)∈{1,2} T (ij) = 10. Note that we can view T as a D = m2 = 4 dimensional vector T.

Example 2: 2D Markov Field with the L Shape.
Let d = 2. The torus is an n1 × n2 rectangle with cyclic boundary conditions: xi,j = xi+n1,j =
xi,j+n2

. Let us take 3x4 torus O{3,4} = {0, 1, 2} × {0, 1, 2, 3}. Fields assign an element from the
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alphabet A = {1, 2} to each point of this torus. For example, for the field

x =
1121
1121
2221

we have x(0, 0) = 2, x(0, 1) = 1, x(1, 0) = 2, but also conditions x(4, 0) = x(0, 3) = x(4, 3) =
x(0, 0), where we use north-east coordinates with x(0, 0) in the lower left corner. The first shape
we consider here is the simplest nontrivial L-shape: S = {(0, 0), (0, 1), (1, 0)}. We find

T

(

1
12

)

= 2

because this pattern appears in s ∈ {(3, 0), (1, 1)} positions.

Example 3: 2D Markov Field with the Square � Shape.
The second 2D shape we consider is a 2 × 2 square shape S = {0, 1} × {0, 1}.For the same torus
O{3,4} and field xn as in the previous example, we find

T

(

11
11

)

= 2

because this pattern appears in s ∈ {(0, 1), (3, 1)} positions. �

2.2 Conservation Laws

Conservation laws are associated with the different ways we can embed a smaller shape S ′ into a
larger shape S. Recall that shapes are subsets of Zd, and thus our embeddings are just displacements
by a vector in Zd. For example, the subshape S ′ = {0, 1} × {0} has six embeddings into S =
{0, 1, 2} × {0, 1, 2}, that can be identified with s ∈ {0, 1} × {0, 1, 2} shifts: S ′ + s ⊂ S.

Let εεε : S ′ → S be an embedding. A tile on S is a mapping t : S → A, and composing it
with εεε we obtain a (sub)tile t′ on the smaller shape: restriction of t to εεε(S), that we denote as
t′ = εεε∗(t) : S ′ → A. Further, recall that a type T : AS → N is a vector with components indexed
by tiles on S. The mapping t 7→ εεε∗(t) defines a mapping ε̂εε : TS → TS′ , where TS is set of types for
shape S, taking a type T (on shape S) into a type T′ = ε̂εεT defined on S ′. Clearly,

(ε̂εεT)(t′) = T′(t′) :=
∑

t:εεε∗(t)=t′

T(t) (12)

is just the sum of the counts T(t) over all tiles t such that their restriction to εεε(S ′) coincides with
t′. Now, if there are two different embeddings εεε1, εεε2 : S

′ → S, one obtains two types on S ′, namely
ε̂εε1T and ε̂εε2T having the same subtile t′. The next lemma introduces a conservation law.

Lemma 1. If the type T is the count vector for a configuration x on a torus On, then

ε̂εε1T(t′)− ε̂εε2T(t′) = 0 (13)

where ε̂εε1 and ε̂εε2 are mappings with the same corresponding subtile t′ (i.e., εεε∗1(t) = εεε∗2(t) = t′)
satisfying (12).

This obvious lemma, again generalizes the Eulerian condition (that every vertex has the same
number of incoming and outgoing edges) on the multigraphs describing the types in 1D situation,
and is the starting point of our study. It is also equivalent to (10) discussed in the introduction.
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Example 4: Continuation of Example 1.
Returning to the 1D case of Example 1, we have S = {0, 1}, S ′ = {0}, with εεε1 placing the node
(subshape) 0 at 0, and εεε2 at 1. In this case,

(ε̂εε1T)(1) = T(11) +T(12) =: T(1∗) (ε̂εε1T)(2) = T(21) +T(22) =: T(2∗)

and
(ε̂εε2T)(1) = T(11) +T(21) =: T(∗1) (ε̂εε2T)(2) = T(12) +T(22) =: T(∗2).

(We use the mnemonic T(a∗) and like to denote the summation over the don’t-care variable.)
Observe also that the conservation law (ε̂εε1T)(1) = (ε̂εε2T)(1) simply means that the number of
edges in the type T entering 1 is the same as the number of edges leaving 1, that is, the Euler
condition. Furthermore, using the vector count (T(11),T(12),T(21),T(22)) in the space of types
R4, we can re-write this conservation law as

0 = (ε̂εε1T)(1) − (ε̂εε2T)(1) = T(12) −T(21)

= (0, 1,−1, 0) · (T(11),T(12),T(21),T(22))

where in the last line we use the matrix C = (0, 1,−1, 0). In fact, this suggests that we can re-
phrase our discussion in terms of linear functionals and dual spaces as discussed in details below.
In particular, in this example, we can use the following linear function (functional):

vvv(S′,t′=”1”,εεε1,εεε2)(T) = (0, 1,−1, 0) ·T,

which is formally a covector in the dual space (space of all covectors). �

We now re-formulate our conservation laws in the language of linear functionals and dual spaces
[14]. This formalism allows us to rigorously prove our statements.

Definition 2. Consider the vector space of types, V := RD. Let S ′ be a shape, εεεi : S ′ → S
be different embeddings of the S ′ into S, and t′ be a tile on S ′. The linear function (covector)
vvv(S′,t′,εεε1,εεε2) ∈ V ∗ defined by

vvv(S′,t′,εεε1,εεε2)T 7→ (ε̂εε1T)(t′)− (ε̂εε2T)(t′)

is called the conservation law corresponding to the tuple

(S ′, t′, εεε1, εεε2).

In the standard basis of V , the mapping ε̂εε is a linear combination of T coordinates with 0 or 1
coefficients, vvv is subtraction of two of them, so all nonzero coefficients of vvv(S′,t′,εεε1,εεε2) are ±1. In fact,
all conservation laws for all possible S ′, εεε, t′ form a (huge) matrix C with coefficients in {−1, 0, 1}.
In Example 4, t′ = ”2” leads to (0, 1,−1, 0) vector, forming the matrix

C =

(

0 1 −1 0
0 −1 1 0

)

with linearly dependent rows (redundant conservation laws). Generally the number of independent
rows (i.e., rank of C) is much smaller.

We aim at finding a matrix Cm with independent rows. There are several sources of such
dependencies among the rows of C:

8



1. The normalization equation
∑

t′∈Conf(S′)(ε̂εεT)(t′) = T(∗) = N implies that

∑

t′∈Conf(S′)

vvv(S′,t′,εεε1,εεε2) = 0

for any two embeddings εεεi : S
′ → S. This eliminates for every pair of embeddings εεε1, εεε2 :

S ′ → S one equation (from m|S′| to m|S′| − 1 equations), since summing over all t′ we obtain
the trivial equation N = N .

2. Clearly, the functional vvv(S′,t′,εεε2,εεε3) can be represented as

vvv(S′,t′,εεε2,εεε3) = vvv(S′,t′,εεε1,εεε3) − vvv(S′,t′,εεε1,εεε2).

Hence, for any S ′ (admitting at least two different embeddings into S), we can fix one of the
embeddings

εεεS′ : S ′ → S

as the canonical one, and restrict our attention only to the conservation laws

vvv(S′,t′,εεεS′ ,εεε),

where εεε runs over all embeddings εεε : S ′ → S different from εεεS′ : there are (|{εεε : S ′ → S}|− 1)
such choices. (We will discuss a way to produce such a choice consistently later on.) We
remark that the number of conservation laws after these two restrictions is:

(m|S′| − 1)(|{εεε : S ′ → S}| − 1).

3. These two reductions are sufficient for small shapes S. However, for larger shapes such
as the 2 × 2 squares, there are further relations. Specifically, let us choose one symbol
m ∈ A. Observe that counts using this symbol can be expressed without it, for example
T (m1) = T (∗1) −

∑

i=1..m−1 T (i1). In this case, we can express conservation laws over the
whole alphabet A without using one symbol, say the m-th one. It is sufficient to focus on laws
for the reduced alphabet A′ = A \ {m}: there are (m− 1)|S

′| of them for given embedding.

We are now in the position to formulate our main result regarding the rank of matrix C. We
shall do it in the formalism we have just established. In particular, we use the notion of the kernel
or null space of the underlying linear functionals defined in our case as {T : C ·T = 000}. To pick up
further information on linear algebra and linear functionals the reader is refer to [14]. In Section 3
we establish the following result.

Theorem 3. The submatrix Cm of C formed by the rows corresponding to the functionals

vvv(S′,t′,εεεS′ ,εεε) (14)

with t′ over A′ = A \ {m} has the same rank as the full matrix C, and therefore defines the same
kernel (i.e., {T : Cm ·T = 000} = {T : C ·T = 000}). Here εεεS′ is a canonical embedding of a shape S ′

embeddable into S.
In particular, the matrix C has the corank (the dimension of its kernel: {T : C ·T = 000}) equal

to the number of tilings of the reduced alphabet A′ = A − {m} of all subshapes S ′ (including the
empty one) embeddable into S, i.e.

µ+ 1 =
∑

S′:|{εεε:S′→S}|≥1

(m− 1)|S
′| (15)
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The rank of the matrix C is given by

rk(C) = D − µ− 1 =
∑

S′:|{εεε:S′→S}|≥1

(|{εεε : S ′ → S}| − 1)(m− 1)|S
′| (16)

where the summation is again over all shapes S ′ embeddable into S.

For the box shapes formula (16) (requiring an enumeration of all subshapes fitting into S) can
be significantly simplified:

Corollary 4. If S = Il1 × Il2 × . . .× Ild, one has

µ = D − 1− rk(C) =
∑

s∈{0,1}d

m
∏

i(li−si) · (−1)
∑

i si (17)

where l = (l1, . . . , ld) ∈ Nd.

2.3 More Examples

We now discuss a few examples illustrating the dimensionality reductions associated with the con-
servation laws and Theorem 3. We already observed in Example 1 that there is a single independent
conservation law corresponding to (0, 1,−1, 0) · T = 000 in the D = 4 dimensional space of types
leading to µ = 4− 1− 1 = 2.

Example 5: 2D Markov Field with the L-Shape – Continuation.
For the L-shape S = {(0, 0), (0, 1), (1, 0)} in 2D and m = 2, the frequency vector T has D = m3 = 8
coordinates

((

1
11

)

,

(

1
21

)

,

(

1
12

)

,

(

1
22

)

,

(

2
11

)

,

(

2
21

)

,

(

2
12

)

,

(

2
22

))

;

however, only five of them are independent. The only nontrivial subshape is a single point
S ′ = {(0, 0)}, which can be embedded in all three positions: εεε1((0, 0)) = (0, 0), εεε2((0, 0)) =
(1, 0), εεε3((0, 0)) = (0, 1) leading to the following conservation laws:

0 = T

(

∗
1∗

)

−T

(

∗
∗1

)

= T

(

1
12

)

+T

(

2
12

)

−T

(

1
21

)

−T

(

2
21

)

,

0 = T

(

∗
1∗

)

−T

(

1
∗∗

)

= T

(

2
11

)

+T

(

2
12

)

−T

(

1
21

)

−T

(

1
22

)

,

0 = T

(

∗
∗1

)

−T

(

1
∗∗

)

= T

(

2
11

)

+T

(

2
21

)

−T

(

1
12

)

−T

(

1
22

)

.

These equations define the functionals vvv(S′,t′,εεε1,εεε2), vvv(S′,t′,εεε1,εεε3) and vvv(S′,t′,εεε2,εεε3) with t′ = 1. Obviously
one of these equations is redundant - choosing the lower left position as the canonical embedding
εεεS′ := εεε1, there remain only the first two of the above equations - in the basis above, they can be
written as:

CT =

(

0 −1 1 0 0 −1 1 0
0 −1 0 −1 1 0 1 0

)

·T = 0.

These two independent conservation laws restrict the space of T to a µ+ 1 =6–dimensional cone,
and the normalization equation further restricts it to a µ = 5 dimensional polytope.

10



Example 6: 2D Markov Field with Square Shape � – Continuation.
For the 2 × 2 square shape and m = 2 the frequency vector T is in D = m4 = 16–dimensional
space. As A′ = A \ {m} = {1}, the ultimate set of independent conservation laws (16) are

T

(

∗∗
1∗

)

= T

(

1∗
∗∗

)

= T

(

∗1
∗∗

)

= T

(

∗∗
∗1

)

,

T

(

∗∗
11

)

= T

(

11
∗∗

)

T

(

1∗
1∗

)

= T

(

∗1
∗1

)

.

The first line contains three equations for a single point shape. The second line contains the
remaining two single conditions for S ′ = {(0, 0), (1, 0)} and S ′ = {(0, 0), (0, 1)}, respectively, and
both their embeddings. By combining these five equations we can obtain the remaining ones. For
example,

T

(

1∗
∗∗

)

= T

(

1∗
1∗

)

+T

(

1∗
2∗

)

implies

T

(

1∗
2∗

)

= T

(

1∗
∗∗

)

−T

(

1∗
1∗

)

= T

(

∗1
∗∗

)

−T

(

∗1
∗1

)

= T

(

∗1
∗2

)

.

Thus, T in D = m4 = 16-dimensional space has µ+1 = 11 components by the above five indepen-
dent conservation laws. The normalization restricts it further to µ = 10–dimensional polytope. In
Figure 3 we show all 21 vertices of this polytope and the corresponding tiling. Observe that some
vertices (vectors) are not realizable by a Markov field. �

Finally, we illustrate (17) of Corollary 4 for the box shape.

Example 7. The Box Shape.
Let us now consider a general box shape Il1 × ..× Ild . Observe that:

• For the d = 1 dimensional shape S = {(0), (1)} we have µ = m2 −m, as known already from
[11]. For S = {(0), (1), (2)} we find µ = m3 −m2, while for S = {(0), (1), (2), (3)} we have
µ = m4 −m3.

• For d = 2 the 2×2 square shape (l1 = l2 = 2) leads to µ = m4−2m2+m, the 3×2 rectangular
shape gives µ = m6 −m4 −m3 +m2 and the 3× 3 square ends up with µ = m9 − 2m6 +m4.

• For d = 3 the 2× 2× 2 cube leads to µ = m8 − 3m4 +3m2 −m, while the 2× 3× 4 box gives
µ = m24 −m18 −m16 −m12 +m12 +m9 +m8 −m6.

• For d = 4 we have µ = m16 − 4m8 + 6m4 − 4m2 +m for the 2× 2× 2× 2 cube.

• Finally, in d = 5 space the 2×2×2×2×2 cube leads to µ = m32−5m16+10m8−10m4+5m2−m.

2.4 Geometry and Enumeration

We explore now the geometry of the vector counts T = {T(t)}t∈T in the D-dimensional space. As
discussed, the conservation laws (which we write as a linear system CT = 0) restrict the vectors
T to a D − rk(C) = µ + 1 dimensional cone C and the normalization equation

∑

tT(t) = N (for
torus) further restricts T to the polytope Fn. Let us recall some definitions. Formally, let us define

C = {T ∈ RD
≥0 : C ·T = 0}, (18)

Fn = FN ≡ Fn(A,S) = {T ∈ C ∩ ND :
∑

t

T(t) = N}. (19)
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Figure 3: For m = 2 and the 2×2 square shape �, we show all 21 vertices (only nonzero coordinates
are displayed) of the µ = 10 dimensional polytope in a D = 16 dimensional space. On the right-
hand side, we also show the corresponding periodic tilings: Four of them (14-17) cannot be realized.
Periodic tilings 1-7 correspond to all 7 vertices for the L like shape.

We also define the normalized polytope F̂ of frequency vectors T̂ as

F̂ ≡ F̂(A,S) = {T̂ ∈ RD
≥0 : C · T̂ = 000;

∑

t

T(t) = 1} (20)

and we write
FN = N F̂ ∩ND. (21)
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Figure 4: An illustration of the polytope F̂ : T̂ vectors realized by periodic tilings create some
irregular subset of the lattice and while N → ∞ they densely cover some convex subset of F̂ .

Finally, the rescaled set of realizable count vectors (types) is

P̂ ≡ P̂(A,S) =
⋃

n

Pn(A,S)/N(n). (22)

Obviously, P̂ ⊂ F̂ .
Observe that F̂ is a compact polyhedron, hence (from basic convex analysis [21]) a polytope,

i.e. the convex hull of its extremal points. These extremal points are the intersections of the linear
subspace {T : CT = 000,

∑

tT(t) = 1} with some µ of D conditions of type T (t) = 0. The number
of the extremal points obtained this way is finite and at most

(

D
µ

)

.

Example 8. Polytopes in the 2D Case.
For the L-shape in the 2D case with m = 2, we have µ = 5 dimensional polytope in D = 8
dimensional space. Among

(

8
5

)

= 56 possible ways to choose zero coordinates, it turns out that
there are only 7 vertices with all nonnegative coordinates. These seven vertices have the following
coordinates:

{(0, 0, 0, 0, 0, 0, 0, 1), (0, 0, 0,
1

3
, 0,

1

3
,
1

3
, 0), (0, 0, 0,

1

2
,
1

2
, 0, 0, 0), (0, 0,

1

2
, 0, 0,

1

2
, 0, 0),

(0,
1

2
, 0, 0, 0, 0,

1

2
, 0), (0,

1

3
,
1

3
, 0,

1

3
, 0, 0, 0), (1, 0, 0, 0, 0, 0, 0, 0)}.

All of these points correspond to periodic tilings (see cases 1 to 7 in Figure 3). On the other hand,
for the 2×2 square shape and m = 2, we have 21 vertices of µ = 10 dimensional polytope in D = 16
dimensional space as shown in Figure 3. Surprisingly, now some of the vertices do not correspond
to periodic tilings, so in general not all points in F̂ lead to a realizable tiling and therefore a point
in P̂ (see Figure 4). �

Interestingly enough, we can prove that the topological closure of P̂ is still a convex subset of
F̂ . This is illustrated in Figure 4 and proved below.

Lemma 5. The closure cl(P̂) of P̂ is a convex subset of F̂ .

Proof: To prove convexity of a closed set, it is enough to show that for any two points in this set,
the point in the center between them is also in the underlying set. For every point T̂ ∈ cl(P̂) one
can find a sequence of periodic tilings, whose (rescaled) frequency vectors converge to this points.

Consider two sequences of fields: x′
i and x′′

i such that their frequency vectors converge to
T̂′

i → T̂′ and T̂′′
i → T̂′′ as i → ∞. We need to construct a sequence of fields xi with frequency

vectors T̂i → T̂ = (T̂′ + T̂′′)/2. For this purpose, having x′
i and x′′

i with correspondingly T̂′
i and

13



T̂′′
i frequency vectors, we shall construct xi field with T̂i frequency vector in at most ǫi > 0 distance

from (T̂′
i + T̂′′

i )/2, where ǫi → 0 is some arbitrary sequence. To accomplish it we cover one half of
a large torus with x′

i tiling and the second with x′′
i . If the size of such a torus grows to infinity, the

obtained frequency tends to (T̂′
i + T̂′′

i )/2, as desired.

The set FN consists of all integer points inside the polytope N F̂ ∩ ND. The volume of N F̂ is
proportional to Nµ, and we expect the number of integer points inside also grows asymptotically
as Nµ. This is indeed the case by Ehrhart’s theorem [8]:

Theorem 6 (Ehrhart, 1967). If F̂ is a rational polytope (i.e. a polytope with vertices in QD), then
there exist a period p ∈ N and real coefficients ci,j such that cµ,j 6= 0 for some j and

|FN | = aµ,jN
µ + aµ−1,jN

µ−1 + ...a0,j if N ≡ j (mod p)

where µ is the dimension of F̂ .

Indeed, by the construction the vertices of F̂ are solutions of a system of linear equations with
integer coefficients (actually, ±1), making it a rational polytope. Since Fn upper bounds Pn (as a
set), the polynomial in N size of Fn provides an upper bound for the number of types. We need
now a matching lower bound. In Section 3 we construct such a bound, leading to the main result
of this paper.

Theorem 7. Consider the torus On. There exist constants 0 < c− ≤ c+ such that for ni large
enough we have

c−Nµ ≤ |Pn(A,S)| ≤ c+Nµ (23)

where, we recall, N = n1 · · ·nd.

We should point out that in [11] for d = 1 it was proved that |Fn| is asymptotically equivalent
to |Pn|, that is, |Fn| ∼ |Pn| as n → ∞: the set of realizable types in dimension 1 is essentially
given by the conservation laws. Remarkably, this turns out not to be true in general in higher
dimensions. However, in some special cases we can say more about |FN | but not necessary about
|PN |. This is discussed next.

2.5 Analytic Approach

In [11] an analytic approach was used to enumerate FN (here N = n = n1, the length of the
underlying sequence) for d = 1. We recall it here and extend it to any dimension and shapes. We
should point out, however, that through this approach we will only get better asymptotics for |FN |
but not for |PN |. This is actually of interest on its own since it allows us to enumerate precisely
the number of nonnegative solutions of a multidimensional system of linear Diophantine equations;
not an easy task, as argued in [25].

Let us recall some facts from [11]. We first assume d = 1 and enumerate FN . We accomplish it
by finding the following generating function

F ∗
m(z) =

∑

N≥0

|FN (m)|zN

and then taking the coefficient at zN which is written as [zN ]F ∗
m(z) = |FN (m,S)|.

Let z = {zt}t∈T where in our case t = (α, β) ∈ A2 is a pair of symbols or in other words the

shape is S = {0, 1}. We also write zT =
∏

αβ z
T(αβ)
αβ . We introduce a multidimensional generating
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function
∑

T
zT that we estimate in two different ways for zαβ = z yα

yβ
for some (yα)α∈A vector:

∑

T

zT =
∏

αβ





∑

T(αβ)

(

z
yα
yβ

)T(αβ)


 =
∏

αβ

(

1− z
yα
yβ

)−1

,

∑

T

zT =
∑

T

z
∑

α,β T(αβ)
∏

α

y
∑

β T(αβ)−
∑

β T(βα)
α .

Now if T ∈ FN , that is,
∑

α,β

T(α, β) = N,
∑

β

T(αβ) −
∑

β

T(βα) = 0,

then

F ∗
m(z) =

∑

N≥0

|FN (m,S)|zN = [y01y
0
2...y

0
m]

m
∏

α,β=1

(

1− z
yα
yβ

)−1

(24)

where [y0]F (y) := [y01y
0
2...y

0
m]F (y) denotes the zeroes coefficient of F (y).

There is a simple interpretation of formula (24): Its right hand side can be seen as a product
of m2 geometric series, while α, β terms correspond to “αβ” pattern (pair) in our sequence. The
auxiliary y variables are used to restrict T to those satisfying the conservation laws: each symbol
should appear the same number of times on the left and on the right position of S. Thanks to
the yα/yβ term, the power of yα increases by 1 every time α appears in left position of “αβ”, and
decreases by 1 when it appears in the right position. However, in addition we have the normalization
equation which allows us to eliminate one of the variables, for example by setting ym = 1.

Let us now move to the multidimensional case d > 1. Each auxiliary variable corresponds to a
single equation of the conservation laws. We can reduce the set of equations by considering only
independent variables, as discussed in Theorem 3.

Let us start with some examples. For the L shape as in Example 2 we have S =
{(0, 0), (0, 1), (1, 0)}, and

F ∗
m(z) = [x01x

0
2...x

0
my01y

0
2...y

0
m]

∏

α,β,γ

(

1− z
xα
xβ

yα
yγ

)−1

,

where the auxiliary variables x now guard the conservation law in one direction, y in the other
direction. In other words, the L shape tile t is marked as follows

(

γ
αβ

)

and then the conservation laws are

∑

βγ

T

(

γ
αβ

)

=
∑

βγ

T

(

γ
βα

)

,
∑

βγ

T

(

γ
αβ

)

=
∑

βγ

T

(

α
γβ

)

.

We can choose xm = ym = 1. Interestingly enough, in this case cl(P̂) = F̂ since both are spanned
on 7 vertices in D = 8 dimensional space, as shown in Figure 2. This, however, does not imply
that |FN | ∼ |PN |.

For the analogous 3D L shape S = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0)}, we find

F ∗
m = [x01x

0
2...x

0
my01y

0
2...y

0
mu01u

0
2...u

0
m]

∏

α,β,γ,δ

(

1− z
xα
xβ

yα
yγ

uα
uδ

)−1
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and we can set xm = ym = um = 1. Using partial fraction expansions, as in [11], we can obtain
asymptotic expressions for |FN |, as illustrated below.

Example 8. For m = 2 in the 2D case and the L shape, we have

F ∗
2 (z) =

1− z + z2

(z − 1)6(z + 1)2(z2 + z + 1)
.

Using the partial fraction expression we find after some algebra

|FN (2, L)| =
N5

12 · 5!
+O(N4).

For the analogous 3D L shape when m = 2 we arrive at

F ∗
2 (z) =

Q(z)

(z − 1)13(z + 1)5(z2 + 1)(z2 + z + 1)3(z4 + z3 + z2 + z + 1)

with Q(z) = 1+2z+22z2+50z3+94z4 +138z5+175z6 +184z7 +163z8 +120z9 +76z10+38z11 +
16z12 + 2z13 + z14. Using the partial fraction decomposition and Cauchy’s integral we find

|FN (2, L)| =
541

4320

N12

12!
+O(N11)

for large N . �

Let us now look at a situation with a more subtle dependence between the conservation laws,
for example for the 2× 2 square shape in 2D discussed in Example 3. The first approach could be:

F ∗
m(z) = [x011x

0
12...x

0
mmy011y

0
12...y

0
mm]

∏

α,β,γ,δ

(

1− z
xαβ
xγδ

yαγ
yβδ

)−1

where we can initially set xmm = ymm = 1. This formula corresponds to S ′ selected as S ′ =
{(0, 0), (1, 0)}, s = (0, 1) and S ′ = {(0, 0), (0, 1)}, s = (1, 0) or the following marking of the square
tile

(

δ γ
α β

)

.

It leads to a complete set of conservation laws, but with some linear dependencies, as the conserva-
tion law for S ′ = {(0, 0)}, s = (1, 1) can be induced in two ways. To ensure using only independent
variables/conservation laws, we use Theorem 3 to deduce the set of independent conservation laws.
This leads to

F ∗
m = [u01..u

0
mv01 ..v

0
mw0

1..w
0
mx011..x

0
mmy011..y

0
mm]

∏

α,β,γ,δ

(

1− z
uα
uβ

vα
vγ

wα

wδ

xαβ
xγδ

yαγ
yβδ

)−1

where um = vm = wm = 1 and xim = xmi = yim = ymi = 1 for any i ∈ A.

Example 9. Consider m = 2. Then both approaches lead to

F ∗
2 (z) =

1 + 2z3 + 5z4 + 2z6 + 6z7 + 8z8 + 6z9 + 2z10 + 5z12 + 2z13 + z16

(z − 1)11(z + 1)7(z2 + 1)3(z2 − z + 1)(z2 + z + 1)3

from which we find

|FSize(2,�)| =
5

3456

N10

10!
+O(N9)
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for large N . �

For a general shape we consider the conservation laws (14), attach a variable (y) to each of
them, and choose a fraction of some of these variables in the product of m|S| geometric series to
enforce the conservation laws by zeroing the power of these variables. This allows us to find a
general expression for the underlying generating function, that is,

F ∗
m(z) = [y0]

∏

t:S→A



1− z
∏

S′ embeddable in S, εεε6=εεεS′

yεεε∗(t)

yεεε∗
S′(t)





−1

(25)

where εεεS′ is the canonical embedding, [y0] denotes taking zeroth power of all used yi.

2.6 Number of Types in a Box – An Upper Bound

Finally, we comment on the number of types P̃n(m,S) in the box In = In1
×In2

×. . .×Ind
⊂ Zd. We

only discuss an upper bound, leaving establishing the proper growth to a forthcoming paper. Let
x = xn be a configuration in the box In. Its type in the box is now defined by shifts (embeddings)
that fit into the box, that is,

T̃(t) = |{s ∈ Ĩn : x|S+s = t}| where Ĩn = {s : S + s ⊂ In}.

We assume that 000 ∈ S and Ĩn ⊂ In. We know that T in the torus satisfies the conservation laws
C ·T = 000. For the box, however, we must re-define the type T̃ by taking into account the boundary
effect on T, that is,

T̃(t) = T(t)− |{s ∈ I ′
n : x|S+s = t}| where I ′

n = In \ Ĩn, (26)

that is, we need to eliminate that shifts that drive S outside the box. Multiplying (26) by C and
using C ·T = 000 we find the following conservation laws for the box:

CT̃ = b for b = C · b′, b′ =
(

−|{s ∈ I ′
n : x|S+s = t}|

)

t∈T
.

Notice that the norm of b′ vector is bounded by the size of the boundary, that is,
∑

t |b
′(t)| ≤ |I ′

n|,
which is of order Θ(N/mini ni). Furthermore, matrix C does not depend on the size (only on S
and m), therefore the number of b is bounded by Θ(N/mini ni). Finally, by the normalization

∑

t

T̃(t) = |Ĩn| =: Ñ ,

types T̃ in the box are in a D − 1 dimensional linear subspace. For every b, the conservation
laws CT̃ = b have O(Nµ) nonnegative solutions inside a polygon. The freedom of choosing
b ∈ Nrk(C) allows us to shift this polygon in the remaining rk(C) = D − 1 − µ dimensions by at
most Θ(N/mini ni), so that b is inside the ball of O((N/mini ni)

D−1−µ) integer points. This leads
to the upper bound O(ND−1/(mini ni)

rk(C)) on the number of types. However, finding the right
order of growth in this case remains an open question.

3 Analysis

In this section we provide the proofs of Theorems 3 and 7.
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Figure 5: The nonzero coordinates for all 5 conservation laws discussed in Theorem 3 for a 2×2 box
shape and m = 2: the upper row shows all D = 16 squares corresponding to all tiles t. S ′ denotes
the canonical embedding and s denotes shift for the second embedding in (ε̂εεS′T)(t′)− (ε̂εεT)(t′) = 0
conservation law. Reduced alphabet is A′ = {1} here, so we need to consider only constant t′ = 1.

3.1 Proof of Theorem 3

In Theorem 3 we present a complete set of independent conservation laws. Specifically, we take
every subshape S ′ embeddable is S and select one of it as the canonical one. Then we consider all t′ :
S ′ → A′ where A′ = A\{m} and the corresponding conservation laws (ε̂εεS′T)(t′)− (ε̂εεT)(t′) = 0 for
all other ε̂εε embeddings of this subshape. Observe that the dropped symbol m ∈ A is automatically
included since the following holds:

T′′(t′ ∪ om) = T′(t′)−
∑

i∈A′

T′′(t′ ∪ oi)

where oi is a single point/position outside t′ that takes value i ∈ A there. Clearly, T′ = ε̂εε′(T) and
T′′ = ε̂εε′′(T), where εεε′, εεε′′ are embeddings corresponding to t′ and t′ ∪ oi.

To prove independence of the conservation laws, we have to define some order among them and
show that C becomes a triangular. We order the conservation laws by the size of S ′ (referred as
height). We illustrate it in Figure 5 where the ordering of the columns is shown in gray leading to
a triangular form of C.

To make this more formal, let us introduce a certain basis in the space RD of functions on the
configurations on S. Fix the standard basis {e(t), t ∈ T(A,S)}. For each tiling t, we can split

out the inessential part, the cells b ∈ S where t(b) = m, and the support of t, i.e. the collection
of boxes where t(b) 6= m. Alternatively we can enumerate the tilings t of S by the shape S ′ off
their support, by the embedding εεε of this support into S, and by the tiling of S ′ over the reduced
alphabet A \ {m} =: A′. Such a basis vector we will denote as

e(S ′, εεε, t).

We will call the height of a basis vector e(S ′, εεε, t) the size of its support, that is

H (e(S ′, εεε, t)) = |S ′|.

Further, we assign to each basis vector its weight, defined as follows. We number all the cells of
S, and, denoting the number of the cell b as #(b), we assign the weight of b to be ǫ#(b) for some
small ǫ > 0. The weight of a basis vector e(S ′, εεε, t) is the sum

∑

b∈εεε(S′)

ǫ#(b).
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There is nothing very specific about this choice of the weights; the only property we will use is that
for small enough ǫ, the weights corresponding to different embeddings of the same subshape S ′ are
all different (which is easy to verify). In particular, for any embeddable S ′, there exists a unique
embedding εεεS′ of S ′ having maximal weight among all such embeddings εεε : S ′ → S. We will be
calling this basis vector the anchor of the embeddable shape S ′ and its embedding as canonical.

We group the basis vectors e(S ′, εεε, t) according to their height (increasing left to right), and
within each height by the support shape S ′ and within each group corresponding to a support shape
S ′ by the tiling t of S ′ over the reduced alphabet A′. Finally, within each such group (corresponding
to a given subshape S ′ and its tiling t), we order the basis vectors e(S ′, εεε, t) by the weight of the
embeddings εεε. In particular, the anchor within each group is the rightmost element. This defines a
complete ordering on the basis vectors.

Now we are ready to prove Theorem 3. We will be using the basis consisting of the standard
vectors e(S ′, εεε, t) ordered as described above, left to right. The rows of the (sub)matrix Cm (defined
in Theorem 3) correspond to the covectors

vvv(S′,t,εεεS′ ,εεε).

Each such covector has exactly two components,

e(S ′, εεεS′ , t) − e(S ′, εεε, t)

in the group of height H (e(S ′, εεεS′ , t)) = H (e(S ′, εεε, t)); all other components have higher height.
It follows that, if one augments Cm by the rows with basis vectors e(S ′, εεεS′ , t), running over

all embeddable subshapes S ′, and their tilings t, then the leftmost vectors in rows will be all
different.Finally, sorting the rows according to these leftmost elements will result in the upper-
triangular matrix.

This, in turn, implies that the basis elements

e(S ′, εεεS′ , t)

span a complement to the kernel of Cm, and therefore the kernel of C has dimension at most the
number of tilings by symbols of A′ of embeddable shapes S ′.

Denote the subspace of V ∼= RD spanned by the basis vectors as

LS := e(S ′, εεεS′ , t), t ∈ (A′)S
′

,S ′embeddable into S.

To prove that KerC = KerCm, we will produce for any torus On of sufficiently large n, a collection
of tilings, of size dim(LS), such that their frequency vectors, paired with the basis vectors spanning
LS , result in a triangular matrix with ± on the diagonal. This would imply that KerC = KerCm.

Let n(S) be the smallest vector n such that the box In contains S + S = {a + b : a, b ∈ S}
(understood as the Minkowski sum). We will be always assuming that S is embedded into this
interval (denoted as IS) in a fixed way.

Let t ∈ T(A,S) be a tiling of the shape S, and S ′ its support (i.e. the set of cells b where
t(b) 6= m), and t′ the corresponding tiling of S ′ by symbols of the reduced alphabet A′. For any
large enough torus On, place a single copy of t, in an arbitrary way in the torus, extending it to
the rest of the torus by the symbol m. Denote the corresponding frequency vector TS′,t′ .

Lemma 8. Consider the matrix of scalar products
(

TS′,t′ , e(S
′′, εεεS′′ , t′′)

)

where both S ′, t′ and S ′′, t′′ run over all embeddable subshapes and their tilings by the reduced
alphabet. Then, if the subshapes are ordered by their heights, the matrix is upper triangular, with
1/N on the diagonal.
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Figure 6: Example of a a 6-cell shape S ′ in its lowest position.

Proof. The proof is straightforward: the type vector TS′,t′ is produced by scanning through the
torus by the shifts of S. There is unique position where the support lands on the anchor of S ′,
and all other positions are either not anchored (thus yielding zero products with the basis vectors
e(S ′′, εεεS′′ , t′′)), or have lower height.

We remark that one can modify the tiling of the torus: in lieu of a single copy of the interval
containing a copy of S, one could tile On with Θ(N) copies of the shape S ′, supporting t′. In this
case, the rescaled frequency vector T/N would converge, as n increases, to some vector TS′,t′ ∈ P̂.

3.2 Proof of Corollary 4

By Theorem 3, we need to sum (m − 1)|S
′| over all shapes embeddable into S as in (16). Among

all possible embeddings, there is a unique one that is (lexicographically) minimal. One can think
about a gravity force pointing along the vector (−1, . . . ,−1) and forcing S ′ to slide inside the box
S to its lowest position. Clearly, this lowest position is characterized by the condition that S ′ has
non-empty intersection with the lowest k-th coordinate layer

Lk = Il1 × . . .× {1} × . . .× Ild

(here {1} stands in k-th place in the product), for each k ∈ {1, . . . , d}; see Figure 6.
Alternatively, the sum we need to evaluate is the total number of all tilings of the box shape

S with each of the layers Lk, k = 1, . . . , d containing at least one cell marked with a symbol of the
reduced alphabet A′.

The set of tilings with at least one cell in Lk marked by an element of A′ is, clearly, the set of
all tilings with the tilings having all cells in Lk marked with m. Denote the set of such tilings by
Mk. The size of the set of tilings we are interested in is therefore,

|T(S)| − ∪k|Mk|.

By inclusion-exclusion, this is equal to

∑

J⊂{1,...,d}

(−1)|J || ∩j∈J Mj |,

where the summation is over all subsets of {1, . . . , d} (for the empty subset, we take the summand
to be |T(S)|).

The cardinality of the set ∩j∈JMj is, clearly, the number of all tilings which have cells in ∪j∈JLj

equal to m, which is, obviously, the number of all tilings of S−∪j∈JLj . Put together, these formulae
imply the corollary.
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Figure 7: An illustration to the construction in Lemma 9: We place a tile with m|S| possible
patterns in the torus with all remaining positions filled with symbol m. The number of such fields
is equal to D − rk(C) = 216 − 19 = 45, as desired.

3.3 Proof of Theorem 7

Since Pn ⊂ Fn and F̂ is a convex polytope, we conclude the upper on |Pn| from the Ehrhart’s
Theorem 6 applied to Fn. Therefore, we can now focus on establishing a lower bound. We will
accomplish it by constructing a family of tilings with a set of frequency vectors growing as Nµ.
Specifically, we will first construct building blocks: µ+ 1 small linearly independent tilings. Then
we will construct large tilings by concatenating these small ones, obtaining a regular lattice of
frequency vectors in the µ dimensional simplex on these µ+ 1 vertices.

Let us first observe that if the torus is not large enough, there are some additional constraints
due to the cyclical boundary condition. For example, in 1D case for S = {0, 1, 2} and torus/cycle
O = {0, 1, 2, 3}, the tile ”111” automatically enforces the tile having ”1*1”, where ”*” is any letter
on the remaining position. These additional constraints can reduce the dimension of realizable
frequency vectors. For example for 3x2 rectangular shape and m = 2, there are only 21 linearly
independent possible tilings of a 3x3 torus. For 4x3 torus this number grows to 42, and finally
saturates at required µ+ 1 = 45 for a 5x3 torus.

In the next lemma we construct µ+ 1 linearly independent frequency vectors. To formulate it,
we need to define width of the shape S as the smallest (w1, .., wd) ∈ Nd such that for some shift
S ⊂ Iw1

× ..× Iwd
.

Lemma 9. If ni ≥ 2wi − 1 for all i = 1, .., d, then there exist µ + 1 tilings of On with linearly
independent frequency vectors.

Proof: We will construct these tilings as

Conf0(D) := {x : On → A : x(a) = m for all a ∈ On \ S}.

that is, the torus is filled with m ∈ A outside the S shape. The remaining |S| values x|S can be
selected in m|S| = D ways, which is more than µ + 1 = D − rk(C). However, this set contains
tilings differing only by a shift and hence having identical frequency vectors. For a given field
x ∈ Conf0(D), let S ′ ⊂ S be a subset on which the corresponding tiling t′ has values different than
m, that is,

S ′ = {a : x(a) ∈ {1, ..,m − 1}} ⊂ S. (27)

21



Figure 8: Illustration to Lemma 10.

Observe that if S ′ + s ⊂ S for some s ∈ Zd, then there exists an element of Conf0(D) differing
from x only by shift s. There are |{s : S ′ + s ⊂ S}| − 1 such elements of Conf0(D) having identical
frequency vector. For given S ′ there are (m − 1)|S

′| such situations (x|S′), thus from the initial
|Conf0(D)| = m|S| tilings we need to subtract

∑

S′⊂S

(m− 1)|S
′|
(

|{s : S ′ + s ⊂ S}| − 1
)

redundant shifted copies. This gives exactly rk(C) as in (16). Finally, if we count only once all
elements of Conf0(D) differing by a shift, hence their number is exactly m|S| − rk(C) = µ + 1 as
desired. This is illustrated in Figure 7 for m = 2.

It remains to show that this set of µ + 1 frequency vectors is linearly independent. This is in
essence already shown in the proof of the Theorem 3: we exhibited a collection of µ + 1 covectors
such that the pairing matrix of these covectors with the type vectors we constructed is upper
triangular, in the ordering constructed there. The result follows immediately.

To continue our construction, we now concatenate just constructed tilings of size 2w − 1 de-
signing a set of tilings growing as desired Nµ. Generally, such concatenation can lead to some new
tiles near the boundary, but this problem disappears if concatenated tilings are identical on the
envelope defined as

E = In1
× ..× Ind

\ In1−w1+1 × ..× Ind−wd+1

which we assume to hold. To complete the proof, we need a small lemma.

Lemma 10. If x1, x2 tilings of size n and frequency vectors T̂1, T̂2 are identical on the envelope
E, that is, x1|E = x2|E, then the frequency vector of a tiling constructed by concatenating them is
T̂12 = (T̂1 + T̂2)/2.

Proof: Observe that the resulting tile appearing in all positions from both original tilings. But
the size of the torus is twice as big leading to the average frequency vector T̂12 = (T̂1 + T̂2)/2.
This is illustrated in Figure 8.

We are now in the position to complete the proof of Theorem 7. For ni ≥ 2wi − 1 size torus,
construct a family of periodic tilings for which the set of frequency vectors grows like Nµ. Let us
now take µ + 1 such tilings with linearly independent size 2w − 1 frequency vectors T̂1, .., T̂µ+1

discussed in Lemma 9. We can concatenate them into larger tori and then the resulting frequency
vector corresponds to a convex combination. Thus the resulting frequency vectors are

{

a1T̂
1 + ..+ aµ+1T̂

µ+1

a1 + · · ·+ aµ+1
: ∀i ai ∈ N,

∑

i

ai =
N

N ′

}
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where N ′ =
∏

i(2wi − 1) and ai is the number of tiles with the frequency vector T̂i. Observe now
that the size of this discrete simplex is determined by the number of integer solutions of

∑

i

ai =
N

N ′

which is
(

N/N ′ + µ− 1

µ

)

= O(Nµ).

This implies the existence of a lower bound when ni are integer multiplicities of 2wi − 1. In the
general case we can increase the size of single layers of such concatenated tori (partially filled with
m) as in the construction of Lemma 9. This completes the construction of a lower bound, and the
proof of Theorem 7.
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