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Abstract

A binary sequence of zeros and ones is called a (d, k)-sequence if it does not contain
runs of zeros of length either less than d or greater than k, where d and k are arbi-
trary, but fixed, non-negative integers and d < k. Such sequences find an abundance
of applications in communications, in particular for magnetic and optical recording.
Occasionally, one requires that (d, k)-sequences do not contain a specific pattern w.
Therefore, distribution results concerning pattern occurrence in (d, k)-sequences are of
interest. In this paper we study the distribution of the waiting time until the r-th
occurrence of a pattern w in a random (d, k)-sequence generated by a Markov source.
Numerical examples are also provided.
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1 Introduction

In many communication systems, including magnetic and optical recording ones, one must
restrict the structure of a bit stream (binary sequence) to a class of sequences satisfying
certain constraints. The simplest constrained binary sequences are those in which runs
of zeros (between two consecutive 1’s) must have length at least d and at most k, where
d < k. Such sequences are called (d, k)-sequences (cf. [18, 19, 32]). For example, in (1,4)-
sequence 11 and 00000 are forbidden runs. In some situations, as observed in [20], one
needs to avoid certain patterns in (d, k)-sequences. In this paper, for a given pattern (word)
w (w = wiwsy...wy,) we study the exact distribution of the waiting time until the r—th
occurrence of the pattern w in a random (d, k)-sequence generated by a Markov source.

Pattern matching is a well studied problem. It is motivated by applications in com-
munication theory as well as computational biology where one looks for over-represented
or under-represented patterns in order to find useful signals. In general, for a given set of
patterns W = {Wi,..., Wk}, where the W; are words of the same length, one searches for
all W occurrences in a text of length n. (In this paper we only consider a single pattern
of length m that we denote by w.) In computer science literature several fast algorithms
(e.g., Knuth-Morris-Pratt and Boyer-Moore algorithms) were designed to search for such
patterns. Here, we are rather interested in the distribution theory associated with the num-
ber of W occurrences in a probabilistic framework where the (constrained) text is generated
randomly (a Markov source in our case).

The pattern matching problem (in a probabilistic framework) goes back, at least, to
Feller. The number of word occurrences in a random text has been intensively studied over
the last two decades, with significant progress in this area being reported [3, 4, 5, 6, 7, 10, 11,
13, 14, 15, 18, 21, 24, 25, 26, 27, 28, 29, 31]. For instance, Guibas and Odlyzko [14] revealed
the fundamental role played by autocorrelation sets and their associated polynomials. Li [15]
and Gerber and Li [13] introduced martingale techniques to the area and combined the latter
with a relevant Markov chain embedding. Markov chain embeddings have been widely used
by a number of authors (see [6, 10, 11] and the references in [2, 12]). Blom and Thorburn [5]
made connections with Markov renewal theory and Biggins and Cannings [4] elaborated on
these. Stefanov and Pakes [29] introduced exponential family methodology to the area
and Stefanov [27] extended it in combination with suitable Markov renewal embeddings.
Régnier and Szpankowski [22, 23] established that the number of occurrences of a word is
asymptotically normal under a diversity of models that include Markov chains. Nicodeme,
Salvy, and Flajolet [21] showed generally that the number of places in a random text at which
a ‘motif’ (i.e., a general regular expression pattern) terminates is asymptotically normally
distributed. Bender and Kochman [3] studied a generalized pattern W occurrences using
(in nutshell) the deBruijn graph representation that allowed the authors to establish the

central limit theorem, but without explicit mean and variance. Recent surveys on pattern



matching can be found in Lothaire [18] (Chaps. 6 and 7). To the best of our knowledge,
the distribution theory associated with pattern occurrence in a constrained sequence, such
as a (d, k)-sequence, has not been treated in the literature.

A brief description of our problem and methodology follows. Let N, be the number
of w (w = w; ... wy) occurrences in a binary sequence, of length n, generated by a two-
state Markov chain X. Throughout the paper such sequences will be called unconstrained
sequences whereas (d, k)-sequences will be called constrained sequences. By Y, we define
the waiting time until the r-th occurrence of the pattern w in an unconstrained sequence.

Bearing in mind that the initial symbol at time zero counts to the sequence length we have
P(N,<r)=PY,>n-1) (1)

for all r,n > 1. This basic renewal equation is the starting point of two different approaches
to the analysis of pattern occurrences, on finite alphabets, in unconstrained sequences as
surveyed in Chaps. 6 and 7 of [18]. For example, [3, 14, 21, 22, 23| analyze N,,, whereas
the authors of [24, 28, 31] study the waiting time Y, for unconstrained sequences. In the
case of constrained sequences we may be interested in either the distribution of N,, given
the sequence is constrained up to time n, or the distribution of Y, given the sequence is

constrained up to time Y,. In other words, denoting by N,Sd”“)

the number of runs of zero
of length either less than d or greater than k in an unconstrained sequence of length n,
the probabilities of interests are P(N,, < T\Néd’k) =0)(=PY, >n— 1|N7Sd’k) = 0)) and
P(Y; > n — 1N = 0) (= P(N, < r[N{ = 0)). Clearly P(N,, < r|N*" = 0) is not
equal to P(Y, > n — 1\]\7}(,?’6) = 0). Also the evaluation of each of these two conditional
probabilities lead to two different problems. For the latter probability we also have

©,_1 P(Y, =i, NN*" =0)

V = 0
P(Y, >n— 1|N(d,k) — ) = Z=n-l i
r \e > P(Y, =1, N (dR) 0)

i

In the present paper we deal with P(Y, > n — 1|N)(;f’k) = 0), whereas in a forthcoming
paper we will treat P(N,, < 7’|N,(Ld’k) = 0). Of course, the latter probability is of relevance
in situations when the constrained sequence has been observed up to time n whereas the
former is such when the constrained sequence is observed up to an r—th occurrence of the
pattern of interest.

Stefanov [28] provides an original approach for a recursive evaluation of the generat-
ing functions of the waiting time conditioned on seeing a portion of the pattern in an
unconstrained sequence. Also the approach provides the joint generating functions of the
aforementioned waiting time Y, together with the associated counts of relevant events.
This paper extends the analysis of [28] to constrained sequences. The case of constrained
sequences, when the probability of interest is P(Y, > n]N}(,f’k) = 0), leads to more general

type of events, associated with the above waiting time, than those considered in [28]. The



key points of that extension are explained in Idea of the Proof inserted immediately after
Theorem 1 in the next section.

The paper is organized as follows. In the next section we present our main theoretical
results. These provide recursive formulae for computing the joint generating function of the
waiting time until seeing the r-th occurrence of a pattern and the associated count of runs
of zero of length either less than d or greater than k (the so called forbidden patterns). In

the last section we provide numerical examples.

2 Main Results

We assume that the binary sequences are generated by a a two-state Markov chain X,

(X(n), n=0,1,...). Its transition probabilities are denoted by
P(X(k)=jX(k—-1)=14) =pij, 47=0,1

Recall that Nr(bd’k) counts the number of the so called forbidden patterns up to time n.
Denote by
v (d:k)

) N
Gyo(z1,2) =Eln" 277 ]

the joint generating function of the waiting time, Y,., until seeing the r-th occurrence of the
pattern w = wiws ... w.,,, given the initial symbol of the sequence is s, and the associated

)

count, Ni(/?g , of occurrences of runs of zeros of length either less than d or greater than k
up to that waiting time.

Note that if Gz, z,(z1, 22) is the joint generating function of two nonnegative integer ran-
dom variables, then for the generating function G z,|z,—0(2) of the conditional distribution

of Z1, given Zy = 0, we have

ne0 2" P(Z1=1n,22 =0) _ Gz,2(2,0)
P(Zy =0) GZI’ZQ(I,O)'

G 71 7z5=0(2) =

Therefore, the joint generating function GY(s)(Z’l,Zg) renders the generating function of

the conditional distribution of Y, given N)(/d(ﬁ) = 0. Further assume that yl(5>,y2,y3, o

are independent random variables such thatryg, Y3, ... are identically distributed with the
following distributions. The distribution of yfs) is equal to the conditional distribution
of the waiting time Y7 to see for the first time the pattern w, if the starting symbol is s
(s = 0 or 1) and given no forbidden pattern has occurred up to time Yi, that is, given
v (k)

N
Y1(5)

distance between two consecutive occurrences of the pattern w given no forbidden pattern

= 0. The distribution of )% is equal to the conditional distribution of the intersite

has occurred within that intersite distance. Then, in view of the strong Markov property,



(d.k)

the conditional distribution of Y, given N = 0, is equal to that of

v,
W+
i>2
and of course its generating function equals Gy(s>(z)(Gy2 (2))"!, where

1

Ggrsz) 2,0 G%ntersite) 2.0

Gy(s)(z) - (s)( ) Gy, (Z) - (intersite)( )

! Gm (LO) Gm (170)

and by Gﬁ}? (21, 22) we denoted the joint generating function of the waiting time, Y7, until
the first occurrence of the pattern w = wyws . . . wy,,with initial symbol s, and the associated
count, N)(fli’k), of occurrences of the so-called forbidden patterns, and with G%memte)(zl, 29)
we denoted the joint generating function of the intersite distance between two consecutive
occurrences of the pattern w and the associated count of occurrences of the forbidden
patterns.

The remaining part of the paper is devoted to a method for an explicit derivation of the
joint generating functions Gq(i)(zsz) and G%ntemte)(zl,@). Recall that these generating
functions are associated with unconstrained sequences.

Let v; ; be the transition time from state 7 to state j in the two-state Markov chain X

introduced earlier, that is,
vi;j =inf{n: X(n) = j|X(0) =i}, ;4,5=0,1,

and let [,, ; be the associated indicator function of the event ”a run of zeros of length either
less than d or greater than £ has occurred during the transition time v;;.” It is assumed
that Vii= 0.

Introduce the functions g; (21, 22) for 4,5 = 0,1, as follows: Let

gus(a1,20) =BV 2™, (0,9) # (1,0)
be the joint generating function of (v;j, Iy, ;), if 4,5 = 0,1 and (4, j) # (1,0). Of course
g0,0(21, 22) = g1,1(21, 22) = 1,
because v = v1,1 = 0, and subsequently L,Oyo =1I,, =0. We define 91’0(2’1, z2) to be the
generating function G, ,(21) of v1 0, that is,

21P1,0 (2)

gr0(z1,22) = Gy o(21) = 5 —

The second identity comes from noticing that vy g is a geometrically distributed random
variable with probability of success p1 o and support {1,2,...}. In other words, the meaning

of g1,0(21,22) is the same as that for the other g; j(21, z2) with the convention that I, , = 0.



The reasons for defining g1 (21, 22) as if ignoring a possible occurrence of the event of
interest within the passage time v o, will become clear in the proof of Theorem 1 below.
Another generating function of relevance is the joint generating function of (vg,1, 1, ),
given that exactly r zeros are preceding the starting state zero; it is assumed that these
zeros are allowed to be counted towards the formation of the event marked by the indicator
function I,,,,. Denote this joint generating function by g, o,1(21,22). Clearly, g.—0,1(z1, 22)
equals the joint generating function of vy and the indicator function of the event ”a run
of zeros of length either less than d — r or greater than k — r has occurred within that

transition time”.

Lemma 1 The following explicit expressions hold for the joint generating functions go1(z1, 22)

and gr—o,1(21, 22) :

k
Z9 —
90,1(21,22) = po121 1= + (1 - 29) Z (Po,oz1)' (3)
Pooz1 i=maz(1,d)
- max(0,k—r)
2 i
gr-01(21,22) = poiz1 7 + (1 — 22) (po021)""" (4)
— P0,0%1

i=maz(1l,d—r)

where max(i, j) is the mazimal of the two integers i and j, and the convention Z?:l =

applies.

Proof: Denote by p; = P(vp,1 = i) and note that p; = po,lpé’_ol because vy 1 is geometrically
distributed with probability of success pg1 and support {1,2,...}. Also note that I,,, =0
if and only if d <1y < k. Thus, for the joint generating function go (21, 22) we get

d—1 k o0
go1(z1,22) = Y zzipi+ D zipi+ Y, z22ip;
i=1 i=d i=k+1
d—1 k 00
i i—1 i i—1 i i—1
= 22221]90,1]90,0 +Zzlpo,1po,o + Z 2221P0,1Pp 0 -
i=1 i=d i=k+1

Simplifying the above expression leads to (3) above. Similar arguments apply for the deriva-
tion of the expression for g,_o.1(21, 22) and the details are therefore omitted. The proof of

Lemma 1 is complete. u

We will derive simple recurrence relations leading to an exact evaluation of the joint
generating function Gg)(zl, z9) and G%merszte)(zl, z2), which have been introduced above.

For the pattern of interest w = wijws ... w,,, denote

1 if (s1,82,...,8) = (w1, wa,...,w,)
I(s1,82,...,s =
(51,52 ) {0 otherwise,
I(s1,82,...,8:) = 1—1I(s1,82,...,8:), 7r=12_....m, (5)



that is, I(s1,52,...,8r) = Lu, (51)Lwy(52) - - - L, (sr), where I()(-) is an indicator function.
For the sake of brevity we introduce the following notation. For each j,j =2,3,...,m —1,

and each a,a = 0,1, let

Ll(l,a) = 1

Li(j,a) = I(wa,ws,...,wj,a)

La(j,a) = T(wz,wg,...,wj,a)l(wg,w4,...,wj,a)

Ly(jya) = I(wz,ws,...,wja)...I(wr,wrt1,...,wj,a)l(wry1, wrgo, ... w5, a)
Li(j,a) = Y(w2,w3,...,wj,a)f(wg,w4,...,wj,a)...T(wjja), (6)

where it is assumed that I(w;, wit1,...,wj,a) = 1if i > j. Note that L,(j,a) =1 for r < j
if and only if none of w;w;41 ... wj;a for i = 2,3,...7, is a prefix to wiws ... w,,, whereas
Wy 1 Wr42 - .. wja is such. Also, L;(j,a) is equal to one if and only if none of wyw;11 ... wja
fori=2,3,...7,1s a prefix to wjwy . . . wy,. In other words, the L;(j, a) are relevant indicator
functions related to the self-overlapping structure of the pattern w = wjws...wy,,. In
passing we observe that our definition of L, (j,a) is related to the autocorrelation set and
polynomial of Guibas and Odlyzko [14] (cf. also [18, 23]).

Let now Yl(s) (w]) be the waiting time to see the pattern w] = wiwy ... w;, given the
initial state is s. Then we define by

N(dF)

() (0 "
Ggs)(zhza) = E[zfl ( 1)22 il 1)]

the joint generating function of Yl(s) (w{) and the associated count, N (d k)

Yi(w!)’ of forbidden
1\t

patterns (runs of zeros of length either less than d or greater than k). Here we allow the
first symbol, that is, s, to contribute to the pattern (of course this matters if s = wy).

(s)

Recall that for j = m the joint generating function Gi,’ (21, z2) has been introduced earlier.

Let G;r_o) (z1,2z2) be the joint generating function of the same quantities as above, given
the initial state (assumed to be zero) is preceded by exactly r zeros and the latter zeros
are allowed to count towards the formation of the relevant event concerning the forbidden
patterns (in other words the length of the first zero run within the waiting time Yl(o) (w)) is
increased by 7); also the initial state zero is allowed to contribute to the pattern. Further,
let G§w1w2...wh) (21, z2) be the joint generating function of the same quantities as above, given
the sub-pattern wiws ... w, (h < j) has been reached.

Throughout the article it is assumed that the pattern of interest w = wyws ... w,, does
not contain forbidden patterns. Each pattern of zeros and ones can be viewed as a sequence
of alternating blocks of ones and zeros where the length of the i-th block is denoted by k;

and k; > 0 for ¢ = 2,3,... and k; > 0 if the initial symbol of the pattern is one whereas



k1 = 0 if the initial symbol is zero. For example, for the pattern 11100001100000 we have
ki = 3,ko = 4,ks = 2,k4 = 5, and for the pattern 001111100011 we have k1 = 0,ko =
2, ks =5,ky =3, ks = 2.

Denote by J; and Jy the following subsets of {1,2,...,m}, which are associated with

the pattern w = wyws ... wy, :

b n "
Ji = U{] : Zkzi—l-i-l <j Szk%—l-i-d—l},
n=lb =l i=1
b n
Joo= JLii=>ka},
n=1 i=1

where b is the number of zero blocks of the pattern w. For example, if the pattern of interest
is 001111100011 and d = 2,k = 5 we get Jo = {2,10}, and J; = {1, 8}.
Note that
G (21, 22) = G (21, 22), (7)

where * stands for either 0 or 1, or 7 — 0. Actually, Gg*)(zl, z9) has the same meaning as
that of g« w, (21, 22) unless w; = 0 and * = 1 (recall our definition of g; ¢ given in (2) above).
For the latter case we formally assume that (7) holds and the reason for that assumption
will become clear in the Idea of Proof of Theorem 1 below. Closed explicit expressions for
gi,j (21, 22) and gr—o,1(21, 22) are found in Lemma 1 and prior to its statement. The formal

proof is presented in the next section.

Theorem 1 The following recurrence relations hold for the joint generating functions Ggf)(zl, z9) :
(i) For j ¢ (J1UJ2), and h=1,2,...,7, and r = 1,2,..., we have

()
Pwjw; 1G5 (21, 22)
G (2 ,29) = A R , 8
J+l( 1, 22) 1 *ij,lfijZlAj (8)

(wiws...wp,)

Pw: w; lzlG- (Zl,ZQ)
G(w1w2...w;L) 21,22 _ j li+ J , 9
Jj+1 ( ) 1— pwj,l—ijZlAj ( )
(r—0)
_ Pw,; w; 121G‘ (21,22)
G(-T 0) 21, 2 _ 5 Wi+ J 7 10
]+1 ( ) 1 _ pwj,l—wj+121Aj ( )

where

j—1
Ay = 3L 1 = w) G () o (1 = )G T (a1, 20), (1)
i=1

with the convention Y.0_; = 0, and the L;(j, a) have been introduced in (6).
(ii) Forj € Ji, and h=1,2,...,j, andr =1,2,..., we have

pwj,’w]'+1 Z1G§S) (217 22)

)
L — pu; 1—w; 1 212245

Gi(21,2) = (12)

8



(wiwz...wp)
G(w1w2...wh)(zl ZQ) _ Pwj,wjipq ZlGj (217 22) (13)
]+1 ’ 1 - pwj,l—wj+12122Aj ’

(r—0)
— Pw;,w; 121G' (21722)
G(-T 0) 21, 2 _ Wi+ j 7 14
o ( ) 1 = Puji-wjs1 21224 14

where Aj is as above.
(iii) For j € Ja, and h = 1,2,....4, and r = 1,2,..., the same relations as those for
J ¢ (J1U Ja) above hold after replacing A; by Bj, where

j—1
Bj = 3 Li(j, 1 — wisn)GS ) () 4 (5,1 — wy) G (21, 2), (1)
i=1
and n is associated with j through j = Y i ko;. Recall that j € Jo if and only if j =
k14 ko + ...+ kop for somen, n=1,2,....

Idea of the Proof: The proof is based on a suitable extension of the methodology intro-
duced in Stefanov [28]. The latter treated patterns formed on finite alphabets in strings
generated by general discrete- and continuous-time models. In particular, Theorem 4.1 (cf.
[28] p. 890) provides recurrence relations leading to exact evaluation of the joint generating
function of the waiting time until reaching a pattern together with the associated counts
of occurrences of the corresponding symbols of the alphabet. In this paper we deal with
a simpler model (binary alphabet and discrete-time parameter) but the joint generating
function of interest is that of the waiting time until reaching a pattern together with the
associated count of occurrences of an event which is not as simple as the events considered
in [28]. A careful scrutiny of [28] proofs reveals that the recurrence relations provided there
are applicable to the joint generating function of the waiting time till reaching a pattern to-
gether with the associated count of occurrences of an ’event’ if the following two conditions
are satisfied concerning that ’event’:

(i) the joint generating functions for the following quantities are available: the waiting
time to reach a letter from another (or the same) letter of the alphabet together with the
associated count of occurrences of the ’event’ of interest.

(ii) All occurrences of the ’event’ of interest are captured within the passage times
between the states, that is, occurrence or non occurrence of the ’event’ does not depend on
the history prior to a passage time or the future after that passage time.

Note that nominating the event of interest to be a run of zeros of length either less
than d or greater than k we get that condition (ii) is not satisfied in general. For example,
in a passage time from state zero to state one the occurrence or non occurrence of our
event of interest (a constrained zero-run) depends on the number of zeros just preceding
the starting state zero. As for a passage time from state one to state zero, note that, on

one hand, the occurrence or non occurrence of the event of interest is not affected by the



outcomes preceding the initial state one. On the other hand, within that passage time a run
of zeros of length 1 occurs (the last observation within such passage time is zero which is
preceded by one), that is, the event of interest occurs if d > 1 and given we stop observing
the generated random sequence with such passage time. If we do not stop observing the
generated sequence at such passage time then the occurrence or non occurrence of the event
of interest depends on the future outcomes (that is, on how many zeros will follow after
the first zero achieved from sate one). Note that we stop observing the generated random
sequences at occurrences of the pattern of interest, which we assume does not contain
constrained zero-runs. That is, we do not stop observing the generated random sequence
at a passage time from state one to state zero if d > 1. Therefore, within a passage time
from state one to state zero we should not account for a possible occurrence of the event
of interest, because such occurrence will be accounted for within the following passage time
from state zero to state one. This is the reason for defining glyo(zl, z2) to be equal to the
generating function of vy, as if assuming that within a passage time from state one to
state zero a constrained zero-run does not occur. By the same reason we assumed that
Ggl)(zl, 22) = g1,w (21, 22) if w1 = 0 (cf. the comment prior to Theorem 1). In particular,
we may assume that condition (i) above is satisfied for our problem because the relevant
joint generating functions are provided in Lemma 1 and prior to it.

Further we show how the methodology in [28] can be extended to derive relevant recur-
rence relations for the case of the waiting time until reaching a pattern and the associated
count of occurrences of constrained zero-runs.

Recall that we consider a pattern w = wjws...w, whose consecutive blocks of ones
and zeros are of lengths k1, ko, k3, . . ., respectively.

Assume first the pattern of interest consists of the first k1 4+ 1 symbols of w. Note that in
this case condition (ii) is satisfied because there are no zeros preceding an initial zero state
at a passage time from state zero to state one. Therefore, the relations given by (8), (9),
(10) for j, such that 1 < j < kj are a special case of the recurrence relations in Theorem 4.1
of [28]. Since the model treated in [28] is more general and the uninitiated reader may find
it not quite transparent how to write the relations for our special model here we provide

the following hint. Delete the entries of ¢, , and 5, and replace ¢, (z0) by z1 in the

w1
corresponding recurrence relations in Theorem 4.1 of [28] to get the relaitions (8), (9), (10).

Assume now that the pattern of interest consists of the first k1 +2 (< k1 + k2) symbols.
Then note that from the time epoch at which we have reached the subpattern wiws . .. wi, 41
till reaching the pattern wjws . .. wy, +2 one may miss counts of the event of interest (a run of
zeros of length less than d) due to the following observation. Upon reaching wijws ... wg, 41
assume that in the next step the pattern wjws ... wg, 12 is not reached (that is, a mismatch
occur at this stage). Thus, a run of zeros of length 1 (< d, of course given d > 1) has occurred

and it will not be accounted for by the recurrence relations provided in [28]. To account

10



for such occurrences one should multiply by zs the relevant joint generating functions each
214,
by 1 — puw,; 1-w;4; 212245 in the recurrence relations. Therefore, relations (12), (13), (14)
hold for j = k1 + 1.

Similarly, if the pattern consists of the first k1 +3 (< ki + k2) symbols then upon

time such mismatch occurs. It is achieved by replacing the denominator 1 —py; 1-w,.,

reaching the subpattern wiws ... w2 on the following step one may miss a count of the
event of interest. More specifically, this is a run of zeros of length 2 (< d, of course given
d > 2). To account for such occurrences of the event of interest again the denominator
1-— pwj,l—w]-+121Aj is to be replaced by 1 — pw].,l_wﬁlzlzg/lj. Clearly, the same argument
applies if the pattern consists of the first k1 +j — 1 (< k1 + k2) symbols of w, where j < d.
Therefore, the recurrence relations (12), (13), (14) hold for j such that k1 +1 < j < kj+d—1
(these j’s belong to Ji). Further, note that for larger j, such that k1 +d < j < k; + ks — 1
(note that such j’s do not belong to J; U Jz) the recurrence relations given by (8), (9), (10)
hold, because in mismatch situations constrained zero-runs do not occur.

Assume now that the pattern consists of the first k1 + ko + 1 symbols of w. Then note
that in a mismatch situation at the next step after reaching the sub-pattern consisting of
the first k1 + ko symbols, we are at state zero with exactly ko zeros preceding it. The method
in [28] implies that G§~1_wj“)(zl, z9) (this is the generating function, in the expression for
Aj, which accounts for the evolution of the sequence after such a mismatch situation, and
given no overlap occurred after that mismatch) from the expression for A;, given in (11),

is to be substituted by Gy”_o)(zl, z9) in order to account for all occurrences of the event

of interest. That is, for j = ki + ko, the relations (8), (9), (10) hold with G§17w”1)(z1, 29)
(k2—0)
J

For larger j (j > k1 + ko) similar arguments to those above apply.

replaced by G (21, 22) in the expressions for the Aj; that is, A; is replaced by B;.

3 Proof of Theorem 1

First, recall that the g.f., G(z), of the geometric distribution on {0, 1,...}, with probability
of ’success’ p, is given by p/(1 — gz), where ¢ = 1 — p. Also recall that for the g.f. of the

random sum Y = >/ Y; we have

Gy (2z) = Gu(Gy,(2)), (16)

where z = (21, 22,...,2,) and the Y; are independent and identically distributed (i.i.d.)
random vectors with g.f. Gy,(z) and v is a non-negative r.v., independent of the Y;, with
g.f. G (z). If the distribution of v is geometric then the random sum Y is called a geometric
sum.

The following quantity is called briefly the first return time to the pattern wiws ... w; :

infin>1: X(n+1)..X(n+1+j)=wi...wj|X(1)...X(j) =wi...wj}.
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Recall that the pattern of interest is denoted by w = wjws ... w,,. Note that j ¢ J; U Jy if
and only if either w;11 = 1, or wjwj;q1 = 10, or wjy1 = 0 and the number of zeros preceding
wj+1, in the block of zeros to which w;i1 belongs, is less than d (recall that d pertains to
the term (d,k)-sequence).

We will prove the validity of (8), (9) and (10) first for j = 1,2,..., k;. Recall that k; is
the length of the first block of ones of the pattern of interest w. Of course these j’s do not
belong to the set (J; U J3). Now consider the subpattern wywsy consisting of the first two
symbols of the pattern w, of course assuming that k; > 1. Note that the joint generating
function of the first return time to state w; and the associated count of the forbidden

patterns within that return time, conditional on not entering state ws at the first step, is

H, (21; 22) _ Pwi,1—ws 2191 —wo,wy (Zh Z2) (17)
1 — pwy, w2

Actually, (17) is derived via conditioning on the first step. It is easy to see, using the strong
Markov property and applied to the consecutive entry times to state w;, that the joint
distribution of the waiting time to reach the pattern wjws from state s and the associated

count of forbidden patterns up to that waiting time, is the same as the joint distribution of

vi
Ki+e + Z Yia
i=0

where e; is the unit vector (1,0), the Y;; are i.i.d. (two-dimensional) random vectors, also
independent of K, and v; is a geometric random variable, independent of the Y; 1 and K;
with a probability of ’success’ puy, w,. Further, the (two-dimensional) random vector K
has the same joint distribution as that of the waiting time to reach w; from state s, and
the associated count of forbidden patterns, that is, its joint g.f. Gk, (z1,22) is equal to
gsw; (21, 22). The random vector Y;; has a joint generating function given by Hj(z1, 22).
Thus, in view of (16) and (17) and recalling that Ggs)(zl, 22) = s, (21, 22) we get that

G(S) _ DPwy,we 21
e A U (R T e

Puwy,wy®1 GgS) (217 22)
2)(

(1—w ’
1 = Pwy 1w 21G 21, 22)

Using the same arguments as those above we get that for r = 1,2, ...

Pwi,we Zngwl) (Zl, 22)

(1—11)2)

Ggwl)(zla ZQ) = )
1 _pw1,1—w221G1 (21722)

—0
Pwi,wa Zle : (zly 32)

(1—w2)

-0
G; )(21,22) = .
1 _pw1,1—w2Z1G1 (Zlu 22)
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That is, noting that A; = Gglfw)(zl,zg) (cf. (11)), we get that (8), (9) and (10) hold for
j=1

Now consider the subpattern wjwsws assuming that k1 > 2 (that is 7 = 2). Similarly to
the preceding case (when j = 1), conditioning on the first step, note that the joint generating
function of the first return time to the subpattern wjws and the associated count of the
forbidden patterns within that return time, conditional on not entering state ws at the first

step, is given by
Duw,1—ws 21 (L1(2, 1 —ws3)+ La(2,1— w3)Gé1_w3)(21, ZQ))

L — Puws,ws

Hy (21, 22) = ) (18)

where the L;(j,a) have been introduced in (6). Again using the strong Markov property
and applied to the consecutive entry times to the subpattern wywsy, we get that the joint
distribution of the waiting time to reach the subpattern wiwsows from state s and the
associated count of forbidden patterns up to that waiting time, is the same as the joint

distribution of
vo

Ko +e + Z Yio
i=0

where e; is the unit vector (1,0), the Y; o are i.i.d. random vectors, also independent of Ko,
and 1 is a geometric random variable, independent of the Y; » and K> with a probability of
'success’ P, ws- Further, the random vector Ko has the same joint distribution as that of
the waiting time to reach wjws from state s, and the associated count of forbidden patterns,
that is, its joint g.f. Gk, (21, 22) is equal to Gés)(zl, 2z2). The random vector Y; o has a joint
generating function given by Hs(z1, 22). Therefore, similarly to the preceding case, and
using (18) we get that

Puws ws ZngS) (21, 22)
1—-(1- pr,’wS)HQ(Zla 22)

Punws 1G5 (21, 22)

1= Pus w1 (L1(2,1 = ws) + Lo(2,1 - ws)GS ™ (1))
That is, (8) holds for j = 2. Likewise, (9) and (10) hold for j = 2. The same arguments, as
those used in the cases for j = 1,2 apply to any j such that 1 < j < k;. Therefore (8), (9)
and (10) hold for j =1,2,...k;.

Now consider the case when j € J;. First, we will consider the j’s belonging to {j :
S ko1 +1<j <L ko1 +d—1}, thatis, for j = k; +1,k1 +2,..., k1 +d— 1. Let

Jj = k1 + 1, that is, we consider the subpattern wjws ... wg,+2. Again, conditioning on the

Gi(’f)(zla 22)

first step, note that the joint generating function of the first return time to the subpattern
wiwsy . .. wk,+1 and the associated count of the forbidden patterns within that return time,
conditional on not entering state wg, 2 at the first step, is given by

pwk1+1,17wk1+22122Ak1+1
1 )

= Pwpy 41,wky 42

Hy,y1(21, 22) = (19)
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where the A; and L;(j,a) have been introduced in (11) and (6), respectively. Actually,
Hyj,41(21, 22) differs from its counterparts Hj(z1,22), j < ki, (cf (17) and (18)) by the
presence of zp in front of Ag, ;1. The presence of zp accounts for unaccounted otherwise
occurrence of a forbidden pattern (a zero run of length less than d) at the first step when one
fails to reach in one step the state wy, o from the already reached subpattern wiws . .. wg, 41.
Further, similarly to the preceding cases and applying the strong Markov property to the

consecutive entry times to the subpattern wyws ... wg,+1, one gets that

Pwp, 41,08, 42 ZlGl&iL—l(Zla 22)
1- (1 _pwk1+1awkl+2)Hkl+1(Z17 ZQ)

Giliale ) =

(s)
Pwp, 41,08, 42 ZleH-l (21, 22)

L= Py, 11wy, 2212248 41
Thus, (12) holds for j = k; + 1. Likewise, one gets that (13) and (14) hold for j = k; + 1.
Exactly the same arguments, as those used in the case for j = k141 apply to any j such that
ki+1 < j < k1+d—1. Therefore, (12), (13) and (14) hold for j = k1+1,k1+2,..., k1 +d—1.
Consider now j = k1 +d, k1 +d+ 1,...,k1 + ko — 1. These j’s do not belong to Ji U Js.
Note that the relevant H;(21,22) is given by

pwj,l—w]-+1 zlAj

Hj(zl,ZQ) = 3 (20)

L= Pujw;ia
that is, (20) has the same form as that of (17) and (18). This is due to the observation that
at the first step when wj;, is not reached from the already reached subpattern wyws ... w;
a forbidden pattern does not occur (the reached zero run is of length at least d and of course
less than k). Therefore, (8), (9) and (10) hold for j = k1 +d, k1 +d+1,... . k1 + k2 — 1.

Consider now the case j = k1 +ko. This j belongs to Jo. Note that the relevant Hj(zl, 29)
for the joint g.f. of the first return time to the subpattern wiws . .. wy, 4+, and the associated
count of the forbidden patterns within that return time, conditional on not entering state
Wk, +ko+1 at the first step, is given by

Pwpy 4oyl =iy g 11 21 Bl ks
1 9

- pwkl ko Wk +ko+1

Hiy iy (21, 20) = (21)

where Bj is given in (15). More specifically, note first that B; differs from A; only through
the generating function associated with the indicator function L;(j, 1 —w;11) (cf. (6)). This
g.f. is Gg»lfwj) for A; and Gg.k%_o) (n=1for j = ki + kp) for Bj, and it accounts for what
happens after the first step given L;(j,1 — wj41) = 1. Further, note that conditioning on
not entering state wg,+x,+1 at the first step means that a run of zeros of length exactly
k1+ ko + 1 has been reached, that is after the first step the current state zero is preceded by
exactly k1 + ko zeros. After that first step is made one waits until subpattern wiws . .. wi, 4+,

is reached. Therefore, noticing that after the first step no overlap occurs, that is

Lk1+l€2(k1 + k?v 1—- wk1+/€2+1) = 17
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one can see that the relevant generating function which will capture all occurrences of

forbidden patterns up to this waiting time is given by G;’:zﬁ?(zl, 29). Therefore, it is clear

now that (8), (9) and (10) with A; replaced by Bj; hold for j = ki + ko. Note that for the
other j’s from Jo, such as say j = ki + ko + k3 + k4, an overlap may occur (for example if
k4 < kg) after the first step but then the relevant g.f. (G,Sfj::;gﬁ;:ﬂ
Bj will capture all occurrences of forbidden patterns. Recall that the indicator functions

) in the expression for

appearing in the expressions for A; and B; sum to 1.

It is easy to see that the same arguments as those used for j = 1,2,...,k; + ko apply
for j > ki + ko.

The proof of Theorem 1 is complete. |

Remark 2.2. Note that the generating functions G’grio)(zl, z9) play a pivotal role, through
the relevant entry in the expression for Bj, in the process of evaluating the relevant gen-
erating functions GSS)(zl,zg) and G§-w1w2'"wh)(z1,22). Therefore, only Gg»k%_o)(zl,@) for
1=1,2,..., are to be evaluated for each j.

Theorem 1 provides a route for exact evaluation of the Gg-s) (21, 22) and Ggwlm”'wh) (21, 22).
In particular, these contain the generating functions of interest, that is Ggi)(zl,zg) and
Glintersite) (z1, z2). More specifically, note that Gintersite) (21, 22) is equal to Gwrwa-wn) (21, 22)

for h such that wiws ... wy is the longest prefix, which is also a suffix, to the pattern w.

4 Numerical Analysis

In this section, we present some numerical results. Using Maple 9, we derived explicit
expressions for the joint generating functions given in Theorem 1 for the patterns in our
numerical examples. These provided us with explicit expressions for the probability gen-

erating function Gy(s)(z) of yﬁs) and subsequently explicit expressions for the cumulative
generating function of VI since the latter g.f. is equal to Gy<s) (2)/(1— z). Recall that the

distribution of yﬁs), is equal to the conditional distribution of the waiting time until the r-th
occurrence of the pattern of interest given there were no forbidden patterns up to time yﬁs).
The relevant probabilities, that is P(Y, > n — 1]N5(,(f’k) =0), (= P(N, < r|N3(/f’k) =0)), are
computed via a numerical inversion of the cumulative generating function Gyﬁg (2)/(1—2).
We used the numerical procedure introduced by Abate and Whitt [1]. This procedure is
very ! fast and computes the exact probabilities with any given, in advance, accuracy. The
computation was implemented on Powerbook G4 using Maple 9. The derivation of the

expression for Gy(s) (2)/(1 = z) is almost instantaneous.

In the example presented in Table 1 we compute the probabilities P(N,, > r|N)(,f’k) =0),
r=1,2,..., with initial symbol X; = 0 or 1, for w = 100100100, for d = 1 and k = 4 and
transition probabilities pgo = 0.4, po,1 = 0.6, p1o = 1, p11 = 0. Note that if d > 0 then
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p1,0 = 1 because runs of 1’s are not allowed in such sequences. Runs of 1’s are allowed only

in (0, k)-sequences.
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Table 1: Probabilities for the number of occurrences, N,, of w = 100100100 in a random

(1, 4)-sequence of length n = 500 with pgo = 0.4, pp1 = 0.6, p1o =1, p11 =0.

P(N, > r[NY =0, X1 = 0)

© 0 N S O W NN =]

W W W W N NN DD NN NDDNDNDDN = = = = = = = = =
W N H O © 0~ O O i W N = O © 00 N O Ut i W N = O

0.9998229893
0.9988429172
0.9957604487
0.9885806721
0.9748567886
0.9521461776
0.9185406129
0.8731122847
0.8161570287
0.7491883799
0.6747088052
0.5958347059
0.5158705941
0.4379186414
0.3645829805
0.2977955830
0.2387616333
0.1880023708
0.1454637033
0.1106580150
0.0828116490
0.0609984853
0.0442483799
0.0316263751
0.0222837706
0.0154852671
0.0106177613
0.0071864591
0.0048032867
0.0031715243
0.0020694696
0.0013349299
0.0008515403
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P(N, > r[NY =0, X1 = 1)

© 0 N O O W N S

O W W W NN NN DD NN DN N DN = = = = e e e e e
W N = O © 00 N O O b W N B O © 00 N O O i W N = O©

0.9998277951
0.9988712924
0.9958545122
0.9888098346
0.9753124330
0.9529272243
0.9197338459
0.8747731853
0.8182964131
0.7517679679
0.6776460655
0.5990149589
0.5191630134
0.4411925930
0.3677218233
0.3007062001
0.2413791679
0.1902906096
0.1474121477
0.1122769106
0.0841261739
0.0620430520
0.0450616861
0.0322475305
0.0227495761
0.0158285526
0.0108665930
0.0073639909
0.0049280424
0.0032579270
0.0021284793
0.0013746927
0.0008779885
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