
Error-Resilient LZW Data Compression

Yonghui Wu Stefano Lonardi
Dept. Computer Science & Engineering

University of California
Riverside, CA 92521

{yonghui|stelo}@cs.ucr.edu

Wojciech Szpankowski
Department of Computer Sciences

Purdue University
West Lafayette, IN 47907
spa@cs.purdue.edu

Abstract

1 Introduction

As many practitiones know, compressed streams are very sensitive the transmission errors.
Even a single error can have devastating effects and compromise all the data downstream [5]. In
fact, the non-resilience of adaptive data compression has been a practical drawback of its use in
many applications. Joint source-channel coding [4, 1] has emerged as a possible solution to this
problem. Usually, joint source-channel coding trades source bits for channel bits or vice versa, and
more than often requires some adjustments in source coding and channel coding parts.

In this paper, we deal with a very popular compression scheme, namely the so-called Lempel-
Ziv-Welch (LZW). LZW is a lossless data compression algorithm developed by T. Welch in 1984
[8] as an improved version of the LZ78 dictionary coding algorithm developed by A. Lempel and
J. Ziv [9]. The method became moderately widely-used when the program compress became
more or less the standard compression utility in Unix systems circa by the year of 1986. In 1987,
the algorithm was adopted as part of the GIF image format, and has since been very widely used.
LZW is used in the V.42bis modem standard [7] and can also optionally be used in TIFF images
and PDF formatted documents.

Here focus on the problem of adding error-resiliency to the LZW compression scheme. Com-
pared to our previous work on LZ-77 [1], extracting from LZW/LZ-78 the extra redundancy bits
needed to store the error correcting parity bits turned out to be significantly trickier. The constrains
that we had in the design of the new scheme were mainly two. First, we wanted to maintain the
backward compatibility with the original LZW, that is, we wanted a file compressed with LZW
and augmented for error-resiliency to be decodable by the original LZW. Backward-compatibility
is very desirable property because it makes it possible to deploy the new scheme gradually over
the existing one, without disrupting service. Second, we wanted the compression ratio not to be
affected too much by the embedding of the extra parity bits for the detection and correction of
errors.

We were able to achieve both objectives by relaxing (i.e., shortening) a few selected LZW
phrases in the compressed stream, so that the pattern of shorter phrases would encode the extra

1

bits. Since we are not shortening too many phrases the compression is not affected much (see
Experimental results). In fact, according to our experimental results, sometimes the sum of the

2 Basic concepts

Let
�

be a text of length � over a finite alphabet � , and let
���

be its corresponding LZW-
compressed stream. We write

��� �	�
to indicate the
���
 symbol of the text. We use

��� ��� ���
shorthand for� � �	� � � ������������� � � ���

, where ����
�� �!��� , with the convention that
� � ��� �	�#" � � �	�

. Substrings in the form�$� �%� �	�
correspond to the prefixes of

�
, and substrings in the form

�&� ��� '(�
to the suffixes of

�
. Given

two strings) and * ,),+-* is the string obtained by concatenating) with * .
We use . "0/213�54618794:�:�:�<; to denote the LZW dictionary used during the encoding and decod-

ing processes. By construction of the LZW dictionary we have that
1=�>" �$� �?� @A�

for some � and B .
The length C 1D� C of a phrase

1E�
is the number of symbols it contains, i.e., C 1F� C " C � � �?� @A� C " B�GD�$+H� .

For completeness of presentation we briefly review the original LZW scheme [8, 9]. The
algorithm parses the text online left to right into phrases, where each phrase is the longest matching
phrase seen previously plus one extra symbol. Each new phrase is added to the dictionary . of
phrases, which is first initialized to include every single symbol in the input alphabet. The index
of the longest matching phrase is added to the output

� �
as a new codeword, whereas the extra

symbol, i.e., the last symbol of the current phrase, becomes the first symbol of the next phrase.
To decode the compressed text

�I�
, the decoder first fills the dictionary . with all the symbols in

the input alphabet. It then reads the codewords one by one from the compressed text
� �

. Every time
the decoder reads a new codeword, it looks up the dictionary for the corresponding phrase. The
string identified by the codeword is added to the output, while a new phrase, which is constructed
by appending the first symbol of the current codeword to the previous codeword, is added to the
dictionary . .

3 Extracting bits from the LZW stream

Due to the greediness inherent to the LZW algorithm, at any point of the encoding process there
is always only one way of producing the next phrase, and hence, every phrase in the dictionary .
is unique. The greediness prevents us from embedding directly extra bits into the compressed data
stream. A simple solution to this problem is to relax the greediness on some of the phrases (i.e.,
by making them a little shorter) in such a way to encode the extra bits. Relaxing the length of too
many phrases will, however, degrade the compression performance considerably. Care must be
taken to select the set of phrases to shorten that will allow the necessary “extra space” to store the
bits for error detection and correction. Also, we must ensure that the new compressed stream can
be decompressed by the original algorithm. Note that by relaxing the greediness some entries in the
dictionary . will have multiple codewords associated with them. A somewhat similar approach
was taken in [6], where the author analyze a scheme where the entries in the dictionary to have
multiplicity up to a constant J .

Figure 1 show an example. On the left, the text
�

=aaaaaab is compressed with the greedy
LZW algorithm. The corresponding compressed data stream is

�K�
=0231. By the end of the

encoding process, the dictionary contains five phrases, namely
13L

=a,
13�

=b,
1E7

=aa,
1EM

=aaa,

2

Phrases: a, aa, aaa, b
Output: 0, 2, 3, 1

��� 3

2

1

4

5

0

a

a
a

b

ba

Phrases: a, aa, aa, a, b
Output: 0, 2, 2, 0, 1

� � �
3

2

4

0

a

1

b

a

a

b

greedy-LZW algorithm relaxed-LZW algorithm

Figure 1: Greedy-LZW parsing vs. relaxed-LZW parsing on the input � =aaaaaab

and
1��

=aaab. Phrases
1EL

and
13�

are from the input alphabet � , whereas
1F7

,
1EM

, and
1��

, are
constructed greedily as the text is parsed from left to right. If instead of generating the next phrase
in a greedy manner all the time, we reduce the length of

1��
by one, we will get the result as shown

in the right part of the figure. This time, the dictionary contains 6 phrases and the output, 02201,
is one codeword longer than that in the greedy case. The two phrases,

1 �M
and
1 ��

, are identical,
which is as expected. The dictionary . and . � are both shown as tries in the figure.

The crucial question is whether this modification in the encoder will produce a compressed
file that can still be decompressed by the original LZW algorithm. The answer to this question
depends on the data structure used to represent the dictionary. Although in the literature, the
dictionary is always represented as a trie, all the implementation we checked use a fixed-size hash
table (typically with 4096 entries). Thus, the decoder is not affected by the multiplicities in the
dictionary entries. All it does is to refer to the existing phrases by their indices, whether there are
multiple such phrases or not, and concatenates two strings to produce the next phrase. Because
of this, our relaxed-LZW scheme is backward-compatible with the greedy-LZW. We verified the
backward compatibility of our scheme on various software that support the LZW scheme. For
example, for GIF images, we tested MS Paint, MS Internet Explorer and Mozilla Firefox. We also
tested Unix Compress and Winzip. All these latter software were able to decompress a relaxed-
LZW stream. We expect PDF and TIFF files to be capable of handling our scheme as well.

Once the backward compatibility have been assessed, we need to take the compression perfor-
mance into consideration. A detailed description on the relaxed-LZW scheme is in order. We call
the LZW phrases that will become shorter because of the relaxation, non-greedy phrases.

Let � denote the message over the binary alphabet that is going to be embedded into the com-
pressed text

� �
. The capacity of the “embedding channel” depends on two integer parameters �

and 	 . The integer � specifies the number of bits of the message that are embedded in the interval
between two consecutive non-greedy phrases, whereas the 	 parameter specifies the number of
bits that is embedded in the length of each non-greedy phrase. For example, when � " � we . . .

The message � to be embedded is first logically divided into consecutive blocks of � +�	
bits. Every block is further divided into two sub-blocks of � and 	 bits each. The contents of the

3

MESSAGE EMBEDDING LZW ENCODER � ������������	�

1. � � �
���������
2. ��� get next � bits from �
3. if ��������
 then �������
4. while (have not finished encoding yet)
5. �! #"%$�&(')� next phrase as according to the standard LZW algorithm
6. if ��* �+ #"%$,&-'�*,./�%0+
 then
7. ���1�!243
8. if �5�����6
 then
9. ���7�

10. 89� get next 	 bits from �
11. if �:8;�<��
 then 8;��� 0
12. �+ 6"%$�&(')� reduce the length of �+ #"%$,&-' by 8 symbols
13. ��� get next � bits from �
14. if �����4��
 then ����� �
15. � � � � � 2=�+ #"%$,&-'
16. return � �
Figure 2: The sketch of the encoder capable of embedding a message � while compressing � into a LZW
stream. � and 	 are two integer parameters of the algorithm (see text)

two sub-blocks are interpreted as positive integers, and for clarity purposes, we denote them by B
and > respectively. Note that1 B@?�ACB 4ED � GH�(F and >�?�AGB 4HD 0 GH�-F . The message � is embedded into� �

one block a time while compressing
�

according to LZW, as follows. We initialize a counter
 to B , and generate new phrases greedily as per the greedy LZW algorithm. Every time a new
phrase is generated, its length is compared to the value

D 0 (note that
D 0 is the maximum value for

> , see footnote). If the length of the phrase is greater we increment the counter by 1. As soon as
the counter equals the value B we relax the length of that phrase by > symbols. Then, the counter is
reset to 0, and a new cycle begins (see Figure 2)

The decoding process is rather straightforward. As codewords are read from
� �

, phrases are
being reconstructed. For each phrase the decoder determines whether the phrase is greedy or non-
greedy. If the phrase is non-greedy phrase, a block of message is recovered according to the rules
we followed to embed it. At the same time, the original text is also rebuilt as per the generic LZW
algorithm. Note that in order to determine whether or not a phrase is non-greedy, we need to look
ahead several phrases. This can be done by employing some sort of look-ahead buffer. A sketch of
the decoder is illustrated in Figure 3.

As a final remark, we want to note that in the strategy described above we have not exploited the
multiplicities in the dictionary to embed even more bits of the message. When the relaxed-LZW
algorithm looks for a longest prefix of text to be compressed that is contained the dictionary . ,
there might be multiple such longest phrases in the dictionary, due to the fact that we have reduced
the lengths of some of the previous phrases. If that is the case, we can embed “free of charge”
another I:J5K,L 79M�N where

M
is the multiplicity of the longest phrase. A similar idea is exploited in

[1, 2] to embed extra bits in LZ-77 streams.

1 OQP@R and S PTR are treated as a special case, by mapping them to U(V and UHW , respectively.

4

MESSAGE EMBEDDING LZW DECODER � � � ��� ��	

1. ����� � ������� 'E"(�
�����������������
2. while (have not finished decoding yet)
3. �! #"%$�&('�3�� decode the next phrase as according to the standard LZW decoder
4. ��� � 2��+ 6"%$�&('�3
5. Fill

������� 'E"
6. �! #"%$�&(' � � encoder the text in

������� 'E" as according to the standard LZW encoder
7. if ��* �+ #"%$,&-'-�6*,./� 0

8. ���1�!243
9. if ��* �+ #"%$,&-'�3�*
	 * �+ 6"%$�&(' �6*

10. � ��� 24�5� & � �
 2��
��* �+ #"%$,&-'-�6*�� * �! #"%$�&('�3�*
 & � 0

11. � ���
12. return � �)���

Figure 3: The sketch of the decoder capable of recovering the embedded message � from a LZW stream
� � . � and 	 are two integer parameters of the algorithm (see text)

4 Selection of parameters
 and �
Embedding extra information into the LZW data stream is clearly not free of charge. With

additional bits embedded, the size of the new LZW stream is usually larger than that of the original
one, as is illustrated by the example in Figure 1. However, by choosing the two parameters � and
	 judiciously, the size will not increase by too much. In fact, we will show in the Section 7 that
when � is 5 or higher, the size of the new LZW file is typically less than the sum of the sizes of
the original file and the message file.

The compression tend to degrade as � decreases and 	 increases, but at the same time the
number of bits embedded in the message will increase. In the error resilient application it is crucial
to determine the best tradeoff. Once the file is compressed with the original greedy-LZW, the
stream is broken into blocks (see Section 6) and the total number of parity bits will be computed.
In this section, we discuss how to choose � and 	 so that we can estimate the number of bits that
can be embedded in

�I�
. The aim is to create enough extra bits for the length of the message to

be embedded, i.e., all the parity bits of the error-correcting code, but not much more so that the
compression will suffer.

In our analysis, we assume that during the embedding of the message, the lengths of the phrases
are always greater than

D 0 , which of course is not true at the beginning of the file. However, as long
as the text is long enough and as new phrases are being generated and inserted into the dictionary,
the assumption is likely to be satisfied. For simplicity, we assume the message � to be embedded
is generated by an i.i.d. model with 0 and 1 having equal probabilities. Then, on average we will
get a non-greedy phrase every � D � + ����� D phrases. On average, the length of the non-greedy phrase
will be reduced by � D 0 + ����� D symbols. For simplicity in our exposition, we set � �&" � D � + ����� D
and � 7�" � D 0 + ����� D .

Let assume that C � C " � and C � C "��
. Let us call

� �
the portion of

�
that is encoded by

greedy phrases, and call
� 7

the portion of
�

encoded by non-greedy phrases. Intuitively, if we
“zip”

� �
and
� 7

at the points where
�

is broken into phrases, we get back
�

. Let the sizes of
� �

and
� 7

be � � and � 7 respectively. Clearly, � " � � + � 7 .
5

The set of unique phrases in the dictionary is determined by the greedy phrases (in
� �

). The
number of the unique phrases, � � , is then approximately equal to

'�������	� '
� , where � is the entropy

of
� �

. The average length of the greedy phrases, > � , will be roughly
' ���
 " ���	��� '
���� . The number of

blocks of message, � , that is embedded in the text will be �
� � , and hence we have
� " � � � + 	 � "�
� � � � + 	 � . Let > � � be the average length of the non greedy phrases. Then we have > � � " > � G � 7 , and

� 7�" � >�� " �
� � � ' ��
 G � 7 � " ' �� � G ' � � ������	��� '
����� � � . The number of non-greedy phrases in the dictionary is
equal to the number of blocks of messages embedded. The total number of phrases, � , generated
by our algorithm is the sum of that of greedy phrases and of the non-greedy phrases, which is equal
to � � +�� . To sum up, we have the following equalities:

� � "
D � + �D 4 � 7�"

D 0 + �D

� 7 " � � > � G � 7 � " � �
� � �
� �� � G � 7 � " �

�
� � G

� � � � 7
J K,L � � � ��� �

� " � � +-� 7�" � � + �
�

� � G
� � � � 7
>���� � � � ��� �

� " � � � + 	 � " � �
� � � �

� + � 7 � " � � �
� � J K,L&� � � �

� + � 7 �

From the above set of equations, � � can be determined given � and � , so will be � , � and
�

.
The capacity of our message-embedding channel can be represented as the ratio of

�
over � . The

performance of our algorithm, in terms of compression ratio, can be determined by comparing the
total number of phrases, � , that is generated by our algorithm to the number of phrases,

� ' � �!�"�#%$'&�� ' � �!� ,
that would be produced if we were to compress the concatenation of the text and the message� + � simply by the generic LZW algorithm.

5 Asymptotic analysis of the redundancy

In this section we are concerned with the analysis of the redundancy of the new scheme when
the input is large. In particular we are interested in comparing the redundancy of the relaxed-LZW
scheme with the original LZW/LZ-78. Here, we follow the notation from [3]. On average our
relaxed-LZW algorithm decreases the number of manipulated symbols by (' 	 � � where (' is the
yet unknown (average) number of phrases when a string of length � is compressed.

Let, as in [3], define

) ��(� " (* J5K,L+(=G , * (=G (
� 	H+.- / J K,L+(* 0

(1)

where , " � G21 G �D * * 7 +�3 G54 L � � �
6

and where
* " G�� J K,L�� G M J K,L M�� B is the entropy, 1 " B �����	� �9�:� is the Euler constant,

* 7E"
� J5K,L

7
��+ M J5K�L

7 M
, and 3 " G
�@
��� �

@ ���
J5K,L���+ M @ ��� J K,L M
� G��

@6��� G M @ ���
�

(2)

The function 4 L ��(� is a fluctuating function with mean zero and a small amplitude for J5K�L�� � J K,L M
rational (e.g., the amplitude of 4 L ��(� is smaller than �%B���� for the unbiased case, where � " M "
B ���), and J��������
 4 L ��(� " B otherwise.

Define now (' as) ��(' � " � �
Then, as in [3], the average number of phrases of our algorithm is � A � ' F�� (' . Observe that

the code length 	 ' of our algorithm is

	 ' " (' �?� G ��� � �-AGJ K,L���(' �?� G ��� � ��� + �(F �
Thus, the relative average redundancy ' becomes

 ' " (' �?� G ��� � �-AGJ K,L ��(' ��� G ��� � ��� + �(F G �
*

�" * � + , + 	 * � �
J5K,L �

�
(3)

Comparing it to the regular LZW/LZ’78, the redundancy of relaxed-LZW is increased by
	
*
��� � J5K,L � � .

6 Error resilient LZW

7 Experimental Results

In order to validate our theoretical studies and test the correctness of our scheme, we imple-
mented our algorithm and tested it on GIF files, which, as is well-known, is compressed by LZW
algorithm. We downloaded from Internet several standard pictures for digital image processing,
and tested our algorithm with them. Table 1 shows our experimental results with � and 	 being set
to

�
and B respectively. The “Message Length (bytes)” column indicates how much random infor-

mation we can embed into the original GIF file. Column “Cmprssn Loss” is defined to be the size
of the new GIF file minus the sum of the size of the original GIF file plus the size of the random
message. If this number is negative, it means that overall we are gaining more compression than
the standard LZW algorithm. As we can see from the table, airplane.gif and couple.gif
are better than the rest of the GIF files in terms of compression loss, and baboon.gif is the worst
among all of them. This is because the compression ratio for airplane.gif and couple.gif
(5.77 and 4.88 respectively) is much higher than that for baboon.gif (2.49), and reducing the
lengths of phrases will not have as dramatic negative impact on the file size for GIF files with
high compression ratios than for those with low compression ratios. Column “channel capacity”
is defined to be the ratio of the size of the random message over the size of the original GIF

7

Original GIF file Message embedded GIF file

Width Height BPP
Size

(bytes)

Average
LZW

Phrase
Length

Size
(bytes)

Mssg
Length
(bytes)

Average
LZW

Phrase
Length

Cmprssn
Loss

Channel
Capacity

airplane.gif 512 512 8 64908 5.77 66468 1706 5.63 -146 0.02628335
baboon.gif 512 512 8 149414 2.49 151804 2169 2.45 221 0.01451671
couple.gif 256 256 8 19604 4.88 20088 505 4.77 -21 0.02576004
girl.gif 256 256 8 23573 4.04 24127 566 3.94 -12 0.02401052
lena.gif 512 512 8 96373 3.87 98770 2396 3.78 1 0.02486173

peppers.gif 512 512 8 105262 3.54 107792 2372 3.46 158 0.02253424

Table 1: Comparing the size of some GIF files compressed with the standard LZW versus the message
embedding LZW scheme �:� ������	 � 3

file. We notice that the variation of “channel capacity” among the files are quite small, except
baboon.gif, which again we believe is due to its relatively poor compression ratio.

Table 2 shows our experimental results with various parameter settings. Clearly, the channel
capacity decreases as the parameter � increases. However, the relationship between the channel
capacity and the parameter 	 is not as clear. To our observations, when the parameter � is small,
say less than 4, increasing the parameter 	 from 0 to 1 usually increases the channel capacity
as well. However, going beyond 1 neither helps channel capacity nor does it improve the image
compression ratio.

References

[1] LONARDI, S., AND SZPANKOWSKI, W. Joint source-channel LZ’77 coding. In IEEE Data Compres-
sion Conference, DCC (Snowbird, Utah, March 2003), J. A. Storer and M. Cohn, Eds., IEEE Computer
Society TCC, pp. 273–283.

[2] LONARDI, S., SZPANKOWSKI, W., AND WARD, M. Error resilient LZ’77 and its analysis. In IEEE
International Symposium on Information Theory (ISIT’04) (Chicago, IL, June 2004), p. 56.

[3] LOUCHARD, G., AND SZPANKOWSKI, W. On the average redundancy rate of the Lempel-Ziv code.
IEEE Trans. Inf. Theory 43 (1997), 2–8.

[4] SAYOOD, K., OTU, H., AND DEMIR, N. Joint source/channel coding for variable length codes. IEEE
Trans. Inf. Theory 48 (2000), 787–794.

[5] STORER, J. A., AND REIF, J. H. Error-resilient optimal data compression. SIAM Journal on Computing
26, 4 (1997), 934–949.

[6] SZPANKOSWKI, W., AND KNESSL, C. A note on the asymptotic behavior of the height in
�
-tries for

�
large. Electronic J. of Combinatorics 7 (2000), R39.

[7] THOMBORSON, C. The V.42bis standard for data-compressing modems. IEEE Micro 12, 5 (Oct. 1992),
41–53.

8

Mssg
Length
(bytes)

Average
LZW

Phrase
Length

Cmprssn
Loss

Channel
Capacity

Mssg
Length
(bytes)

Average
LZW
Phrase
Length

Cmprssn
Loss

Channel
Capacity

���
�
��� ��� ���

�
��� �

�
airplane.gif 5295 3.91 25058 0.081577 9122 3.97 20001 0.14053737
baboon.gif 10973 1.66 62620 0.07344023 10768 1.97 28233 0.07206821
couple.gif 1509 3.38 7035 0.07697408 2650 3.39 5798 0.13517649

girl.gif 1823 2.76 8798 0.07733423 2978 2.85 6654 0.12633097
lena.gif 8003 2.53 42706 0.08304193 12624 2.65 31451 0.13099104

peppers.gif 8392 2.34 45190 0.07972487 12278 2.51 30728 0.11664228
��� � ��� ��� ��� � ��� � �

airplane.gif 5227 4.73 8759 0.08052936 6799 4.75 6950 0.10474825
baboon.gif 10778 2.02 23867 0.07213514 8365 2.2 11363 0.05598538
couple.gif 1524 4 2638 0.07773923 1979 4.01 2134 0.10094878

girl.gif 1794 3.34 3023 0.07610401 2207 3.4 2202 0.09362406
lena.gif 7776 3.12 15101 0.08068649 9337 3.18 11384 0.09688398

peppers.gif 8167 2.87 16189 0.07758735 9119 2.97 11055 0.08663145
����� ��� ��� ���	� ��� �

�
airplane.gif 3947 5.23 2720 0.06080914 4542 5.24 2035 0.06997596
baboon.gif 8100 2.23 8947 0.05421178 5718 2.33 4477 0.0382695
couple.gif 1160 4.45 779 0.05917159 1289 4.48 521 0.06575188

girl.gif 1356 3.67 995 0.05752343 1468 3.69 690 0.06227463
lena.gif 5813 3.47 5311 0.06031772 6205 3.49 4031 0.06438525

peppers.gif 6153 3.17 5934 0.05845414 6185 3.23 3967 0.05875814
����
 ��� ��� ���	
 ��� �

�
airplane.gif 2656 5.48 623 0.04091945 2819 5.49 366 0.0434307
baboon.gif 5432 2.36 3033 0.03635536 3698 2.4 1482 0.02475002
couple.gif 778 4.67 140 0.03968577 828 4.67 93 0.04223627

girl.gif 940 3.83 282 0.03987612 952 3.84 201 0.04038518
lena.gif 3873 3.66 1555 0.0401876 3941 3.67 1129 0.04089319

peppers.gif 4071 3.35 1718 0.03867492 3917 3.37 1176 0.0372119
����� ��� ��� ����� ��� �

�
airplane.gif 1663 5.63 -90 0.02562087 1706 5.63 -146 0.02628335
baboon.gif 3413 2.42 756 0.02284257 2169 2.45 221 0.01451671
couple.gif 479 4.77 -27 0.02443378 505 4.77 -21 0.02576004

girl.gif 582 3.92 63 0.02468926 566 3.94 -12 0.02401052
lena.gif 2441 3.76 276 0.02532867 2396 3.78 1 0.02486173

peppers.gif 2566 3.45 357 0.02437726 2372 3.46 158 0.02253424
����
 ��� ��� ���	
 ��� �

�
airplane.gif 987 5.72 -300 0.01520613 982 5.71 -181 0.0151291
baboon.gif 2039 2.46 -130 0.01364664 1305 2.47 -98 0.00873412
couple.gif 288 4.81 -14 0.01469087 286 4.83 -64 0.01458885

girl.gif 329 3.99 -37 0.01395664 311 3.98 -4 0.01319305
lena.gif 1478 3.82 -236 0.01533624 1390 3.83 -260 0.01442312

peppers.gif 1545 3.49 -84 0.01467766 1376 3.49 25 0.01307214
����� ��� ��� ����� ��� �

�
airplane.gif 591 5.75 -303 0.00910519 583 5.75 -294 0.00898194
baboon.gif 1184 2.47 -127 0.00792429 782 2.48 -102 0.00523377
couple.gif 182 4.84 -38 0.00928381 175 4.85 -37 0.00892674

girl.gif 193 4.01 -22 0.00818733 183 4.01 -7 0.00776311
lena.gif 840 3.85 -262 0.00871613 765 3.85 -166 0.0079379

peppers.gif 903 3.51 -110 0.00857859 753 3.52 -81 0.00715357

Table 2: Experimental results for several choices of the parameters

9

[8] WELCH, T. A. A technique for high-performance data compression. IEEE Computer 17, 6 (June 1984),
8–19.

[9] ZIV, J., AND LEMPEL, A. Compression of individual sequences via variable-rate coding. IEEE Trans.
Inf. Theory 24, 5 (Sept. 1978), 530–536.

10

