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Summary. We present an efficient randomized algo-
rithm for leader election in large-scale distributed sys-
tems. The proposed algorithm is optimal in message com-
plexity (O(n) for a set of n total processes), has round
complexity logarithmic in the number of processes in the
system, and provides high probabilistic guarantees on
the election of a unique leader. The algorithm relies on a
balls and bins abstraction and works in two phases. The
main novelty of the work is in the first phase where the
number of contending processes is reduced in a controlled
manner. Probabilistic quorums are used to determine a
winner in the second phase. We discuss, in detail, the
synchronous version of the algorithm, provide extensions
to an asynchronous version and examine the impact of
failures.

1 Introduction

The problem of leader election in distributed systems
is an important and well-studied one. This problem is
at the core of a number of applications – it forms the
basis for replication (or duplicate elimination) in unreli-
able systems, establishing group communication primi-
tives by facilitating and maintaining group memberships,
and load balancing and job-scheduling in master-slave
environments [31].

A leader election algorithm is formally characterized
as follows [19,32]: given a distributed ensemble of pro-
cesses with each process executing the same local algo-
rithm, the algorithm is decentralized, i.e., a computation
can be initiated by an arbitrary non-empty subset of pro-
cesses, and the algorithm reaches a terminal configura-
tion in each computation, and in each reachable termi-
nal configuration, in the subset of processes that initiated
the computation, there is exactly one process in the state
leader and all other processes in the subset are in the
state lost.

The central challenge of efficient, scalable, and ro-
bust leader election algorithms is to simultaneously min-
imize the number of messages and overall execution time.
With these objectives, a number of leader election pro-
tocols have been proposed [4,8,9,12,28]. The emergence
of novel distributed paradigms and underlying platforms
such as peer-to-peer systems [11,26,27,29] for resource
sharing pose interesting new variants of this problem
viz., scalability, reduced restriction on correctness, etc.
This motivates the design of a variety of probabilistic
leader election schemes [12,28]. In [12], Gupta et al. use
a multicast approach to elect a leader in a group with
high constant probability. In [28], Schooler et al. propose
two variants of the leader election algorithm and analyze
it in the context of a multicast with respect to several
metrics, including delay and message overhead.

In this paper, we present a randomized leader elec-
tion algorithm (primarily non fault-tolerant) that is op-
timal in terms of message complexity (O(n) for a dis-
tributed system with n processes), has round complex-
ity logarithmic in n, and is correct with high probability
(w.h.p.). In other words, as n → ∞, the probability of
one leader getting elected tends to one. Throughout this
paper, w.h.p. 1 (with high probability) denotes proba-
bility 1 − 1

logΩ(1) n
. This is in contrast to known algo-

rithms (Section 8) that involve a large number of mes-
sages [18,20,21] or require a larger number of rounds [4].
In this sense, our algorithm is targeted towards large-
scale distributed systems [11,26,27,29], in which scala-
bility is an important issue. However, it is important to

1 Our definition of the term “with high probability” is
weaker than the customary one, which typically requires a
high probability event to occur with probability at least
1− 1

n
α , for some α > 0, where n is a “system size” parameter.

Under both definitions the probability of the event converges
to 1 as the system size grows to infinity, but under our use of
the term this convergence is exponentially slower than under
the customary use.
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Algorithm Messages Rounds/Time Correctness
Probabilistic Quorum [21] O(n

√
n) 1 round with high probability

P.C.L.E [12] O(K4 ∗ n) per round unspecified depends on system parameters
LE in multihop broadcast environment [4] O(n log n) O(n) time guaranteed
LE in a synchronous ring [9] Ω(n log n) Bounded rounds (t) guaranteed
Highly available LE Service [8] O(n− 1) datagrams per round unspecified dependent on connectivity
LE for multicast groups [28] dependent on failures dependent on failures guaranteed (in the absence of failures)
Randomized Leader Election O(n) O(log n) rounds with high probability

Table 1. Comparison of election algorithms with respect to message complexity, round complexity and correctness.

note that while many traditional leader election algo-
rithms provide absolute guarantees for the election of a
unique leader, our algorithm guarantees leader election
with high probability. We provide a comparison of leader
election algorithms for different metrics in Table 1.

1.1 Technical Contributions

The main contributions of the paper are as follows:

1. A randomized leader election algorithm that is opti-
mal in the number of messages O(n), has round com-
plexity logarithmic in the number of processes in the
system O(log n), and elects a unique leader w.h.p.

2. An approach in which the lack of global information
is intelligently leveraged to prune the number of pro-
cesses participating in the leader election algorithm.

3. An asynchronous version of the first phase of the al-
gorithm and a partially synchronous [5] version of the
second phase so that the algorithm can be effectively
realized for general distributed applications.

4. A rigorous analysis to prove the correctness and the
complexity of the algorithm.

The rest of the paper is organized as follows: Sec-
tion 2 formalizes definitions and terminology used in
this paper, Section 3 presents the synchronous version of
the protocol along with proofs relating to message com-
plexity and probabilistic bounds on election of a unique
leader, and Section 4 presents an asynchronous version
of the protocol with analytical performance bounds. The
impact of failures is addressed in Section 5. Issues relat-
ing to current distributed systems are discussed in Sec-
tion 6. We provide a proof of concept of our approach
using simulations in Section 7. Related work is presented
in Section 8. Conclusions and avenues for future research
are outlined in Section 9.

2 System Definitions and Model

We start by formalizing definitions and terminology used
in the rest of the paper.

• Process: A process is an individual entity in a dis-
tributed system that can participate in the leader
election protocol. It can communicate with any other
process by sending and receiving messages. It is ca-
pable of generating random numbers independent of
other processes in the system. In a synchronous sys-
tem, all processes share a common clock (or, equiva-
lently, their local clocks are synchronized), and mes-
sage transfers are assumed to take unit time. In an

asynchronous system, a process maintains a local clock,
which is not necessarily synchronized with other pro-
cesses. Furthermore, message transfers may take ar-
bitrary time. All processes are assumed to follow the
specified algorithm.

• Contender: The leader election algorithm presented
in this paper is fashioned as a game played by par-
ticipating processes. The set of processes playing this
game decreases as the algorithm proceeds. This set of
processes, from which a winner is selected, is referred
to as the set of contenders.

• Mediator: Winners at intermediate steps in the game
are decided from among the set of contenders by pro-
cesses referred to as mediators. Specifically, a media-
tor is a process that receives a message from a con-
tender and arbitrates whether the contender partici-
pates in subsequent steps of the protocol.

• Round: A round is composed of a two-way exchange
between a single process and a set of mediators. At
the end of a round, if the process is still a contender,
a new round (communication with a new set of me-
diators) is initiated.

• Winner: A winner is a process that has not received
negative responses from any mediator throughout the
entire execution of the protocol.

In this paper, we primarily discuss leader election al-
gorithm in a distributed system without process or com-
munication failures. We initially provide the methodol-
ogy and proof for the correctness and complexity for the
synchronous version of the algorithm. The complexity
measures considered are:

1. Message Complexity: The total number of mes-
sages exchanged by all processes (contenders and me-
diators) in the system across all rounds for one com-
plete execution of the leader election algorithm.

2. Round Complexity: The total number of rounds
taken by the process elected as ‘leader’.

We provide an asynchronous version of the algorithm.
We assume partial asynchrony based on the models de-
veloped by Dolev et al [5], where we assume a maximum
time bound for message delay and processor speed i.e.,
within a specific time (τ) known to all processes, a mes-
sage sent by any process A to any process B is received
and processed by B in at most τ time units. Subsequently,
we consider the implications of fail-stop process failures,
in which a failed process neither sends nor receives mes-
sages, on our algorithm. We assume that each process
fails with some probability γ.
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3 A Synchronous Leader Election Protocol

In this section, we present a randomized synchronous
algorithm for leader election that is scalable with respect
to system size and offers high probabilistic guarantees for
correctness. By high probabilistic guarantee, we mean
that the probability of two processes getting elected as
leader tends to zero with increase in the system size. We
initially present the synchronous version of our algorithm
for ease of understanding. In Section 4, we extend our
algorithm to the asynchronous setting, which is more
realistic for large-scale systems.

We first present the algorithm informally using a
balls-and-bins abstraction and subsequently formalize it
in the context of distributed systems. The algorithm is
played as a tournament in two phases. The first phase
consists of multiple rounds. In round i of this phase, each
contender casts σi balls into n bins. (We derive precise
expressions for σi later in this section.) A contender is
said to ‘win’ a bin if its ball is the only one that lands
in the bin. If a contender wins all the bins that its balls
land in, it is considered a winner in this round and pro-
ceeds to the next round. An example of this process is
illustrated in Figure 1 for n = 8. The first phase consists
of log2 8 − 1 = 2 rounds. In the first round, processes
2,4,5 and 6 proceed, and in the second round, processes
5 and 6 proceed.
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Fig. 1. Illustration of the synchronous protocol. Contenders
are illustrated by squares, mediators by bins, and messages
from contenders to mediators by labeled balls (the labels in-
dicate the source of the ball). In all rounds, contenders that
are no longer in the running are shaded. In the first round,
each contender casts one ball and contenders 2, 4, 5, and
6 proceed since their balls uniquely occupy their respective
bins. In round 2 (last round of the first phase), each contender
casts two balls and contenders 5 and 6 proceed. Finally, in
round 3 (the only round of the second phase), each contender
casts 5 balls and contender 6 is selected the leader.

In a realization of this balls-and-bins abstraction, a
process can be a contender as well as a mediator (a pro-
cess to which one or more contenders sends a message
to arbitrate) at the same time. Casting a ball into a

randomly chosen bin corresponds to a message from a
contender to a randomly chosen process (who thereby
becomes a mediator) picked uniformly at random. A con-
tender is a winner if none of the mediators it sends mes-
sages to receive messages from any other contenders. The
number of mediators to which a contender sends mes-
sages in round i is denoted σi. This quantity depends on
the number of processes and the current round number.
We discuss how to choose the value of σi in Section 3.1.
This number, if carefully selected, can reduce the number
of contenders by half, on average, after every round. This
results with high probability in a small, nonzero, number
of contenders being left after a number of rounds that is
logarithmic in the number of processes. The number of
contenders is not relevant since each contender executes
the algorithm assuming that every process is a contender
and the number of rounds is still logarithmic in the to-
tal number of processes and the message complexity is
preserved.

The second phase of the protocol consists of a single
round and is based on probabilistic quorums [21]. Each
remaining contender generates a random number in a
specific range, such that the random number generated
is unique w.h.p among all the random numbers generated
by other contenders, and sends this number to a set of
mediators picked uniformly at random. A contender wins
this phase w.h.p. if it generates the largest random num-
ber among all the contenders. The number of mediators
in this phase is chosen so that there is a high probability
of at least one overlapping mediator between two con-
tenders. This overlapping mediator arbitrates based on
who generates the larger random number. A crucial dif-
ference between the two phases is as follows: In the first
phase a contender wins a round only if it sends a mes-
sage to an exclusive set of mediators (the set of processes
to which no other contender has sent a message for that
round). However, in the second phase, the winner is de-
cided based on the random number generated and the
intersection of the selected sets of mediators. The reason
for this difference is that in the first phase, the num-
ber of contenders is reduced just enough so that only a
few of them proceed to the next round, maintaining the
message complexity. In the second phase, the objective
is to have one final winner and the message complexity
is maintained due to a smaller set of contenders.

3.1 The Synchronous Leader Election Protocol

We consider a distributed system of n processes repre-
sented by the set Γn = {ai | 1 ≤ i ≤ n}, for processes
a1, a2, . . . , an. The set of contenders in round j of the
protocol is represented by Φj = {ρi | 1 ≤ i ≤ |Φj |},
where Φj ⊆ Γn, Φj+1 ⊆ Φj and ρ1, ρ2, ..., ρ|Φj | are the
contenders. We define E[Xj ] to be the expected number
of contenders in round j, since the exact number of con-
tenders |Φj | cannot be calculated in a distributed setting.
We later show in our analysis that E[Xj ] ≈ n

2j−1 . A ran-

dom integer πi is selected in the range [0..n4] by each con-
tender ρi. This range guarantees that the chosen values
are unique with high probability [19](chapter 4, page 72).
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Notation Description
Γn Distributed system with n processes.
ai A process in the distributed system.
ρi A contender in a round.
Φj Set of contenders in round j.
πi Random number generated by contender ρi.
w Final round of the protocol.
σj Number of processes that will be mediators

in round j for a contender.
Ψij Set of mediators for contender ρi in round j.
κij Set of messages received by mediator ai in round j.
Cn Maximum number of contenders in the final round.
γ Failure probability of any process.

Table 2. System Parameters

The protocol concludes by declaring a unique member in
Φw to be the final winner, where w corresponds to the
final round in the protocol, and {∀j : j < w, |Φj | > 1}.
We take w = log n− log log6 n+1, which is a fixed value
known by all processes. We show in Section 3.2 that this
suffices to satisfy the probabilistic guarantees of our pro-
tocol. Various system parameters are summarized in Ta-
ble 2.

The synchronous algorithm is as follows, with each
contending process ρi in round j performing the follow-
ing steps:

• Set

σj =

{√

n ln 2
E[Xj ]−1 , if j < w

√
n ln n, otherwise

where σj is the number of mediators in round j,
E[Xj ] is the expected number of contenders in round
j and n is the total number of processes in the system.
The value of σj is selected in this manner to guar-
antee bounds on number of messages and rounds. A
detailed analysis is provided in Section 3.2.

• Let Ψij be the set of σj processes selected uniformly
at random from Γn. If j < w, send (ρi) to all pro-
cesses in Ψij . Otherwise, send the ordered pair (ρi, πi).

• Proceed to the next round j + 1 as a contender if
and only if positive responses are received from all
the processes in Ψij . Otherwise, move election result
to lost.

• If round number is w + 1, move election result to
leader.

Each process ai in Γn performs the following steps in
round j:

• Receive messages from ρk’s in Φj and populate the
set κij with ordered pairs (ρk, πk).

• First Phase: j < w
– If |κij | = 1, then send a positive response to ρk

in κij and proceed to round j + 1.
– Otherwise, send a decline message to every ρk

present in κij and proceed to round j + 1.
• Second Phase: j = w

– For every (ρk, πk) in κij , find the largest2 πk and
send a positive response to the corresponding ρk.
Send a decline message to the rest of the ρk’s.

2 The probability that the random numbers generated by
any two contenders is equal is extremely low. In the unlikely
event that the two equal numbers are the largest among the

3.2 Analysis

We quantify the overhead and the probability of electing
a unique leader using our algorithm. On average, the
number of contenders is halved after a single round in the
first phase. Let Xi be a random variable representing the
number of contenders proceeding to round i from round
i−1, E[Xi] the expectation of Xi, fn = log n−log log6 n,

1 < i ≤ fn, ǫ be O
(

1
log2 n

)

, ℓi = (1 − ǫ)E[Xi], ui =

(1 + ǫ)E[Xi], g(t) = 1 − O( 1
t
), and h(t) = 1 + O( 1

t
).

Lemma 1.

1.
n

2i−1
[g(log2 n)]i−1 ≤ E[Xi] ≤

n

2i−1
[h(log2 n)]i−1

2. P (ℓi < Xi < ui) ≥ g(log6 n)

Sketch of proof: We are given X1 = n and σi =
√

n ln 2
E[Xi]−1 . The analysis can be trivially extended to X1 <

n. The Xi’s are binomially distributed in any round i.
It can easily be shown that E[Xi+1|Xi = ℓ] = ℓ(1 −
σi

n
)σi(ℓ−1). We illustrate this concept using a few vari-

ables and then generalize for 1 < i ≤ fn.

E[X2] =
∑

x

E[X2|X1 = x]P (X1 = x)

= E[X2|X1 = n] =
n

2
g(n)

We can bound the probabilities of X2 based on the Cher-
noff bound [30].

P (X2 ≥ u2) ≤ e−
ǫ2E[X2]

3

P (X2 ≤ ℓ2) ≤ e−
ǫ2E[X2]

2

P (ℓ2 ≤ X2 ≤ u2) ≥ g(n2)

We calculate the bounds for X2 since the value of X1

is already known. However, for subsequent random vari-
ables, we give the bounds for Xi considering the variabil-
ity of Xi−1. Let χi represent the condition ℓi < x < ui,
then

E[X3] =
∑

χ2

E[X3|X2 = x]P (X2 = x)

+
∑

χ2

E[X3|X2 = x]P (X2 = x)

=
∑

χ2

E[X3|X2 = x]g(n2) + (1 − g(n2))

We use the following implication to bound E[X3]. z <
x < y ⇒ ze−y < xe−x < ye−z.

E[X3|X2 = u2] ≤ u2

(

1 − σ2

n

)σ2(ℓ2−1)

=
n

22
[h(log2 n)]2

numbers generated by all contenders, the algorithm fails in
that two or no leaders are elected even in the presence of
intersection of the mediator sets.
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Similarly, we can prove that

E[X3|X2 = ℓ2] ≥
n

22
[g(log2 n)]2

From the above results, we get

n

22
[g(log2 n)]2 ≤ E[X3] ≤

n

22
[h(log2 n)]2

The above bounds can be extended in a similar fashion
for any i, 1 < i ≤ fn.

Theorem 1. At the end of the first phase, there is at
least one contender with probability 1 − O( 1

log6 n
), i.e

P (Xfn
= 0) → 0 as n → ∞.

Proof: We use the second moment method, the re-
sults from Lemma 1 and the fact that Xi’s are binomially
distributed.

Var[Xi|Xi−1 = ui−1]

≤ ui

[

1 −
(

1 − mi−1

n

)mi−1(ui−1−1)
]

=
1

2
E[Xi][h(log2 n)]

Similarly, we can prove that

Var[Xi|Xi−1 = ℓi−1] ≥
1

2
E[Xi][g(log2 n)]

From the above results, we get (for c < 1)

cE[Xi][g(log2 n)] ≤ Var[Xi] ≤ E[Xi][h(log2 n)]

From Lemma 1, we have

E[Xfn
] ≥ n

2fn−1
[g(log2 n)]fn−1 =

log6 n

2
[g(log n)]

Using the second moment method, we have

P (Xfn
= 0) ≤ Var[Xfn

]

E[Xfn
]2

= O

(

1

log6 n

)

The theorem follows. �

Theorem 2. At the end of the first phase, the number
of contenders remaining is at most 1

2 (1 + ǫ) log6 n with

probability 1−O( 1
log6 n

), i.e P (Xfn
> 1

2 (1+ǫ) log6 n) → 0

as n → ∞, for some ǫ < O( 1
log2 n

).

Proof: From Lemma 1, the theorem follows. �

Theorem 3. With high probability, there is exactly one
contender remaining at the end of the protocol.

Proof: ∀u, v : u, v ∈ Φw, u 6= v, the probability that
any two sets Ψuw and Ψvw intersect is

Pr(Ψuw ∩ Ψvw) = 1 −
(

1 −
√

n ln n

n

)

√
n ln n

≈ 1 − 1

n

Furthermore, at the end of the first phase, O(log6 n)
contenders are present w.h.p. To elect a unique leader,

the mediator set of the contender with the highest value
needs to intersect with the mediator set of all other con-
tenders. The corresponding probability of intersection is
(

1 − 1
n

)O(log6 n)
=

(

1 − O
(

log6 n
n

))

. Since the mediator

sets intersect w.h.p, only the process ρi with the highest
value of πi receives positive responses from all processes
in Ψiw. The rest of the contending processes each have
at least one decline message. However, from Theorem 1,
the probability that at least one contender remains at
the end of the first phase is 1 - O( 1

log6 n
). Therefore, the

probability that a unique final winner is chosen at the
end of the protocol is given by 1 - O( 1

log6 n
). �

Theorem 4. The number of rounds in the protocol is
O(log n).

Proof: The number of rounds in the first phase is
log n− log log6 n. There is a unique round in the second
phase. The theorem follows. �

Theorem 5. The total number of messages exchanged
by all the processes across all rounds is O(n).

Proof: The total number of messages exchanged
by all the processes across all rounds of the first phase

is 2
(

∑w−1
j=1 Xj

√

n ln 2
E[Xj ]−1

)

. Based on Lemma 1, in the

worst case, the number of messages in the first phase
is O(n) as

∑w−1
j=1

1

2
j−1
2

converges. Since each contender

sends at most
√

n ln n messages in the second phase, the
theorem follows from Theorem 2. �

An improvement of the algorithm is to send request

messages to σj − ∑j−1
l=1 σk mediators in a round j of

the protocol with the mediators from previous rounds
participating in round j. This is in contrast to selecting
a new set of σj processes for every round j. This op-
timization does not change the asymptotic behavior of
the algorithm, but reduces the number of messages by a
constant factor.

4 An Asynchronous Leader Election Protocol

The design of the asynchronous protocol is largely mo-
tivated by its synchronous counterpart. However, asyn-
chrony poses significant challenges since we would like to
preserve the message and round complexities of the syn-
chronous protocol. We present a suitably modified asyn-
chronous protocol, prove that it is correct, and that it
follows the bounds presented in Section 3. While the first
phase is totally asynchronous, the second phase, which
is based on probabilistic quorums [21], is partially syn-
chronous [5], where we assume a maximum time bound
for message delay and processor speed i.e., within a spe-
cific time (τ) known to all processes, a message sent by
any process A to any process B is received and processed
by B in at most τ time units.

In the first phase of the synchronous protocol, when
messages from two distinct contenders are sent to the
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same mediator, both contenders receive a negative re-
sponse. In the asynchronous case, messages from con-
tenders to a mediator for a specific round need not be
received at the same time. Therefore, in every round, a
mediator responds positively to the first contender re-
quest for that round. A negative response is sent to sub-
sequent requests from other contenders for that round.
In the second phase of the partially synchronous ver-
sion [5], messages from contenders need not be received
at the same time, as compared to the synchronous ver-
sion. A contender in the second phase of the protocol
wins if it gets positive responses from the required num-
ber of mediators within a bounded time (the time bound
is provided as a parameter to the algorithm). If a con-
tender receives no response (either positive or negative)
from a mediator, such scenario is attributed to the fail-
ure of a mediator. An analysis for this is presented in
Section 5.

4.1 The First Phase

In the first phase of the asynchronous protocol, a con-
tender ρi sends requests, along with a round number j,
to the mediators in the set Ψij . The mediators in the set
Ψij are picked uniformly at random as in the synchronous
protocol. The number of mediators in any round of the
asynchronous first phase is equal to the corresponding
round in the synchronous phase. A contender ρi pro-
ceeds to round j +1 if it receives positive responses from
all the mediators in its set Ψij . We describe below the
procedure that the mediator adopts to send a positive
response to a contender.

A mediator M maintains a vector V of size equal
to the number of rounds (logα n). All the entries in V
are initially set to zero. On receiving a request from a
contender ρi in round j, if entry j in V at M is zero, M
sends a positive response to ρi and sets the entry j to ρi

(signifying that the winner of the jth round at M is ρi).
Otherwise a negative response is sent to ρi. The purpose
of this step is to reduce the number of contenders that
proceed to subsequent rounds. A better solution that
reduces the number of contenders in the protocol and
does not change the correctness of the protocol would
require M to send a negative response to any request
with round number smaller than the index of the highest
entry in V with a non zero value ρk. This is because M
has knowledge that ρk is in an advanced round (ahead
of ρi) and hence is more likely to be elected the leader
when compared to ρi. We use the first approach here, in
which a mediator lets a contender proceed even when a
higher numbered entry in its vector is already set. This
simplifies our analysis considerably. We show that the
asymptotic message complexity and number of rounds
hold even under this conservative approach.

Figure 2 illustrates an example of the protocol exe-
cuted at M . In (a), M initially sets all the entries in V
to zero. M receives a request for round one from con-
tender A. Since the corresponding entry is zero, it sets
the entry to A and sends a positive response to A (see
(b)). Similarly, M receives a request for round three from

(d)

(c)

(b)

(a)

0

BA      .   .   . 00 0

BA      .   .   . 00 0

A      .   .   . 000

w−11 2 3 w−2

0     .   .   . 000 0

w−2

w−11 2 3 w−2

w−11 2 3 w−2

w−11 2 3

Fig. 2. (a) Vector V before receiving any requests. (b) V after
a request from A for round number 1. (c) V after a request
from B for round number 3. (d) V after a request from D for
round number 3

contender B. It sets entry three to B and sends a posi-
tive response to B (see (c)). However, when M receives
another request for round three from contender C, since
the entry is already set, a negative response is sent to C
(see (d)). A mediator responds to requests for a round
based on the corresponding entry in V , independent of
other entries. The contenders that survive (which do not
receive even a single negative response) all the rounds
in the first phase proceed to the second phase of the
protocol.

Let A and B be two contenders in the same round
i and let C, D be two common mediators (in general,
the probability of such an event is very low). Suppose
C receives requests from A and B in that order and D
receives the request in the reverse order. Both A and B
cannot proceed to future rounds. This is similar to a colli-
sion in the synchronous case. However, if C and D both
receive the requests from A and B in the same order,
then one of the contender proceeds to the next round. We
note that race conditions can occur in an asynchronous
system. However, our probabilistic analysis takes into ac-
count these race conditions 3. We show in our analysis
that the increased number of contenders proceeding to
later rounds as compared to the synchronous phase does
not affect the message and time complexity.

4.2 Details of the second phase of the asynchronous
algorithm

Let τ represent the network delay and processing time
associated with any message in the system. This is a pa-
rameter to the algorithm – messages in an asynchronous
environment that exceed this time are treated as failures
and their handling is addressed in Section 5. In the sec-
ond phase of the protocol, a contender ρi sends a request

3 To provide an analogy, the randomized quick sort can
take O(n2) in the worst case. However, such events are rare.
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Message Description
REQ A request from a contender to make the

mediator recognize it as a potential winner.
POTW The message from contender to notify the

mediator that the requisite (O(
√

n ln n)
mediators have recognized it as a potential
winner and to recognize it as a final winner.

DEC To notify the mediator that the contender is
dropping out as a contender.

Table 3. Messages REQ (REQuest), POTW (POTential
Winner), DEC (DECline) from contender to mediator.

Message Description
ACK Positive Response for REQ, POTW messages.
NAK Negative Response for REQ, POTW messages.

Table 4. Messages from mediator to contender

to all its mediators Ψiw (Ψiw represents the set of medi-
ators for the contender ρi in round w, the last round of
the protocol, see table 2). Some mediators, in the best
case, may receive and process the message within δ time
(δ << τ) and respond immediately. In the worst case,
the mediator might have processed the message at τ time
units after it was sent and the response might take an-
other τ units. Therefore, ρi waits for at least 2τ units
of time to receive responses from Ψiw. In the actual pro-
tocol, though, the ρi waits for a maximum of 5τ time
units. We explain in Theorem 8 the reason for using 5τ .
If ρi receives a negative response from one of Ψiw within
this period, it sends a decline to the rest of Ψiw. Other-
wise, upon receiving all the positive responses from Ψiw

(a contender will receive a response from every mediator
within 5τ units after sending a request), it sends a mes-
sage to Ψiw hinting that it could be a potential winner.
ρi waits for 2τ units to receive a response from Ψiw af-
ter sending the potential winner message. If it does not
receive a negative response from any of Ψiw, it becomes
the final winner of the protocol. Otherwise, if it receives
a negative response in the intervening time period, it
sends a decline message to the rest of Ψiw.

S4S3

S0 S1 S2

(I1, C1, A1)

(I2, C2, A2)

(I3, C3, A3)

(I4, C4, A4)

(I4, C4, A4)

(I5, C5, A5)

Fig. 3. State diagram of a contender.

A detailed state transition for the contender is shown
in Figure 3. The subscripts in the figure correspond to
rows in the table 5. Table 5 provides the state transition
conditions with I representing a received message (in-

Index I C A
1 Send REQρi

message to the
mediators in the set Ψiw.
counter ← ϕw

2 ACK counter ← counter −1
3 ACK counter = 1 Send POTWρi

to all
mediators in Ψiw.
timer ← 2τ

4 NAK Send DEC messages to all
mediators in Ψiw.

5 timer = 0 Final Winner

Table 5. Contender Transitions

put), C representing a condition, and A representing the
action taken by the contender. For example, (I3, C3, A3)
in Figure 3 is represented by the third row of Table 5.
It is read as, on an input of ACK, given the condition
is counter= 1, the action is sending POTW message to
Ψiw. A contender ρi that enters the second phase of the
protocol is initially in state S0. After it sends the re-
quest to Ψiw in the second phase, it goes to state S1.
If it receives a negative response, it goes to final state
S3, where the ρi is not the final winner. Otherwise, af-
ter receiving all the positive responses, it sends potential
winner messages and goes to S2 from S1. If it does not
receive any negative response from a mediator in state
S2 within 2τ time units, it goes to the final state S4,
where the contender is the final winner.

safe post-safe close-safe

POTWACK

3τ 3τ 3τ

Fig. 4. States of a mediator.

A mediator responds to a contender in the second
phase based on its second-phase state. We define three
second-phase states for the mediator (see Figure 4)4. A
mediator is in a safe state if it sent a positive response to
a request in the last 3τ time units. In this state, the me-
diator is committed to the positive response sent earlier.
It responds negatively to a request from another con-
tender with a lower random number value. Otherwise, it
delays the response. A mediator is in a post-safe state,
if a potential winner or decline message is not received
from the contender that received the most recent pos-
itive response from the mediator, and if the difference
between the current time and the time when the pos-
itive response was sent is between 3τ and 6τ units. In
this state, the mediator can pre-empt (send a negative
response to the contender to which it sent a positive re-
sponse earlier) the earlier contender and send a positive
response to some other contender having a higher ran-
dom number value. A mediator is in a close-safe state

4 The duration of each state is at most 3τ . However, it can
be lesser than that based on the time of receipt of different
messages.
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if it received a potential winner message and has not re-
ceived a decline message from the same contender and
the difference between the current time and the time of
receipt of potential winner message is not greater than
3τ units. In the close-safe state, the mediator delays re-
sponses to any contender requests (similar to safe state).
However, it takes different actions based on the messages
received in the close-safe state. If a decline message is not
received from the contender that sent a potential winner
message, it sends a negative response to the delayed con-
tenders and declares the contender that sent the poten-
tial winner message to be the final winner. Otherwise,
the actions performed at the end of the close-safe state
are similar to the actions at the end of the safe state.

On receiving a request from a contender A, if the me-
diator is not in any of the three second-phase states (i.e.,
it has not received a request from any contender for the
second phase), it immediately sends a positive response.
If it is in one of the second-phase states, the response is
based on random numbers sent by the contender. In a
safe/close-safe state, if the incoming request from con-
tender B has the largest random number (compared to
other random numbers received by the mediator thus
far), the response is delayed. Otherwise, a negative re-
sponse is sent immediately. In a post-safe state, it sends
a positive response to the request from B, which was de-
layed and preempts the earlier contender A. However, if
a potential winner message from contender A is received
before the mediator enters the post-safe state, a nega-
tive response is sent to the delayed contender B. Also, if
a request with a larger random number is received in a
post-safe state, a positive response is sent back, and the
earlier contender A is preempted.

On receiving a potential winner message for the most
recent positive response, the mediator goes to a close-safe
state. If no decline messages are received in the duration
of a close-safe state, the mediator declares the contender
that sent the potential winner to be the final winner.

S2S1

S3 S4

S0

(I1, C1, A1)

(I2, C2, A2)

(I3, C3, A3)

(I4, C4, A4)

(I5, C5, A5)

(I
6
,
C

6
,
A

6
)

(I7, C7, A7)

(I8, C8, A8)

(I9, C9, A9)

(I
1
0
,
C

1
0
,
A

1
0
)

(I11, C11, A11)

(I11, C11, A11)

(I12, C12, A12)

Fig. 5. State diagram of a mediator.

Index I C A
1 REQρi

init(πi, ρi, ∅, ∅, 1)
2 REQρj

act()

DEC πwait 6= ∅ ack(ρwait)
init(πwait, ρwait, ∅, ∅, 1)

POTWρj
ρj 6= ρcurr nak(ρj)

timer = 0, nak(ρcurr)
πwait 6= ∅ ack(ρwait)

init(πwait, ρwait, ∅, ∅, 1)
3 timer = 0 timer ← 3τ

πwait = ∅

4 REQρj
πj < πcurr nak(ρj)

5 REQρj
πj > πcurr nak(ρcurr)

Send ACK to ρj

init(πj , ρj , ∅, ∅, 1)
6 POTWρj

ρcurr = ρj timer ← 3τ

if ρwait 6= ∅

nak(ρwait)
init(πcurr, ρcurr, ∅, ∅, 0)

7 POTWρj
ρj = ρcurr timer ← 3τ

if ρwait 6= ∅

nak(ρwait)
init(πcurr, ρcurr, ∅, ∅, 0)

8 REQρj
act()

9 timer = 0 Final Winner ← ρcurr

10 DEC πwait 6= ∅ ack(ρwait)
init(πwait, ρwait, ∅, ∅, 1)

11 DEC πwait = ∅

12 DEC ρj = ρcurr

Table 6. Mediator Transitions.

Name Actions
init(πc, ρc, πw, ρw, set) φcurr ← πc

ρcurr ← ρc

πwait ← πw

ρwait ← ρw

if set is not 0 then
timer ← 3τ

act() if πj < πcurr

nak(ρj)
else

if πwait = ∅

init(πcurr, ρcurr, πj , ρj , 0)
else
if πj < πwait

nak(ρj)
else
nak(ρwait)
init(πcurr, ρcurr, ρj , πj , 0)

ack(val) Send ACK to val
nak(val) Send NAK to val

Table 7. Mediator Actions.

A formal description of the mediator actions is pre-
sented in the transition diagram in Figure 5, and the
corresponding Table 6. The subscripts in the diagram
correspond to the rows and the symbols in parentheses
correspond to the columns in Table 6. State S4 is the
final state where the eventual winner is declared. State
S0 is the starting idle state, state S1 corresponds to the
safe state, state S2 corresponds to the post-safe state,
and state S3 corresponds to the close-safe state.

We further elucidate the second phase of the protocol
with a few examples. In Figure 6 (example 1), C1 and
C2 are two contenders, and M1 and M2 are mediators
(in reality, M1 may correspond to same process as C1 or
C2, but for the sake of clarity we present it as a different
entity). Let the random number generated by C1 be the
largest in the system. Contender C1 sends requests to M1

and M2. Since M2 has not received any requests previ-
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M1 C1 M2 C2

REQ

REQ

ACK

DEC

REQ

ACK

REQ

ACK

POTW

POTW

ACK

ACK

REQ

NAK

Winner=C1 Winner=C1 Winner=C1

close-safe
close-safe

NAK

safe

safe

safe

post-safe

Fig. 6. Illustration (example 1) of the second phase of the
asynchronous algorithm; C1 is the final winner. Intervals be-
tween message arrivals and departures not drawn to scale.

ously, it sends a positive response immediately. However
M1 had already sent a positive response to some other
contender, say C3, in the system and is in a safe state.
The request from C1 must wait for a maximum of 3τ
units at M1 since the random number value generated
by C1 is the largest. In the mean time, C2 also sends a
request to M2. Since M2 is in a safe state and the ran-
dom number of C2 is smaller than that of C1, a negative
response is sent to C2. Meanwhile, C3 sends a decline
message to M1, since it might have received a negative
response from some other mediator. Mediator M1 sends
a positive response to the next waiting contender C1. Af-
ter having received the requisite positive responses from
all the mediators to which it had sent a request (the

requisite number of responses is O(
√

n ln n)), C1 sends a
potential winner message to the mediators from which it
has received positive responses and waits for 2τ units of
time. Because it receives a positive response from both
M1 and M2, C1 becomes the final winner. Suppose, if
some other contender with a larger random number than
C1’s random number sends a request to M1 when M1 is
in the close-safe state, then that contender receives a
negative response from M1 as shown in the Figure 6.

In Figure 7 (example 2), C1 and C2 are contenders,
and M1 and M2 are mediators. Let the random num-
ber generated by C1 be less than that generated by C2.
As shown in the figure, C1 gets positive responses from
its mediators but before it could send a potential win-
ner message, M2 is in a post-safe state. When C2, which
has a larger random number sends a request, M2 sends
a positive response immediately to C2, and a negative
response to C1. This has a cascading effect as C1 sends a
decline to other mediators (here M1), which had previ-
ously sent a positive response. Now, M1 is free to respond
positively to the request that has been delayed after the
receipt of the decline from C1.

M1 C1 M2 C2

REQ

REQ

ACK

ACK

DEC

REQ

ACK

REQ

ACK

POTW

POTW

NAK

REQ

ACK

close-safe

ACK

DEC

safe

safe

safe

safe

post-safe

Fig. 7. An example (example 2) of the second phase of the
asynchronous algorithm; intervals between message arrivals
and departures not drawn to scale.

M1 C1 M2 C2

REQ

ACK

POTW

REQ

NAK

REQ

ACK

DEC

REQ

NAK

safe safe

close-safe
post-safe

Fig. 8. An example of the second phase of the asynchronous
protocol (example 3). Intervals between message arrivals and
departures not drawn to scale.

In Figure 8(example 3), let the random number gen-
erated by C1 be the largest. The response to request from
C1 is delayed by M1 since it is in a safe state. M1 receives
a potential winner message from the contender (say C3)
to which it had sent a positive response earlier before the
end of the safe state. Therefore, a negative response is
sent to C1. In turn, C1 sends a decline to M2 from which
it received a positive response. Note that M2 has already
sent a negative response to another contender C2, whose
random number value was lower than that generated by
C1. A delay in response to C2 would not help because a
request from C2 must intersect with a request from C3

at some mediator (the probability of intersection of the
set of mediators generated by two different contenders is
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high) and C2 will receive a negative response from that
mediator also (given that a potential winner message was
received by M1 from C3 when it was in a safe state).

4.3 Analysis of asynchronous protocol

We prove that the bounds established for the synchronous
protocol still hold for the asynchronous case as well.

Theorem 6. The number of rounds in the protocol is
O(log n).

Proof: In the first phase of the asynchronous pro-
tocol, the contenders may potentially arrive at distinct
points of time. A contender can proceed to the next
round, if it sends requests to mediators, who have not
received request from any other contender for the same
round. Unlike in the synchronous case, where all con-
tenders involved in a collision do not proceed to the next
round, the contender which arrives first at all mediators
for a specific round proceeds to the next round (apart
from the contenders that sent requests to unique media-
tors). The expected number of contenders in round j +1
can be calculated as:

E[Xj+1|Xj = |Φj |] ≈
|Φj |
∑

i=1

e−
σ2

j (i−1)

n

=

|Φj |−1
∑

t=0

e−
αit
n where t = i − 1

= 1 +

|Φj |−1
∑

t=1

e−
αjt

n

Since e−
αjt

n is a monotonically decreasing function, we
can approximate E[Xj+1|Xj = |Φj |] by the following
integral:

E[Xj+1|Xj = |Φj |] ≤ 1 +

∫ |Φj |−1

0

e−
αjt

n dt ≤ n

αj

Since the number of contenders on an average decreases
by a factor of α and there is a single round in the second
phase, the number of rounds in the protocol is O(log n).
�

Theorem 7. The total number of messages in the pro-
tocol sent by all nodes is O(n).

Proof: The expected number of messages, N , in the
system in the first phase of the protocol is given by:

N = E[

w−1
∑

j=1

Xjσj ] =

w−1
∑

j=1

E[Xj ]σj < nα

w−1
∑

j=1

1

α
j
2

Since α > 1, the above summation converges. The num-
ber of messages sent in the second phase of the protocol
is O(log6 n)

√
n ln n. Therefore, the number of messages

sent by all nodes in the system is O(n). �

Theorem 8. It takes a maximum of 7τ units for a con-
tender in the second phase of the protocol to know whether
it is a winner or not.

Proof: In the worst case, a request from a contender
can take τ units. The mediator that received the request
may have entered the safe state at approximately the
same time as the request was received. The mediator may
respond positively after 3τ units (or in the worst case, a
negative response after 3τ units, if the earlier contender
sent a potential winner). The response from the mediator
to the contender can take at most τ units. Therefore,
a contender need not wait for more than 5τ units of
time after it sends a request. Suppose, the contender
gets a positive response from all its mediators, it sends
a potential winner message, which takes at most τ units
and the response from the mediator takes τ units. By
accounting for the time taken for all the messages, a
contender need not wait for more than 7τ units in the
worst case to know whether it is a winner or not. �

Theorem 9. A contender will know whether it is a win-
ner or not within O(τ log n) time.

Proof: For every contender, the time to know whether
it is a winner or not is bounded by the total time taken
for the first phase and the second phase. There are O(log n)
rounds (by Theorem 6) in the first phase and the con-
tender takes at most O(τ log n) because for every round
in the first phase, a contender spends 2τ time units for
communication with the mediators. By Theorem 8, a
contender will not take more than 7τ units in the sec-
ond phase. Hence, a contender will know whether it is a
winner or not in O(τ log n). �

Theorem 10. There is exactly one contender remaining
at the end of the protocol w.h.p.

Proof: A contender can become the final winner
only when it has sent potential winner messages to its
mediators. This can happen if and only if all its me-
diators sent a positive response. There are two states,
viz. idle and post-safe, in which a mediator can send a
positive response to a request. However after sending the
potential winner messages, a contender can either win or
lose. There are two scenarios of two or more contenders
receiving positive responses from all its mediators.

• Scenario 1: More than one contender receives posi-
tive responses from all its mediators when the medi-
ators were in idle state. This can happen only if the
set of mediators chosen by two distinct contenders
does not intersect. This can happen with probability
1
n
.

• Scenario 2: Since the set of mediators intersect w.h.p.,
two contenders might have received a positive re-
sponse from the same mediator if and only if the
mediator was in an idle/post-safe state for one con-
tender and a post-safe state for the other contender.
A mediator will not send a positive response in a
safe or close-safe state. But the most recent positive
response is outstanding and replaces the earlier posi-
tive response. The potential winner message from the
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contender that received a positive response from the
mediator (when it was in a idle state) will receive a
negative response from the mediator.

Therefore, at any point during the execution of the pro-
tocol, by Theorem 3, a mediator will maintain only one
contender as a potential winner and when a set of

√
n ln n

of mediators hold the same contender as a potential win-
ner, the corresponding contender becomes the final win-
ner. �

5 Handling Failures

Failures are an integral part of large-scale distributed
systems. In this section, we examine the impact of fail-
ures of mediators in our synchronous protocol. Contenders
can also fail. However, as long as there is at least one
contender who has not failed, a leader gets elected. In
the event of all contenders failing or the last remaining
contender failing, the scenario is analogous to any other
election system where in the elected leader fails. This
issue needs to be handled within the application frame-
work. We assume fail stop failures, i.e., a process can
stop responding at any point of time, based on the fail-
ure probability. A process can fail either before or after
responding to a contender. If the mediator fails after re-
sponding to a contender, it means that the mediator has
already arbitrated and does not pose a problem for the
correct functioning of the algorithm. Consequently, we
address the issue of mediators failing before they have
sent any message to contenders.

In the first phase of the protocol, when a request is
sent by a contender to m mediators, it expects responses
from each of the mediators. When a mediator to which
the contender sends a message fails, the contender will
not receive any response from the mediator as to whether
the contender can proceed to subsequent rounds. We can
apply two different approaches in this scenario:

1. A contender can proceed to the next round as long
as it does not receive a negative response.

2. A contender can proceed to the next round if and
only if it receives positive responses from all the me-
diators.

If we adopt the first approach, the number of contenders
that proceed to subsequent rounds may be greater than
the number of contenders proceeding to subsequent rounds
when there are no failures. This affects the message and
round complexity bounds. In the second approach, the
number of contenders proceeding in the face of failures
will be fewer than when there are no failures. This can
lead to a case where the number of contenders in suc-
cessive rounds decreases by a large factor resulting in
a lower probability of having at least one contender at
the end of the first phase of the protocol. This approach
does, however, preserve the message and round complex-
ity bounds. We adopt the second approach and identify
the operating range of the high probabilistic correctness
of our algorithm by providing bounds on the failure prob-
ability of processes.

Theorem 11. In the first phase (1 ≤ j < w), for γ < 1
σj

the decrease in the number of contenders proceeding to
subsequent round (j + 1) is bounded by a factor of 1

e
γσj .

(see Table 2 for definition of the parameters)

Proof: Let Xj is the number of contenders that
proceed to round j,

E[Xj+1|Xj = |Φj |] = |Φj |
(

1 − σj

n

)σj(|Φj |−1)+nγ

(1)

≈ |Φj |e−
σ2

j (|Φj |−1)

n
−σjγ

The difference between the expectation of Xj when com-
pared to Lemma 1 is the addition of nγ in (1). We do
this to account for the failure of mediators and to let a
contender proceed to the next round if and only if it has
not sent a message to one of the failed processes.

The expected number of contenders proceeding to

round j + 1 is given by
|Φj |

2e
σjγ . When σjγ < 1, we have

between
|Φj |
2e

and
|Φj |
2 contenders proceeding to round

j + 1 on an average. Therefore, when γ < 1
σj

, it limits

the decrease in the number of contenders proceeding to
subsequent rounds. �

It is necessary that every contender in the second
phase intersect with other contenders in the system. In
the second phase of the protocol, more messages are sent
to negate the presence of failures in the system (i.e.,)
every contender in the second phase needs to get a re-
sponse from

√
n ln n other mediators. Given the bounds

for γ for the first phase, the message complexity of the
second phase is maintained. Since, γ is the failure prob-
ability, the expected number of failed processes is nγ.
We use n−nγ instead of n in calculating the number of
rounds in the first phase.

Theorem 12. If γσw−1 < 1, a single leader is elected

with probability 1 − O( eγσw−1

log6 n
), the message complexity

is O(n) and the round complexity is O(log n).

Proof: We specify the modifications to the ear-
lier proof without failures. Notice that σi is a mono-
tonically increasing function, we have σw−1 > σ0. From
Theorem 11 and applying the method used in obtaining
Lemma 1, we restate Lemma 1 as follows:

1.
n

2i−1eγσi−1
[g(log2 n)]i−1 ≤ E[Xi] ≤

n

2i−1eγσi−1
[h(log2 n)]i−1

2. P (ℓi < Xi < ui) ≥ g(
log6 n

eγσw−1
)

The result follows. The round and message complexities
can be shown using the proofs from Theorems 4 and 5
respectively.

6 Applications and Relevance to Current
Distributed Systems

For many applications in large scale distributed systems,
probabilistic guarantees are sufficient as a tradeoff for
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scalability. One such application, that forms our larger
research and development goal, is a versioning-based dis-
tributed file system called Plethora [6]. In this and re-
lated systems, two contending processes for a common
data object may modify the object concurrently, assum-
ing they each have exclusive access. If both of these con-
tenders commit their changes, a branch in the version
tree is created and the two committed versions are in-
stalled as siblings in the version tree. While these ver-
sions may subsequently be reconciled, it is desirable that
the number of such branches in the version tree be min-
imized. In this scenario, failed mutual exclusion (multi-
ple processes gaining access to a mutually exclusive re-
source) merely results in a branch in the version tree.
Minimizing the probability of such an occurrence, while
minimizing associated overhead can be achieved using
the protocol presented in this paper. Similarly, duplicate
elimination of files in distributed stores [7] can be effi-
ciently realized by using the algorithm presented in this
section. In this section, we present issues that need to be
addressed for a practical realization in realistic networks
of the algorithm described in the paper.

One of the parameters of our protocol is the size of
the network. An estimate of the number of processes in
the system is needed to determine the number of mes-
sages that need to be sent in each round of the protocol.
A number of researchers have addressed the problem of
estimating network size [2,14,24]. For example, in [14],
Horowitz et al. present an estimation scheme that allows
a peer to estimate the size of its network based only on
local information with constant overhead by maintaining
a logical ring. Our approach does not, however, require
the knowledge of the number of contenders.

Random walks are typically used to obtain uniform
samples. The Metropolis-Hastings algorithm [3,13,22] pro-
vides a method to hasten the mixing time of a random
walk to reach a stationary distribution and can be ap-
plied to different graphs. Gkantsidis et al. [10] show that
successive steps of a random walk on an expander graph
from a random point is equivalent to uniformly sam-
pling in the entire graph. King and Saia [16] present a
non random walk approach to choosing a random peer in
a structured network. These results provide the needed
algorithms for uniformly selecting mediators. Uniform
sampling has many other applications [16].

7 Simulation Results

To explore the performance of our approach (RE), we
simulated it on a network of 50,000 processes with power
law connectivity i.e., the degree distribution of the pro-
cesses follows a power-law distribution. To generate the
network, we first generate the degrees of the processes
according to the power-law distribution with power-law
parameter α = 0.8 and then connect the processes ran-
domly. We assume that β of the processes participate as
contenders and these contenders are selected uniformly
at random. We vary β from 1% to 50%. These percent-
ages are chosen to show the number of messages on the

system based on the percentage of processes participat-
ing as contenders. We provide a comparison with the
probabilistic quorum (PQ) approach, which is equiva-
lent to the second phase of the RE approach. The simu-
lations are performed over the asynchronous versions of
the respective approaches.

7.1 Message Overhead
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Fig. 9. Total number of messages in the system vs Percentage
of Contenders.

We first compare the approaches with respect to the
total number of messages exchanged in the system. Fig. 9
shows the number of messages for the two leader elec-
tion approaches with varying β. The probabilistic quo-
rum approach does not scale well when the percentage
of contenders increases in the network. When 50% of
the processes are contenders, the number of messages in
the PQ approach is more than one order of magnitude
greater than that of our approach.

7.2 Accuracy of the Protocols

The final goal of both protocols (RE and PQ) is to find
a unique leader in the system. To evaluate how close to
this goal the protocols perform, we fix the percentage
of contenders to 1% (500 processes) of the system size.
In ten thousand different runs with different seeds, the
protocols always produced a unique leader.

8 Related Work

A direct application of the probabilistic quorum algo-
rithm developed by Malkhi et al. [21] to the leader elec-

tion problem would result in O(n
√

n ln n) number of
messages and a single round. In our protocol, we increase
the number of rounds to O(log n), but reduce the number
of messages sent by all processes in all rounds to O(n).
This reduction is possible because winner at each round
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in the first phase is chosen based on the non-intersection
of their mediator sets with any other contender’s me-
diator sets. We use the probabilistic quorum algorithm
in the last round with a reduced (O(

√
log n)) set of con-

tenders. In this case, the O(n) message complexity is still
preserved.

In [20], Maekawa proposes a
√

n deterministic algo-
rithm for mutual exclusion in distributed systems, where
the distributed sites are arranged in a grid. A process
that participates in the mutual exclusion algorithm wins
if it can get exclusive access to processes on an arbitrar-
ily selected single row and column. A direct application
of this result for leader election results in O(n

√
n) mes-

sages.
In [1], Agrawal et al. improve upon Maekawa’s al-

gorithm for mutual exclusion by realizing quorum sets
as sites lying on paths similar to trajectories of billiard
balls. The size of the quorum generated is

√
2n when

compared to 2
√

n of Maekawa’s algorithm. Even though
their mutual exclusion algorithm can be extended to
solve the leader election problem deterministically, the
message complexity of their method is of the same or-
der as that of Maekawa’s algorithm (O(n

√
n)) and hence

suboptimal when compared to the algorithm presented
in this paper.

Gupta et al. [12] propose a probabilistic leader elec-
tion protocol for large groups. The complexity of the pro-
tocol is O(K4 ∗n) messages per election round, where K
is the filter value on the number of processes that can
participate in the relay phase. The success of the algo-
rithm is guaranteed only with probability depending on
various system parameters viz., the view probability (the
probability that a random process has another random
process in its view), K value, the system size among
others. In their paper, it is necessary that the hash func-
tion and K value, used to decide whether a process will
participate in the relay phase, should be the same (or
approximately the same) for all processes in the group.
While the hash function can be the same for all pro-
cesses, agreement on the K value is not straight forward
because it decides the number of processes that partici-
pate in the relay phase and hence is a function of group
size. If the K value is a predetermined constant, then
it is not clear on how this method can be adopted for
varying group sizes. Also, while simulation results in the
paper shows that the number of election rounds is quite
less, the number of rounds as a function of the system
size is not clearly specified. Furthermore, the probability
of success of the protocol is significantly dependent on
the filter value, the view probability among other sys-
tem parameters. However, a significant contribution of
their work is in recognizing the usefulness of probabilis-
tic approaches in large scale systems, where correctness
can be sacrificed occasionally for scalability. We also de-
sign a probabilistic algorithm such that the probability of
electing exactly one leader tends to unity as the system
size approaches infinity. Furthermore, the message com-
plexity is linear in the system size and no assumptions
are made with respect to the knowledge of any constants.
While the exact number of messages exchanged is depen-
dent on the number of initial contenders (or group size),

the knowledge of the number of contenders is irrelevant
for our approach.

In [28], Schooler et al. propose two interesting leader-
election algorithms for multicast groups. Both algorithms
(LE-A and LE-S) use announcements to decide the leader.
In the first algorithm (LE-A), a process initially an-
nounces itself as the leader to the group and listen for an-
nouncements of the other members of the groups. Lead-
ers are selected based on their identifiers, the process
with the greatest identifier is selected as leader. On re-
ceiving an announcement, a process decides locally if the
current leader must be changed based on the process
identifier received in the announcement. The second al-
gorithm, (LE-S) includes a suppression phase to avoid
the initial announcement. In LE-S, processes wait for a
random time before sending their leader announcements.
An extension to the algorithm is making the suppres-
sion wake-up timer value the actual “id” that serves as
the basis of the resolution algorithm. Thus, when pro-
cesses with smaller timer values announce their leader-
ship, they are deemed leaders and appointed leaders ear-
lier. This (LE-S) approach greatly reduces the number
of messages, since it probabilistically suppresses unnec-
essary leadership announcements. This reduction in the
number of messages shares a similarity in its goal with
the first phase of our approach, where the number of
contenders are reduced in successive rounds. In [28],
the value upon which the leadership decision is based
is selected from a range that deliberately minimizes col-
lision. The contenders in our approach also generate a
random number from a range ([0..n4]) for the sake of
uniqueness. Their approach has the potential on the one
hand to lead to more messages in the network, yet on
the other hand to reduce the likelihood of implosion with
large n when coupled with suppression. A valuable as-
pect of their work is that it considers message loss as a
fundamental concern for distributed leader election al-
gorithms.

Mullender and Vitanyi propose a “distributed match-
making” problem in [23] to study distributed control is-
sues arising in name servers, mutual exclusion, replicated
data management, that involve making matches between
processes. In a general network, they propose that a con-
nected graph of n processes can be divided into O(

√
n)

connected sub graphs of diameter O(
√

n) each. Our algo-
rithm (in the first phase) can be viewed as constructing
sub graphs in a step by step fashion instead of a single
round which results in a better message complexity.

There has been significant work in developing mutual
exclusion algorithms for shared memory models [17,15].
These could be extended for purposes of leader election.
In [17], Kushilevitz and Rabin correct the randomized
mutual exclusion algorithm presented in [25]. The au-
thors develop a randomized algorithm for mutual exclu-
sion in a shared memory model. In [15], Joung proposes
a new problem called Congenial Talking Philosophers to
model the mutual exclusion problem and provides several
criteria to evaluate solutions to the problem. Our leader
election algorithm is for a large scale distributed system
where it is not feasible for processes to share memory.
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9 Conclusion

This paper presents the design of an efficient randomized
algorithm for leader election in large-scale distributed
systems. The algorithm guarantees correctness with high
probability and has optimal message complexity O(n).
To our knowledge, this is the first result providing high
probabilistic guarantees with optimal message complex-
ity for a general topology. We propose variants of the
algorithm for synchronous as well as asynchronous envi-
ronments. We give an analysis for the correctness of the
algorithm and bounds on the number of messages and
the number of rounds.
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